首页 > 文章中心 > 计算机视觉的原理

计算机视觉的原理

计算机视觉的原理

计算机视觉的原理范文第1篇

关键词:计算机视觉系统 工业机器人 探究

中图分类号:TP242 文献标识码:A 文章编号:1007-9416(2015)05-0000-00

计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。近年来,机器人已经广泛使用于工业生产,但是多数机器人都是通过“示教-再现”的模式工作,在工业机器人工作是都是由操作员进行操作示范再由机器人跟着示范进行工作。由于机器人缺乏对外界事物的识别能力,工作中经常发生偏差或者位移等情况。由于工作环境的恶劣以及各种阻碍,为了提高工业机器人的工作效率、灵活性、适应性等,让机器人更好的识别外部环境并及时调整运作方向,能更好的发挥其作用,在原有的机器人系统中添加了一套计算机视觉系统,利用计算机视觉图像装置的信息,通过图像使机器人进行外部环境的识别处理,采用三维的重建,通过作业中利用三维图像的信息进行计算,采用Motocom32软件和机器人控制柜通讯等设备,对工业机器人进行控制,更好的实现机器人对空间特点的跟踪与定位。

1系统的结构与原理

本文主要针对Motoman UP6工业机器人系统的二次研究,在原有的工业机器人的系统中,增加了一套计算机视觉系统, 使工业机器人更好的识别外界环境的系统。计算机视觉系统主要包括:Panasonic CCD摄像机、Motoman UP6工业机器人系统、工控机、OK C-50图像采集卡等外部设备。工业机器人的整个系统由原有系统与计算机视觉系统组成,在原有的系统中包含了YASNAC-XRC- UP6机器人控制柜、Motoman UP6工业机器人本体、示教编程器、Motocom32系统以及相关的外部设备等[1]。计算机视觉系统的设备主要有Panasonic CCTV摄像机、AVENIR TV镜头、OK系列C-50图像采集卡、工控机、AVENIR TV镜头、Panasonic CCD摄像机、OK系列C-50图像采集卡形成的视频采集系统主要是捕获物体的图像,该功能主要是分三个层次进行图像处理、计算、变换以及通信等功能来实施工控机。利用远程控制来对工业机器人进行Motocom32系统进行通信。

2计算机视觉系统的构建

2.1硬件的组成

CCD摄像头:选用的CCD摄像机采用PAP-VIVC810AOZ型彩色摄像头,如图1。摄像机的像素为P:500(H)x582(V),N:510(H)x 492(V),摄像机的分辨率为420。摄像机的成像器使用1/33"CCD,信噪>48 dB,同时摄像机具有自动背景光补偿、自动增益控制等功能。

图像采集卡:图像采集卡主要采用CCD摄像头配套的MV-200工业图像处理。如图2所示。MV-200图像采集卡的分辨率、图像清晰度具有较高的稳定性,其真彩色实施工业图像采集卡,该图像采集卡的硬件构造、地层函数都具有稳定性,同时在恶例的环境中都可以稳定运行[2]。图像采集卡的图像采集效果非常好,画面效果非常流畅。

MV-200图像采集卡性能特点:其分辨率为768 x 576,具有独特的视频过滤技术,使图像质量的采集、显示更加清晰流畅。主要支持的系统为Win98 /2K/XP,主要用于人工智能、事物识别、监控等多种领域。

工控机:工控机以奔4系列为主。

2.2软件组成

图像匹配软件。

图像处理与获取软件。

定标和定位算法软件,功能分布如图3所示。

3视觉系统的原理及流程图

工业机器人的主要系统包括是由工业机器人本体、相关的外部设备、控制器(供电系统、执行器等)计算机视觉系统主要由三部分组成:图像处理和获取、图像匹配、摄像机的定位等组成。通过借助OpenCV的视觉库进行VC++.NET实行,流程如下图表4所示。

在本视觉系统运行中,需要对摄像机实行定标,建立实际空间点和摄像机的对应点。在定标的过程中,就需要标记基准点,使摄像机在采集图像时可以准确的把这些基准点投放到摄像机的坐标上[3]。同时在采集卡的图像中,对图像进行处理并计算出该基准点图像的坐标,通过定标计算法,从而得出摄像机的参数。

