首页 > 文章中心 > 课程数学

课程数学范文精选

课程数学

课程数学范文第1篇

一、数学学习

人类的数学学习活动,从最初的结绳记数等自然经验的积累,演变成以班级授课形式为主的学校数学教育,已有数千年历史。然而,关于数学学习的基本理论的研究,诸如数学学习的实质是什么?数学学习有何特点?学生在其学习过程中表现出哪些心理规律?影响学生数学学习的因素分析等等,并没有形成一种共识,亟待更深入地研究和探索。

(一)数学学习的实质

数学学习的实质,牵涉到两个更为重要的问题:一是数学学习的对象——数学的本质是什么?二是数学学习作为一类学习活动——学习的实质是什么?前一个问题,是数学哲学的元问题,有着许多不同观点。如“纯数学的对象是现实世界的空间形式和数量关系”①,“数学研究现实世界和人类经验各方面的各种形式模型的构造”②,“数学是研究广义的量(即模式结构形式)的学科”③等等。对数学本质的不同认识,形成了各种数学哲学流派,由于所持哲学立场各异,各派没有形成共识的迹象。随着认识的不断深化,人们看到尽管数学强调严密,但只是一种相对真理,大部分内容仅仅满足了逻辑合理性,与现实真理性有很大距离。

学习的本质问题,则是各种学习理论分野的焦点,这方面,具有代表性的是以桑代克、华生、斯金纳等为代表的行为主义(或联想主义)学习理论和以格式塔、托尔曼、布鲁纳等为代表的认知学习理论。在行为派看来,学习的实质就是学习者通过经典性条件反射或者操作性条件反射的形成而获得经验的过程,即刺激与反应之间的联结。在认知派看来,学习过程不是简单地在强化条件下形成刺激与反应的联结,而是学习者积极主动地形成新的完形或认知结构的过程,即学习是一种积极主动的内部加工过程。随着两大学派的争论和研究的深入,任何一派都无法涵盖对方,都无法解释一切学习。因此,西方心理学界又出现了折中主义的学习理论,将学习分为包括简单的联结学习与复杂的认知学习的若干层级,调和两大学派,试图说明学习的全部涵义。如加涅最初将学习分为三类联结学习(信号学习、刺激——反应学习、连锁学习)和五类认知学习(言语联想、辨别学习、概念学习、规则学习、问题解决)。后来他又修改为一类联结学习(连锁学习)和五类认知学习(辨别学习、具体概念学习、抽象概念学习、规则学习、高级规则学习)。折中主义学习理论吸收了两大学派的合理成分,但在学习本质的研究上,并没有实质性进展。

对数学本质的不同理解和学习实质的不同看法,给我们认识数学学习的实质增加了难度就中小学学生而言,他(她)们所面对的数学学习内容,主要是反映现实世界的数量关系和空间形式,数学学习活动是受数学课程规范的、在学校情境中进行的,它不同于人类一般的数学学习。因此,从心理学的角度,中小学学生的数学学习,是按教育目标在数学课程规定的范围内,由获得数学知识经验而引起的比较持久的行为或倾向的变化过程。这里的行为或倾向,包括学生外在的行为以及内在的数学认知、情感、兴趣、态度、动机等等。

(二)数学学习的特点

数学自身的特点,决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论—实践—理论”④的模式,与数学家的思维模式相比,必须经历逆转的心理过程。中小学学生的数学学习,是按课程方案在教师指导下进行的数学学科的学习,数学课程的特点使学生的数学学习更具有自己的风格和特色。

(三)数学学习的类型

中小学学生究竟进行什么样式的数学学习?回答这一问题,对揭示学生学习的心理规律、教师组织教学、数学课程建设等等都很有意义。分类标准不同,看法各异。如按数学学习的内容,将其分为:1.数学知识的学习;2.数学活动经验的学习;3.创造性数学活动经验的学习。⑤按学生认知活动水平的层次,数学学习包括:1.数学符号学习;2.数学概念学习;3.数学原理学习;4.数学运用学习;5.数学问题解决学习。⑥如果从学习的性质来看,中小学学生的数学学习包括:1.获得数学知识经验的学习;2.获得数学学习机制的学习,即元学习。前者为一般的学习,后者则是有关数学的外部活动不断内化的过程,是学生个体心理机能的获得过程。

上述认识表明,中小学学生的数学学习是一项复杂的心理活动,它受学生个体发展水平、学校教育、数学课程等多种因素的制约。其中,数学课程不但影响着人们对数学学习实质、特点的理解,而且直接影响学生数学学习的内容、方法以及学习的成果。

二、数学课程

我认为,数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。

美国课程论专家泰勒认为,教育的本来课题,不是教授者完成某种活动,而是要在学生的行为中引起某种重要的变化。⑦数学课程建设为教师达到这一目标提供基本方案和依据,因而它对学生数学学习的质量、水平有着决定性意义。

制约数学课程建设的因素是多方面的,大致有社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的发展史因素。⑧如果从中小学数学教育的出发点与归宿来看,数学课程建设是为了学生的个性发展,这种发展不是绝对自由的,而是在满足社会需要前提下实现的。学生的个性发展源于成熟与学习。成熟多受遗传的禀赋和潜能所支配,学习则是个体从环境中所获得的变化,主要受个人的教养和境遇所影响。学校数学教育给学生提供了数学学习的环境,数学课程在这种环境中起着“中介”和“方案”作用。因此,在满足社会需要的前提下,学生数学学习的实质、特点及所经历的心理规律等等,成为影响数学课程建设因素中的最根本因素。数学课程改革,必须认真对待学生的数学学习问题。

三、从数学学习看数学课程改革

(一)数学课程改革的历史教训

20世纪的数学课程改革已接近尾声,各国都在总结历史,展望未来。本世纪的数学课程改革历史表明,不管社会存在什么样的需要,只有设计符合学生数学学习特点、规律的课程体系,才能取得预期效果。学问中心数学课程和人本主义数学课程的失败就是佐证。

本世纪60年代世界范围内流行的学问中心数学课程,是基于对学生数学学习这样的认识建立的,即数学家的认识过程与学生的学习过程的逻辑是同质的,其间的差异只是程度的问题。数学家的研究逻辑与学生的数学学习逻辑被认为是:第一,数学家的认知方式与未成熟学生的数学认知方式所显示的不同,不是种类上而仅仅是程度上的差异,两者都经历着探究——发现学习的过程;第二,智力活动在一切方面都是

同一的。数学家的智力、兴趣与追求,对于任何年龄阶段的学生来说,都可以认为是适当的。于是,学问中心数学课程编制的基本准则是:依据数学科学的基本结构编制内容,体现数学的结构化、形成化、统一性和现代化。上述思想忽视了儿童思维方式的质与成人有差异。皮亚杰等人的研究成果表明,青少年心智成长是阶段性发展的,在其成熟过程中,经验起着质的变化。因此,学问中心数学课程注定是要失败的。70年代,它受到抨击,被认为使学生“非人性化”,妨碍了“完整人格”的实现。数学课程也随大流,走向人本主义化,以学生能力的全域发展为目的。

人本主义数学课程的目标是将学生的数学认知发展和情意发展(情绪、感情、态度、价值等)统一起来,数学课程采用知识课程与体验课程或情意课程与体验课程的多层结构。它以马斯洛的理论为其心理学基础,企图将抽象的数学演绎过程转变为经验的归纳的学习过程。然而,这种理想化课程并没有提高学校数学教育质量,过分强调尊重人的价值、忽视学生数学学习的规律,造成了学生学习能力低下。70年代中期,一些国家(如美国)又强调“回到基幢去。

数学课程必须符合学生数学学习的特点、心理规律,实际上是数学课程的学生适切性问题,它与数学课程的社会适切性共同决定着数学课程改革的成败。如何使学生在数学学习中人格得以完善,又能兼顾社会的需要,看来“大众数学”强调素质教育的思想是比较合理的。在这一思想指导下,90年代西方发达国家都建立了各自的数学课程体系,将数学课程的社会适切性与学生适切性置于核心地位,尤其是后者,可以说达到空前的地步。

(二)从数学学习看数学课程标准

数学课程标准是对各个特定阶段(如初中、高中)学生数学学习目标的规定,它体现着数学教育的目标。这些规定,必须考虑学生达到该学段时已有的数学知识经验、数学认知发展水平、数学思维的发展水平与特点,以及学生在教师的指导下以上方面可达到的水平。不同民族、不同环境下成长的学生,在思维发展顺序上同一,但达到各阶段的时间有差异。从数学概括能力、空间想象能力、数学命题能力和逻辑推理能力几方面发展的研究表明,⑨我国中学生在初中二年级是中学阶段思维发展的关键期,从初中二年级开始,他们的抽象逻辑思维开始由经验型水平向理论型水平转化,到高中二年级,这种转化初步完成,已“初步定型”或成熟。数学课程标准的确定,必须考虑这些特点。

(三)从数学学习看数学课程内容的选择

数学课程内容的确定,是历次数学课程改革的核心。从数学学习的角度看,数学课程的内容必须对大多数学校的大多数学生是难易适中,应与学生的认知水平相匹配,与学生的可接受能力相适应。这些内容应该是以前数学学习的发展,是今后数学学习或就业的准备。学习这些内容,不仅使学生获得数学知识经验,而且使学生的数学学习机制(元学习)得到发展。数学课程的内容过于直观、易懂,有益于学生较快获得数学知识,但对数学经验积累较少,至于更有意义的学习机制的发展就微乎其微。中小学数学课程内容,应尽可能地让学生感知数学的发展和全貌,增加广泛的背景知识,体现不同的数学思维方式和数学思想方法。这些内容是极有价值的,学生可能会受益终身。

课程数学范文第2篇

一、我国社会发展对数学课程的要求

促进数学课程发展的众多动力中,没有比社会发展这一动力更大的了,社会发展的需要主要包括:社会生产力发展的需要,经济和科学技术发展的需要和政治方面的要求。我国社会发展对数学课程提出了以下要求。

(一)目的性

教育必须为社会主义经济建服务。这就要求数学课程要有明确的目的性,即要为社会主义经济建设培养各级人才奠定基础,为提高广大劳动者的素质做出贡献。当今社会正由工业社会向信息社会过渡,在信息社会里多数人将从事信息管理和生产工作;社会财富增加要更多地依靠知识;知识更新、技术进步周期和人的职业寿命都在日益缩短,要适应日新月异的社会,必须把劳动者的素质、才能提到极重要的位置,而且要使他们具备终身学习的能力。

(二)实用性

数学课程的内容应具有应用的广泛性,可以运用于解决社会生产、社会生活以及其他学科中的大量实际问题;运用于训练人的思维。应该精选现代社会生和生活中广泛应用的数学知识作为数学课程的内容。另外,还要考虑其他学科对数学的要求。数学课程还应满足现代科学技术发展的需要,加进其中广泛应用的数学知识,如计算机初步知识、统计初步知识离散概率空间、二项分布等概率初步知识。

数学不仅是解决实际问题的工具,而且也广泛用来训练人的思维,培养有数学素养的社会成员,要使学生懂得数学的价值,对自己的数学能力有信心,有解决数学问题的能力,学会数学交流,学会数学思想方法。

(三)思想性和教育性

我们培养的人应该有理想、有道德、有文化、有纪律、热爱社会主义祖国和社会主义事业,具有国家兴旺发达而艰苦奋斗的精神;应当不断追求新知、实事求是、独立思考、勇于创新,具有辩证唯物主义观点。这就要求数学课程适当介绍中国数学史,以激发学生的民族自豪感。用辩证唯物主义观点来阐述课程内容,有意识地体现数学来源于实践又反过来作用于实践的辩证唯物主义观点。体现运动、变化、相互联系的观点。