在机器人系统中的反馈,计算机通过C语言的调节图像采集卡进行动态链接来控制函数[4]。同时,对摄像机中的数据、视频信号进行采集,构成数字化的图像资料,采用BMP格式存储进行计算,在计算机上显示活动视频,然后系统对获取的图像进行分析处理,以及对噪声的去除、图像的平滑等进行处理,利用二值化处理对那些灰度阀值的图像进行处理,同时检测计算机获取图像的特征量并计算[5]。在完成图像的处理后,就需要确立图像的匹配特征,对图像进行匹配[6]。如果两个图像不重叠,就需要建立3D数据库进行模型重新选择,再把模型进行计算、投影计算、坐标更换等指令,直到找到与图像相匹配的数据模型,才能真正得到真实有效的图像。重叠时,要获得有效的图像,以工业机器人识别物体为目的,才能建立机器人系统之间的通信。同时,通过三维图像重建,进行机器人空间定位[7]。如下图表5所示。

4结语

综上所述,计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。通过3D数据模型指定目标,机器人系统利用计算机视觉图像的采集装置来识别外界环境的数据,经过图像的姿态预算、影像的投影计算产生图像,通过图片的合成比较,以此来实现机器人在工作中对物体的识别。利用计算机系统对机器人进行有效的控制,在工业机器人工作中对事物目标的搬运、跟踪、夹持等指令。计算机视觉系统具备清晰的视觉功能,有利于提高工业机器人的灵活性以及适应性。

参考文献

[1]夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述[J].机电工程,2014(06):221-223.

[2]华永明,杨春玉.机器人视觉系统在立体编织自动铺纱过程中的应用研究[J].玻璃纤维,2011(01):189-191.

[3]王培屹.基于多传感器多目标实时跟踪视觉系统在全自主机器人上的应用[J].软件导刊,2011(01):263-264.

[4]谭民,王硕.机器人技术研究进展[J].自动化学报,2013(07):123-125.

[5]鲍官军,荀一,戚利勇,杨庆华,高峰.机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报,201(01):93-95.

计算机视觉的原理范文第2篇

关键词:双目视觉;匹配算法;计算机视觉;立体匹配;相位一致性

1.计算机视觉系统分析研究

1.1计算机视觉技术及双目立体视觉

计算机视觉是通过计算机技术实现对视觉信息处理的整个过程,是一门新的学科。视觉是人们认知事物的重要途径,视觉是人们对视觉信息获取、处理和存储的过程。随着计算机技术的发展,信号处理技术的应用,人们通过照相机来把实际的事物拍摄下来转变为数字信息,并通过计算机信号处理技术队获取的视觉信号进行处理。计算机视觉技术对图像的处理分为获取图像、特征抽象选取、事物识别及分类和对三维信息的理解。获取图像主要是通过摄像机和红外线等技术对周围视觉事物进行获取,并通过计算得到和真实事物相应的二维图像,二维图像主要是数字图像。计算机视觉系统的最基本的功能是数字图像的获取。可以看出计算机视觉研究最基本内容是三维场景距离信息的获取。在计算机被动测量距离方法中,有一种重要的距离感知技术叫作双目立体视觉。双目立体视觉技术是其他计算机视觉技术无法取代的一种技术,对双目立体视觉技术的研究在计算机视觉技术和工程应用方面都是非常重要的。

1.2计算机视觉理论框架

第一个视觉系统理论框架的提出是以信息处理为基础,综合了图像处理和神经生理学等研究内容而建立的。这个视觉系统理论框架是计算机视觉系统的基本框架,与计算机视觉技术有着密切的关系。视觉系统的研究是以信息处理为基础的,从理论层次、算法层次和硬件层次3个层次进行研究。计算机理论层次主要是表达系统各个部分计算的目的和方法,对视觉系统的输入和输出进行规定,输入作为二维图像,输出是以二维图像为基础建立起来的三维物体,视觉系统的目的就是对三维物体进行分析和识别,通过计算对二维物置和形状进行重新建立。算法层次对计算机规定的目标进行计算,算法和计算机表达有关,不同的表达可以通过不同的算法进行实现,在计算机理论的层次上,算法和表达比计算机理论的层次要低。硬件层次是通过硬件来实现算法的一种表达方法。计算机理论层次在计算机信息处理中时最高的层次,取决于计算机的本质是解决计算机的自身问题,不是取决于计算问题的计算机硬件。要更好地对计算机系统和框架进行理解最好的方法就是要区分3个不同的层次,计算机理论的含义和主要解决的问题是计算机的目的,表达算法含义和主要解决的问题是实现计算理论的方法和输入输出的表达,硬件的实现的含义和主要解决的问题是如何在物理上对表达和算法进行实现。计算机视觉处理的可以分为3个阶段,对视觉信息的处理过程从最初的二维图像的原始数据,到三维环境的表达。第一阶段基元图的构成,基元图是用来表示二维图像中的重要信息,主要是图像中亮度变化位置及其几何分布和组织结构,图像中每点的亮度值包括零交叉、斑点、端点和不连续点、边缘等。第二阶段2.5维图描述,在以观测者为中心的坐标中,表示可见表面的方向、深度值和不连续的轮廓,基元是局部表面朝向离观测者的距离深度上的不连续点表面朝向的不连续点。第三阶段三维模型表示,在以物体为中心的坐标系中,有由体积单元和面积单元构成的模块化多层次表示,描述形状及其空间组织形式,分层次组成若干三维模型,每个三维模型都是在几个轴线空间的基础上构成的,所有体积单元或面积形状基元都附着在轴线上。视觉理论框架图如图1所示。