《实验教材》用“精简实用”的选材标准来满足这些要求。

二、数学的发展对数学课程的要求

(一)中学数学课程应当是代数、几何、分析和概率这四科的基础部分恰当配合的整体

数学研究对象是现实世界的数量关系和空间形式。基础数学的对象是数、空间、函数,相应的是代数、几何、分析等学科,它们是各成体系但又密切联系的。现代数学中出现了许多综合性数学分支,都是在它们的基础上产生并发展起来的,研究的思想方法也是它们的思想方法的综合运用。代数、几何、分析在相邻学科和解决各种实际问题中都有广泛应用,所以中学数学课程应当是它们恰当配合的整体。曾经出现过的把中学课程代数结构化(如“新数”)的设计方案。“以函数为纲”使中学数学课程分析化的设计方案都不成功,正是没有满足这一要求。

(二)适当增加应用数学的内容

应用数学近年来蓬勃发展,出现了许多新的分支和领域,应用范围也在日益扩大,这种形势也要求在中学数学课程中有所反映。从“新数运动”开始,各国数学课程内容中陆续增加了概率统计和计算机的初步知识。这一方面说明概率统计和计算机知识在社会生产和社会生活中的广泛应用,另一方面也说明数学的发展扩大了它的基础,对中学数学课程提出了新的要求。

由于计算机科学研究的需要,“离散数学”越来越显得重要。因此,中学数学课程中应当增加离散数学的比重。

(三)系统性

基础数学,包括代数、几何、分析到19世纪末都相继奠定了严格的逻辑基础。到本世纪30年代法国布尔巴基学派用公理化方法,使整个数学结构化。任何一个数学系统都可以归结为代数结构、序结构和拓扑结构这三种母结构的复合。经过用公理化方法的整理,使数学成为一个逻辑严密、系统的整体结构。因此,作为符合数学知识结构要求的中学数学课程就必须具有一定的系统性和逻辑严密性。

(四)突出数学思想和数学方法

现代数学进行着不同领域的思想、方法的相互渗透。许多曾经认为没有任何共同之处的数学分支,现在已建立在共同的统一的思想基础上了。

数学思想和方法把数学科学联结成一个统一的有结构的整体。所以,我们应该体现突出数学思想和数学方法。

《实验教材》以“反璞归真”的指导思想来满足数学学科发展的要求。

三、教育、心理学发展对数学课程的要求

教育、心理学的发展,对教学规律和学生的心理规律有了更深入的认识。数学课程的设计要符合学生认知发展的规律。认知发展,要经历多种水平,多种阶段。认知的发展呈现一定的规律。基于这些规律,要求数学课程具有:

(一)可接受性

教学内容、方法都要适合学生的认知发展水平。获得新的数学知识的过程,主要依赖于数学认知结构中原有的适当概念,通过新旧知识的相互作用,使新旧意义同化,从而形成更为高度同化的数学认知结构的过程,它包括输入、同化、操作三个阶段。因此,作为数学课程内容要同学生已有的数学基础有密切联系。其抽象性与概括性不能过低或过高,要处于同级发展水平。这样才能使数学课程内容被学生理解,被他们接受,才能产生新旧知识有意义的同化作用,改造和分化出新的数学认知结构。

(二)直观性

皮亚杰的认知发展阶段的理论认为,中学生的认知发展水平已由具体运算进入了抽象运算阶段,但是即使他们在整体上认知水平已经达到了抽象运算的水平,在每个新数学概念的学习过程中仍然要经历从具体到抽象的转化,他们在学习新的数学概念时仍采用具体或直观的方式去探索新概念。因此,数学课程应向学生提供丰富的直观背景材料。不拘泥于抽象的形式,着重于向学生提示抽象概念的来龙去脉和其本质。也就是要“反璞归真”。

(三)启发性

苏联心理学家维果斯基认为儿童心理机能“最近发展区”的水平。表现为发展程序尚未成熟,正处于形成状态。儿童还不能独立地解决一定的靠智力解决的任务,但只要有一定的帮助和自己的努力,就有可能完成任务。数学课程的启发性就在于激发、诱导那些正待成熟的心理机能的发展,不断地使“最近发展区”的矛盾得到转化,而进入更高一级的数学认知水平。

要使数学课程真正具有启发性,需要克服两种偏向:第一,内容过于简单,缺乏思考余地。没有挑战性,不能激发学生思维,甚至不能满足学生学习愿望。第二,内容过于复杂、抽象。超过了学生数学认知结构中“最近发展区”的水平,学生将会由于不能理解它,产生畏惧心理,最后厌恶学习数学。

布鲁纳曾指出,向成长中的儿童提出难题,激励他们向下一阶段发展,这样的努力是值得的。在这种思想的指导下,他的数学课程采用螺旋式上升的原则,这是课程内容启发性的体现。

《实验教材》用“顺理成章、深入浅出”的指导思想来体现以上诸要求。

四、三方面需求的和谐统一

上面分别考查了三个方面对数学课程提出的要求,这些要求有时互为前题,互相补充,而有时却是彼此矛盾的。这导致了数学课程设计的复杂性和艰巨性。如何才能使这三方面的要求和谐统一呢?从《实验教材》11年的实验中形成了16字指导数学课程设计的思想,比较恰当的统一了以上三方面的需求。这16字的指导思想是“精简实用、反璞归真、顺理成章、深入浅出”。

“精简实用”是个基本的指导思想,它恰当地表现了理论和实际的正确关系。由实际到理论,就是由繁精简,把实际中多样的事物、现象,经过分析、综合,归纳出简单而又具有普遍性的道理,这就是理论。而只有精而简的理论才能用来“以简驭繁”。所以“精简实用”在科学上的意义就是要寻求真正具有普遍性、简明扼要的理论。要做到精简,必须抓住重点。教材中普遍实用的最基础部分,那些具有普遍意义的通性、通法就是重点。中学数学课程内容应是代数、几何、分析和概率这四科的基础部分恰当配合的整体,这样做既可满足社会的需要、数学知识结构的要求,又可满足可接受性的要求。其中普遍实用的最基础部分是代数中的数系,最普遍有用的是数系的运算律(“数系通性”);解代数方程;多项式运算;待定系数法。几何中的重要内容是教导学生研习演绎法,要点在于让学生逐步体会空间基本性质的本质与用法。平行四边形定理、相似三角形定理、勾股定理可以说是欧氏平面几何的三大支柱,它们也就是把空间结构全面代数化的理论基础。用向量把几何学全面代数化,讲向量身体、解析几何及其原理,这些就是几何课的重点。分析的重要内容除函数、极限、连续等分析学的基本概念之外,变化率是要紧的概念。分析中最基本的方法是逼近法。

“反璞归真”就是着重于教学生以基础数学的本质,而不拘泥于抽象的形式。初等代数最基本的思想、最重要的本质就是那些非常简单的数的运算律,它们是整个代数学的根本所在。把它形式化,也就是多项式的运算和理论。传统的代数教学从多项式的形式理论开始,学生不解其义,感到枯燥。《实验教材》反璞归真,先讲代数的基本原理就是灵活运用运算律,首先用以解决一次方程的实际问题,学生自然地觉得应该有一个多项式理论,然后再讲多项式,这样学生易于理解多项式的来源与本质。“这就是反璞归真”的一个实例。

基本的数学思想与数学方法是基础数学的本质,突出其教学是把知识教学与能力训练统一起来的重要一环。把知识看作一个过程,弄清它的来龙去脉,掌握思想脉络,学生的数学才能才发展起来,要学生“会学”数学,就必须让学生掌握基本的数学思想和方法,会“数学地”提出问题,思考问题、解决问题。

《实验教材》一开始就突出了用符号(字母)表示数的基本思想和方法。集合的思考方法,在几何和代数中都十分重视。经常训练学生从考虑具体的数学对象到考虑对象的集合,进而考虑分类等问题。

函数的思考方法,考虑对应,考虑运动的变化、相依关系,由研究状态过渡到研究过程。分解和组合的方法。对数学问题的分析与综合、转化、推广与限定(一般化与特殊化)、类比、递推、归纳等基本的数学思想与方法都分别得到强调。

“顺理成章”就是要从历史发展程序和认识规律出发,“顺理成间”地设计数学课程。数学是一种演绎体系,有时甚至本末倒置。这正是数学本身的要求和学生心理发展的要求相矛盾的所在。正确处理这个矛盾,使这两方面的要求和谐统一,课程设计就既不能违背逻辑次序。更要符合认识程序。因此,要参照数学发展历史,用数学概念的逐步进化演变过程作为明镜,用基础数学的层次与脉络作为依据来设计数学课程。数学的历史发展经历过若干重要转折。学生的认识过程和数学的历史发展过程(人类认识数学的过程)有一致性。数学教材的设计要着力于采取措施引导学生合乎规律地实现那些重大转折,使学生的数学学习顺理成章地由一个高度发展到另一个新的高度。在基础数学范围内,主要经历过五个大的转折。

由算术到代数是一个重大的转折。实现这个转折,重要的是要向学生讲清代数的基本精神是灵活运用运算律谋求问题的统一解法。由实验几何到论证几何是第二个重大转折。要对空间的基本概念与基本性质加以系统的观察、分析与实验,建立“空间通性”的一个明确体系,达到“探源、奠基与启蒙”三个目的,然后引进集合术语并以集合作工具,讲清一些基本逻辑关系、推理格式,再转入欧几里得推理几何。第三个转折是从定性几何到定量几何,即从综合几何到解析几何。要对几何问题谋求统一解法,出路在代数化,首先要把一个基本几何量代数化,就得到向量的概念,然后运用欧氏空间特有的平移、相似与勾股定理等基本性质引起向量的加法、倍积与内积这三种向量运算。这样就把窨的结构转化为向量和向量运算。这样就把空间的结构转化为向量和向量运算这种代数体系,因而空间的基本性质也就转化成向量运算的运算律。换句话说,向量的运算律也就是代数化的几何公理。这样就实现定性几何到定量几何的转折。向量是这个转折的枢纽。第四个转折是从常量数学到变量数学,这在概念和方法论方面都有相当大幅度的飞跃,需要早作准备。初中二年级已引入三角函数的初步概念,初三正式研究各种函数,到高一、高二的代数与解析几何中,就逐步讲座到连续性、实数完备性、切线等概念。数列、逼近的思想也早有渗透,到高三进一步突出逼近法研究极限、连续、微分、积分等变量数学问题。第五个转折是由确定性数学到随机性数学。在代数之后引起概率论初步。

上述数学课程设计,既遵循历史发展的规律,又突出了几个转折关头,缩短了认识过程。有利于学生掌握数学思想发展的脉络,提高数学教学的思想性。

“公务员之家”版权所有

“深入浅出”就是要学到应有的深度,才能浅出。许多事物和现象表面上各不相连,但是把它们提高到适当的高度来看,这些事物和现象就会有一种统一的理论串连其间。因此,如果没有掌握到这种枢纽性的理论,就无法回头用理论来统一一系列繁复多样的实际。所以数学课程的设计要用学生易于接受的形式引导学生去掌握枢纽性的理论。“占领制高点”,才能居高临下,一目了然。把数学课程搞得浅薄,砍掉具有枢纽地位的基础理论,把数学课程变成一本支离破碎的流水帐,一来难懂,二来无用,所以深入浅出的要点在于教好那些具有枢纽地位的基础理论。

课程数学范文第3篇

(1)教师应成为学生学习活动的引导者。引导的特点是含而不露,指而不明,开而不达,引而不发。引导的内容不仅包括方法和思维,同时也包括做人的价值,引导可以表现为一种启迪,学生迷路时教师不是轻易的告诉方向,而是引导他辨明方向;引导可以表现为一种激励,当学生登山畏惧时,教师不是拖着走,而是点起他内在的精神力量,鼓励他不断的向上攀登。如在教学华师大版初一数学(上)线段的长短比较时,我一开始设计询问学生平时如何比较身高,并请两个同学演示。再让学生仿照比身高方法来比较两支笔的长短,由此引导学生找到比较两条线段长短的方法。这样学生很容易理解了这个问题。在学习角的大小比较时,不再需要我的引导,学生从线段的比较中又找到了角的比较方法。