2.基于计算机的视觉立体匹配算法研究

视觉立体匹配算法是基于人类视觉系统的一种计算机算法。立体匹配算法作为计算机立体视觉问题研究的重点,快速地实现图像对应点的匹配来获得视差图是当今研究的热点问题。立体视觉匹配算法根据基元匹配的不同可以分为相位匹配、区域匹配和特征匹配3种,其中区域匹配算法可以减少计算负担,区域匹配算法实时性高,应用前景广阔。计算机立体视觉通过对人的双眼进行模仿,在双眼的立体感知中获得信息,从摄像机拍摄的图像中获取物体的三维深度信息,这就是深度图的获取,把深度图经过处理得到三维空间信息数据,二维图像到三维空间实现转换。深度的获取在双目立体成像视觉系统中分为两步,首先在双目立体图像与图像之间建立点对点的对象关系,双目立体视觉算法研究的重点问题是解决对应点之间的匹配问题。其次以对应点之间的视差为依据对深度值进行计算。双目成像是获取同一场景中两幅不同的图像,两个单目成像模型构成一个双目成像模型。双目成像示意图如图2所示。系统的基线B是两个镜头中心的连接线,空间点w(z,y,z)作为世界坐标的值由(x1,y1)与(x2,y2)进行确定,如果摄像机的坐标位置和空间点w世界坐标的位置重合,图像平面和世界坐标轴xY的平面就是平行的。如果两个摄像机在坐标系统中的原点不同但是它们的光轴平行,那么双目成像计算人们可以看图3所示,图3表示的是两个摄像头连线在平台xY的示意。

立体视觉的成像过程是成像的逆过程,具有一定的不确定性。大量的数据信息在从三维影像向二维图像进行投影的过程会出现丢失的现象,所以视觉系统要通过自然的约束条件才能保证获取正确的解。这些约束条件在减少匹配的计算量方面可以提供有利的帮助。针对基于区域匹配快速算法,还可以应用基于视差梯度的匹配算法,这种匹配算法应用较大的搜索范围在边缘的特征点上进行搜索,采用视差梯度在非边缘区减少搜索范围。应用计算机视觉立体匹配算法可以减少成像匹配时间,大大提高了工作效率。计算机立体匹配算法征点的提取是算法的关键问题,今后的研究方向重点是对有效特征点提取方法的研究。

计算机视觉的原理范文第3篇

关键词:计算机视觉;智能交通;监控系统

中图分类号:TP277

近些年来,随着我国人民生活水平提高,使私家车辆的数目急剧增长,并且车辆的增长速度远远超出市政建设的力度。这样的事实导致城市交通拥堵、违规通车、车祸增加,所以迫切的要求加快市政建设,实施高效率的交通监控措施,基于计算机视觉的智能交通监控系统也由此得到了相应的广泛的发展和应用。那么,计算机视觉技术下的智能交通监管系统究竟应该如何设计与实现呢?

1 计算机视觉下的智能交通监控系统

1.1 计算机视觉技术

计算机视觉技术即利用各种图像摄录设备将通过对视觉目标进行识别、跟踪、测量并将由此获取的视觉信息传输至计算机并进而利用图像技术进行视觉信息处理以达到进一步进行智能化处理的视觉处理技术。

1.2 智能交通系统(ITS)

智能交通系统(ITS)是指通过现代化的网络信息技术、自动控制技术等有效综合手段在一定范围内建立的全方位发挥作用的交通运输综合管理和控制系统。作为交通运输管理体系的一场新的革命,近年来,由此技术进一步开发形成的监控系统已经在各个道路的关键路口、路段和其他交通繁忙地域普遍建立,为交通运输管理提供了自动化、智能化的信息收集和处理等多方面的服务。但是,随着城市建设的迅猛发展和人流、车流量的猛增,更加智能化的交通管理系统的开发和利用显然也成为了当务之急。