(2)新课程要求教师由传统的知识传授者转变为学生学习的组织者。教师作为学生学习的组织者一个非常重要的任务就是为学生提供合作交流的空间与时间,这种合作交流的空间与时间是最重要的学习资源。在教学中,个别学习、同桌交流、小组合作、组际交流、全班交流等都是新课程中经常采用的课堂教学组织形式,这些组织形式就是为学生创设了合作交流的时间,同时教师还必须给学生的自主学习提供充足的时间。如华师大版初一数学(上)的第一章P13,T·6,让学生以给定图形、、、、”(两个圆、两个三角形、两条平行线段)为构件,构思独特且有意义图形,并写一两句诙谐的解说词。在教学时,我让学生先个人设计,发挥想象,然后同桌交流、小组交流,最后由教师汇总全班同学中的优秀作品展示评奖。如“”战车、“”风筝、“”夕阳夹山、倒影入溪、“”一个人、一座山、一个太阳等等许多意义丰富的图形,其构思之巧妙,想象之丰富,语言之诙谐使人耳目一新。那一刻,同学们体会到了自主交流而取得成功的乐趣。

(3)教师应从“师道尊严”的架子中走出来,成为学生学习的参与者。教师参与学生学习活动的行为方式主要是:观察、倾听、交流。教师观察学生的学习状态,可以调控教学,照顾差异,发现“火花”。教师倾听学生的心声,是尊重学生的表现。教师与学生之间的交流,既有认知的交流,更有情感的交流,既可以通过语言进行交流,也可以通过表情、动作来实现交流。如在教学华师大版初一数学(上)4.3立体图形时,我让学生分组动手制作多面体的展开图,在学生制作时我观察各组制作过程,并参与到他们的制作过程中,在和他们的交流中我了解了他们在制作时的所思所想。个别存在的问题给予个别解决。在讲如何判断正方体的展开图时,我先是倾听学生们的方法,然后让几个有代表性、思维方法好的学生进行讲解。这样,我在教学中也学到了许多知识,同时缩短了学生与教师之间的距离,学生把我当成了他们学习的伙伴,愿意与我进行探讨、互相交流。

二、教学中要“用活”教材

新课程倡导教师“用教材”而不是简单的“教教材”。教师要创造性的用教材,要在使用教材的过程中融入自己的科学精神和智慧,要对教材知识进行重组和整合,选取更好的内容对教材深加工,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师教学个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、自主学习。

(1)教材不等于教学内容,教学内容大于教材。教学内容的范围是灵活的,是广泛的,可以是课内的也可以是课外的,只要适合学生的认知规律,从学生的实际出发的材料都可作为学习内容。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。例如华师大版初一数学(下)6.3实践与探索P14,T·2这是一个有关形状体积变化的问题。教材中只是作为一个练习题出现并没有类似例题,我针对这类问题设计了一节课。课上我没有急于让学生马上去做,而是找来两只一大一小的两只圆柱形的杯子,一只杯子中盛满水,开始做实验。通过实验引发了学生探索欲望,学生根据实验情况找到了解决此题的几种方法。再比如讲解P15,问题2储蓄中的利息和利息税问题。我在教材的基础上设计了几个实际生活中碰到的问题让学生课前到银行去询问和调查,课上同学们展示了自己的调查成果,用实例引发了学生学习欲望,激发了他们的学习兴趣。

(2)充分利用教材开创自由空间。过去的教和学都以掌握知识为主,教师很难创造性地理解、开发教材,现在则可以自己“改”教材了。教材中编入了一些让学生猜测和想像的内容,以发展学生的想像力和各种不同的思维取向。教材中提供了大量供学生自由阅读的栏目以及课题学习。如华师大版初一数学(上)P14关于幻方的阅读材料以及P122身份证号码与学籍号的课题学习。对于这些知识我把它们改成学生课外学习研究材料,让学生通过询问、调查、阅读有关书籍和上网查阅等多种渠道搜集有关这些知识资料并通过书面形式打印出来供全班同学阅读。这样做既锻炼了学生解决问题的能力又极大地丰富了他们的课外知识。

三、教学中要尊重学生已有的知识与经验

教学活动必须建立在学生的认识发展水平和已有的知识经验基础之上,体现学生学习的过程是在教师的引导下自我建构、自我生成的过程。学生不是简单被动地接受信息,而是对外部信息进行主动地选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,这种生成是他人无法取代的,是由内向外的生长,而不是由外向内的灌输,其基础是学生原有的知识和经验。美国著名的教育心理学家奥苏伯尔有一段经典的论述“假如让我把全部教育心理学仅仅归纳为一条原理的话,我将一言以蔽之:影响学习的惟一最重要的因素就是学生已经知道了什么,要探明这一点,并应就此进行教学。”这段话道出了“学生原有的知识和经验是教学活动的起点”。掌握了这个标准以后,我在教学中始终注意从学生已有的知识和经验出发,了解他们已知的,分析他们未知的,有针对性地设计教学目的、教学方法。

例如教学华师大版初一数学(上)4.1立体图形,这一节接近于实际生活。我在了解学生已掌握的知识基础上,让他们自己总结、交流他们对立体图形的感受、自己动手制作熟悉的立体图形,并根据自己的想像利用丰富图形构造生活实景。这样避免了我一味地讲解,学生一味地记忆。课堂气氛非常活跃,学生在轻松的学习氛围中掌握了知识。

四、教学中注重学生的全面发展,科学的评价每一个学生

新课程评价关注学生的全面发展,不仅仅关注学生的知识和技能的获得情况,更关注学生学习的过程、方法以及相应的情感态度和价值观等方面的发展。只有这样,才能培养出适合时展需要的身心健康,有知识、有能力、有纪律的创新型人才。

(1)评价不是为了证明,而是为了发展。淡化考试的功能,淡化分数的概念,使“考、考、考,老师的法宝,分、分、分学生的命根”这句流行了多少年的话成为历史。

(2)评价学生应该多几把尺子。尺子是什么呢?就是评价的标准,评价的工具。如果用一把尺子来量,肯定会把一部分有个性发展的学生评下去。

课程数学范文第4篇

关键词:数学课程标准;研制

文[l]提出了"关于我国数学课程标准研制的初步设想"(以下简称《设想》)之后,引起数学教育界各方人士的关注,对此问题的研究也日渐成为热点。经各方努力,《义务教育阶段国家数学课程标准·征求意见稿》已于2000年3月份问世,高中数学课程标准的研制工作也已启动。从l999年7月开始的这段时间,笔者曾多次参加过关于标准研制的有关会议,接触到从数学家、数学教育家到一线中小学数学教师对此工作的种种观点,深感研制的过程确如文[1]所希望的"应成为数学教育思想大讨论的过程",这样一个过程为世纪之交的中国数学教育改革灌注了活力,经历其中,深受启发,以下就几个方面问题作一探讨。

1关于课程标准研制的基本理念和指导思想

在讨论中,不少观点的争论实际上都可上溯到这个层面上来,它涉及到为什么要制定标准?以什么制定标准?所制定标准需要体现的核心思想或观念是什么?这些问题实际上关系到标准研制的基础,也是需要在研制过程中不断深入研讨以形成共识的。

1.1应首先以时代性要求作为标准研制的依据

作为实施《面向21世纪教育振兴行动计划》的一项重要工作,当然应该从更广阔的时代背景出发,反映出数学课程在新的历史条件下的发展变化和应达到的目标,诚为G.豪森在《数学课程发展》一书中所指出的:应该将数学课程发展放在历史的,以及更普遍的社今的、教育的背景中去加以考察。"从这一角度出发,至少如以下几个方面是应该考虑的:

(1)未来社会发展的新特征(如社会的信息化、数字化、学习化)对教育及数学教育提出的新要求;

(2)数学学科本身的发展变化(如技术性特征的凸现、应用环境的拓展、以数学理性精神及数学语言、思想、方法为核心的数学文化与人的生存更紧密的联系等);

(3)数学教育观的新发展(如数学教育功能、价值的变化;对数学教育过程、本质的新认识等);

(4)数学教育改革的国际、国内时代背景(如怎样适应以培养创新精神和实践能力为中心的素质教育总要求以及国际数学教育改革的新趋势等)。

应该说,我国数学教育工作者在近几年的研究中已敏锐地关注着上述时展要求所赋予的数学教育新的时代特征。如在ICME-8上,我国学者提出了"中国数学教育的范式革命",引起国际数学教育界的关注。之后,文[2]进一步从数学教育价值观、认识论观、数学观3个维度组成的框架来描述这种观念的变革。文[3]从"数学素质教育的建设是一项深刻的教育思想改革"的角度对上述观点予以支持。20世纪末连续两年·。在上海举行的"数学教育高级研讨班",不仅对20年来我国数学教育的成就和特点进行了总结和国际比较,还对改革的目标和未来10年中国数学教育的发展作了展望,作为参与者,深感数学教育的新观念、新思维已成为问题研讨的基础;而在北京举行的全国高师数学教育年会上,主题报告《数学教育如何迎接知识经济时代的挑战》鲜明反映出在知识经济理念之下对数学及数学教育的新认识。这里还要提及的是以青年学者为主体的"21世纪中国数学教育展望课题组"围绕"大众数学的理论与实践"进行了长达6年的实验研究,专家鉴定意见指出:该课题"在数学教育观和数学教育改革的指导思想、基本思路和原则、理论依据方面提出了一套较为系统的新思路"。其主旨报告从重新认识数学、重新认识学生、重新估价我国数学教育现状、把握国际数学教育新方向等方面论述了其研究在未来义务教育中"代表着一种新的数学思想和实践体系"。

上述具有一定代表性的研究活动集中地反映出这样一种共识,即:应该以一种基于时展要求之下的全新的理念来推进数学教育改革,而这也就成了标准研制的一个重要的思想基础。

1.2关于《设想》所提出的改革的基本理念

它主要涉及到如下层面:(l)数学观,从数学是模式与秩序的科学,是普遍适用的。技术,是一种充满探索与创造的过程等方面去反映对数学发展的新认识。(2)突出"以人的发展为本"的数学教育观,从中体现出数学教育与国民素质、人的理性思维、自我情感发展、解决问题能力的新关系,体现出平等教育、终身教育与可持续发展的新观点。(3)围绕"学习的建构",从数学学习的本质、方式、教师作用等方面形成一种新的学习认识论观念。(4)基于以上观念变化,提出新的教育评价观,即建立一种注重过程的、动态的、多样化的数学教学评价机制。

应该说,上述理念基本反映了目前的研究成果和共识,反映了未来发展的时代要求,为前期研制奠定了必要的思想认识基础。随着研制进程的推进和讨论的深入,研制者对上述理念也作了一些调整和补充,我们不难从文[5]及《义务教育阶段数学课程标准征求意见稿》中发现一些变化。

1.3关于标准研制的核心思想

文[6]认为"一个好的数学课程标准还应其有明确的指导思担",它应该有一个核心的思想予以表述,它"事实上构成了新的改革运动的主要特征,或者说,是次之改革运动成败的关键因素"。笔者赞同这样的成点,只是认为这种核心理念的形成需要经历一个过程(从某种意义上讲,它本身也是研制的一个成果),它需要对诸多层面的理念予以梳理、贯通、整合及提炼,需要以深入的理论与实践研究为基础,它也不仅仅是一种理性思考的产物,更应该能通过课程载体落在实处。

综合研制过程中所接触到的种种观点,比较趋于共识的是:新课程标准应注重在素质教育的目标下实现"人的发展",有鉴于此,就必须实现如下转变,即:从面向少数学生转变为面向全体学生;从强调以获取知识为首要目标转变为首先关注人的情感、态度、价值观和一般能力的培养;从数学接受性学习转变为数学活动中的建构性学习;从仅于数学内部学数学转变到更多地联系数学外部(社会、生活、其它学科等)学数学;从追求特定时限学习目标的实现转变到着眼于学生终身学习及可持续发展基础的养成。

2课程标准研制需要注意的几个策略

由于"标准"的研制在我国尚属首次,加之涉及面广,需解决的问题多,且要经历一个较长的研制实验过程,可以说是一项数学教育改革的系统工程,为有效地实施这项工程,应该注意方法、策略问题。笔者曾在1999年10月份召开的北京会议上就此问题发表过意见,现在本文着重就几个问题再谈点个人意见。

2.1需处理好几个关系

首先要处理好继承与发展的关系。建国以来,我国数学教育经过若干历史发展阶段,积累了宝贵的经验和教训,形成了具有自我特色的厚重的历史底蕴。特别是改革开放以来,数学教育改革理论和实践上都取得了巨大的成绩,这是应该充分肯定的。但也应该看到,基于应试教育的大背景,数学教育也出现了许多值得认真研究、加以解决的问题。而如果从前述时展的要求看,数学教育在某些方面还有相当大的差距,更应该加快改革进程。正是基于这样一种分析,决定了"标准"研制的基本态度应是扬弃加变革,即采取历史唯物主义和辩证唯物主义态度对数学教育的过去和现状作实事求是的分析,既要肯定成绩,也要正视问题,更要以改革的姿态,适应未来发展的需要。应该说,研制者所采取的态度是严肃而科学的,除了注意历史总结,现状剖析和未来需求设计这三者的贯通外,其着力点放在了适应未来发展需要上,这也表现了"标准"是一个适应未来的向前看的标准目前有人对标准研制是否充分肯定了我国数学教育的成绩以及目前改革步伐是否迈得过大所表现的忧虑是没有必要的。

另一个需要处理好的是坚持自我特色与借鉴国际经验的关系。数学教育研究历来具有国际协作的传统,而数字化社会的到来,使"地球村"更加成为现实,全球一体化的大趋势使得各国的数学教育更加走向开放和交流。值此世纪之交,各国数学教育研究异常活跃,反思过去、调整现在、思考未来已成为共同的主题。数学教育在这特定的时代背景下也呈现出更多带普遍规律性的特征,这无疑为我们提供了进行国际研究的大好时机。中国作为世界上学习数学人口最多的国家,其研究应该更多地融入国际数学教育改革的主潮流,一方面吸取别国之长;另一方面也为国际教育界提供自己的经验。正是从局这双向目的出发,在标准研制中,加强国际比较研究就显得极其重要。研制组除了进行"国际数学课程改革的最新进展"的专题研究外,还广泛收集了各国第一手资料,有针对性地进行了国别研究和其它方面的专题研究。事实证明,这种比较研究对于认清自己国的长处和不足,把握数学教育改革的趋势是有效的,值得进一步深入下去。

在研讨中,还涉及到正确处理好需要与可能的关系问题。比如,关于计算机(器)的普遍使用能否实现,某些现代内容(如概率统计)的增加是否会造成地区间新的水平差异,在义务教育阶段,创新精神的培养是否能落到实处,师资水平能否保证标准的实现,等等。笔者认为,在标准研制中,注意我国国情和现实可能性固然重要,但这种现实可能性一定是放在21世纪发展的背景下加以考虑的,一定是以时代需要为前提的。所谓目标既定,行动使然,课程标准应该在这个意义上体现它的先导性。

2.2吸纳各方力量参与,增强研制工作的开放性

应该说研制工作一开始就注意到了这一点。除就《设想》在全国普遍征求意见外,还先后召开了华东、华南、西南、西北、华北地区的座谈会,并通过多种形式,分别听取了数学家、数学教育家、高师研究者、教研员、一线中小学教师及其他各方人士的意见,并调动国内、境外有关学者的力量,进行了5个方面专题的调研,研制工作及有关会议也考虑到了地区性和各个层面的代表性。考虑到标准研制及具体实施、实验还将持续一个相当长的过程,更需要各方参与、通力合作才能收到实效,因此在研制的开放性上还需加强。应鼓励针对研制及实验有关各层面课题的立项研究,更提倡多方联合对重点问题进行攻关研究。

2.3提倡学术论争,增强研制过程的活力

围绕着标准研制,一段时间以来,在各种期刊上出现了不少文章,仁者见仁,智者见智,其中多有观点碰撞。事实上,数学教育研究的多元化格局已是当前发展的趋势,更何况我们是在做过去从未做过的事,如果众口一词,循之一径那才是不正常的事。学术论争必然带来学术繁荣。笔者参加的几次会议,尽管时时感到"火药味",但同时更感到言者的坦诚和成就这一事业的高度责任感。因标准研制所引发的学术论争是一件大好事,它必然为这一工作灌注强劲的动力。

3关于课程标准的设计

3.l标准水平的定位

此问题曾引起人们的关注(并引发出应是高水平还是低水平的争论),这里要解决好4个方面的问题:(1)要以反映基础教育阶段数学课程的基本要求(即普及性、基础性、发展性)为定位的依据;(2)从上述依据出发,标准应首先是对全体学生的基本标准,但正如它是致力于"人的发展"的标准,所以这一标准又不应理解为基于当前现状的低标准,而是着眼于21世纪发展要求的高标准;(3)标准在确立规范性要求的同时,应体现一定的弹性,这种弹性能为标准的实施(教材编制、教学实施、教学评价手段及地区实际情况差异)提供必要的发展空间;(4)3学段(9年级)之间的水平划分也应体现科学性和学段水平之间的递进发展关系,即通过阶段性与发展性的有机结合,来刻画标准的完整水平定位,而这些又是需要一定的研究来予以确定的。

3.2标准的内容与结构

《设想》对九年义务教育阶段的标准提供了一个基本框架,反映出如下特点:(1)以基本理念阐释标准制定的时代背景与指导思想;(2)将目标体系分为发展性领域与知识性领域,"虚"实结合、内容与活动结合、知识与素养(能力、态度等)结合、认知与情感结合,通过两个领域的交融、互动,来实现课程的总目标;(3)进一步对实施课程目标从课程设计和教学过程两个方面提出了思路,按此思路可对教材编写、教学实施、教学评价等方面形成指导性意见。这样。目标体系、教材编写、教学实施、教学评价就形成了一个相互贯通,有机结合的体系,应该说这是值得肯定的有一定特点的结构。

这之中,目标体系的设计特别是知识领域内容的设计是重点,也曾引发出一些有争议的问题。如关于平面几何的改革,关于小学是否引入方程,关于计算机(器)的进入?关于四则运算的要求以及一些具体内容的增、舍等等。此外,关于如何看待数学能力;如何贯穿数学思想方法;如何体现数学的文化价值;关于"证明"限制的程度怎样才合适;在3部分内容(数与式、空间与图形、概率统计)之外如何反映数学的联系(内部及外部联系);发展性目标对知识性目标的导向如何落在实处;如何处理好课程标准与教材编写与呈现之间的关系等也是引起关注的问题。

课程数学范文第5篇

关键词:融入教学;数学建模;创新能力

一、强化数学课程的应用功能是顺应教育改革潮流的需要

信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要[1]。大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。

二、大学数学主干课程融入数学建模思想需着力解决的几个关键问题

2.1理清数学建模思想方法与数学主干课程的关系。

数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力[2]。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。

2.2探索融入式教学模式提升数学主干课程应用功能的方式。

融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法[3]。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的归纳演绎能力以及将数学知识应用于工程问题的创新能力。

2.3建立数学建模思想方法融入数学主干课程的评价方式。

融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。

三、大学数学主干课程融入数学建模思想的实践研究

3.1改革课程教学内容,渗透数学建模的思想方法。

传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力[4]。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力。

3.2开发课程问题题材,创设现实生动的问题情境。

传统的数学课程教材内容,更多的是按照概念、原理及应用的逻辑体系进行编排,较少的应用实例也多是概念的基本应用,或是技巧的熟练演算,这与培养学生的应用创新能力之间存在着较大的差距。在主干课程教学实践中,教师应能开发富有实践内涵并能体现一定深度、广度的数学知识和思想方法的建模问题,并根据教学需要,构造出能体现各种建模思想且具有梯度层次的问题体系。紧密结合专业课程学习及能力素质提高的需求,开发设计具有难度层次的问题题材,按照问题的类别、解决方法及知识体系划分为基础问题、综合问题及创新问题,形成具有层次性的教学单元。问题体系因其来源于现实生活和工程实际,未经任何的抽象与转化,其本身所蕴含的丰富的背景材料对学生构成了认知上的挑战,可以有效地激发学生对问题探索的欲望。而且,数学教师要力求为学生创设一种现实生动的问题情境和活跃的探究氛围,以提供广阔的思维空间,培养其探索精神和创新能力。

3.3改革课程教学模式,引导学生参与数学建模活动的全过程。

传统的数学主干课程教学是由教师“一言堂”式地灌输事实性的数学知识,学生处于被动接受的地位。这种越俎代庖的教学模式难以适应数学建模教学的要求。实施数学建模教学,关键在于将表面上非数学或非完全数学的问题抽象转化为数学问题,即现实问题数学化[5]。这一过程是充分利用数学知识解决问题的关键,要求学生对现实问题进行分析和研究,充分应用数学的思想与方法将现实问题转化为数学问题,建立反映变量关系的数学模型。因此,数学建模教学应该从问题出发,通过问题的表征和重述,对问题所蕴含的信息进行加工、寻据、提炼、重组,并进行必要的简约和抽象,分清问题的本质特征和问题性质的不同成份,确定各成份的层次并使之系统化,挖掘变量间的依存关系,建立数学对象之间的基本关系,从而将问题转化成数学符号语言或某种数学理论语言,再以适当的数学形式,建立数学模型,获得问题的解答,并对这一方法、结果进行评价和推广。这种探索式的“问题解决”教学模式,有利于引导学生以数学的眼光和思维方式对现实世界进行考察研究,学会建立数学模型的方法,从而高屋建瓴地处理各类数学与非数学问题。

3.4开展建模竞赛,给予学生数学建模实战训练的机会。

竞赛不同于平时的学习,竞赛以其规则的严格性和时间的限定性,对学生构成了认知上的挑战,激发起他们获取成功的动机和创造的欲望。因此,适时组织数学建模竞赛,是推动和深化数学建模教学改革的有效措施。一般地,数学建模竞赛试题具备高度的开放性,学生面对这类现实问题,从开始从查找资料到收集数据,从问题分析到模型建立,从文字输入到程序编写等等,都必须依靠自己动脑、动手进行思考和探究。这就可能让学生亲身去体验数学的创造与发现过程。同时,这一切又都是以一个三人小组的形式进行的。72小时的连续奋战,队员们取长补短、互相配合、共同克服困难,培养了学生们的创新意识、创新能力、顽强拼搏的意志、严谨求实的作风和通力协作的团队精神。这些在日常的书本上和课堂教学中难以获得的宝贵经验,却正是现代科学研究中非常宝贵的品质。而且,开卷竞赛的新颖形式,也培养了同学们自觉遵守竞赛纪律、养成自律的良好习惯。

四、结语

数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。

参考文献

[1]刘来福,等.问题解决的数学模型方法[M].北京师范大学出版社,2002:23-25.

[2]吴诩,吴孟达,成礼智.数学建模的理论与实践[M].国防科技大学出版社,2001:67-69.

[3]李明振,庞坤.高师院校“数学建模”课程教学研究[M].西南师范大学学报,自然科学版,2006,31:12-13.

[4]杨宏林.关于高等数学课程教学改革的几点思考[J].数学教育学报,2009,5(2):74-76.

友情链接