2 计算机视觉下的智能交通监管系统的建立

正是基于新的发展需要,我们有必要把计算机视觉和智能交通监控系统进一步结合起来,首先通过计算机视觉分别对各个道路的关键路口、路段和其他交通繁忙地域等相应位置实时进行交通信息采集,然后,通过信息传输系统、或者进行处理后存入服务器并将处理过的实时交通信息及时传输到监控指挥系统,以实现对于各个道路的关键路口、路段和其他交通繁忙地域的实时监控和管理。由此,显然就需要设计以下各个子系统并共同构建为一个完整的体系。

计算机视觉下的智能交通监管系统

实时交通信息收集系统

监控指挥系统

高质量信息存储传输系统

图1 计算机视觉下的智能交通监管系统工作程序示意图

3 智能交通监控系统的实现

计算机视觉下的智能交通监管系统实现的第一步是通过实时交通信息收集系统实时进行交通信息采集,即通过对于运动物体的分割,在图像找出有意义的部分,抽出运动目标的特征,进而通过连续画面间的变化判断目标的运动状况。在这一系统运行中,首先可以“摄像头读入”的初始视频,使用相应的算法提取“背景”,然后通过原图与背景运算形成相应的“前景”,由此即可进一步通过矩形框的使用来达到“运动目标检测”与信息采录的目的。

图2 视觉监控系统原理图

3.1 系统功能实现

对运动物体的检测主要有光流法以及差分法两种方法,由于光流法比较复杂和耗时,实时检测很难实现,因而,现有实时交通信息收集系统一般通过差分法的应用来进行开发和实现。

3.1.1 帧间差分法

帧间差分法对运动目标进行分割处理过程中使用较多也最为简单实用的一种方法,其基本原理就是通过在连续的图像序列中两个或三个相邻帧间采用基于像素的帧间差分并且阈值化来提取图像的运动区域,进而通过逐象素比较获取前后两帧图像之间的差别来判断运动物体的移动状况。在实际操作中,一般可以假设用于获取序列图像的视频设备为静止物体,设视频中连续两帧的图像为It(x,y)和It+1(x,y),然后通过对连续两帧的图像相应的像素进行比较,利用Dt(x,y)=It+1 (x,y)-It(x,y)这一方程求出相应的阈值来检测出运动物体的移动状况:

Mt(x,y)=

当然,必须注意的是,由于帧间差分法所得到的差分图像在现实中并非由理想封闭的轮廓区域组成的,因而,运动目标的轮廓自然也就往往是局部的、不连续的,且其误差往往随着运动物体速度的增大而增大,因而,这一方法并不适于对于高速运动目标的有效检测。

3.1.2 背景差分法

与帧间差分法不同,背景差分法则是利用当前图像与背景图像的差分来检测物体运动状况一种方法。其基本原理是在可控制环境下,通过对于运动背景的固定假设,设待检测运动物体的图像为I(x,y),背景图像为B(x,y),通过输入图像与背景模型进行比较,利用D(x,y)=I(x,y)-B(x,y)这一方程求得到图像中的各像素的变化信息,进而检测运动物体的移动状况:

Mt(x,y)=

当然,在实际运用中,背景差分法的关键,是要建立一个背景模型,并更新模型。

3.2 程序功能的实现

本程序功能实现所主要使用的是OpenCV函数。OpenCV能够实现对图像数据的操作,包括分配、释放、复制、设置和转换数据,以及对摄像头的定标、对运动的分析等。在函数实现上,用到了Cv图像处理的连接部件函数,运动分析与对象跟踪中的背景统计量的累积相关函数等相关的函数。本系统就是运用图3介绍使用到的函数名及其功能和使用格式等来实现对视频流的运动车辆的轮廓检测的。

图3 寻找轮廓程序主要算法流程

实验证明,本系统能够较好地实现对视频流的运动目标的轮廓检测和对象跟踪,并能实时更新背景,车辆跟踪正确率在95%以上,虽然存在着轮廓检测正确率稍差的缺点,但其主要原因是由于摄像头所处的角度和运动目标靠近程度的影响,从根本上并不影响对于运动目标的实际检测。

4 结束语

加快城镇化进程是我国发展的大趋势,在这一趋势下,城市病的治理当然可以离不开现代化的科学技术。但是,必须注意的是,无论多么先进的管理系统,最终都只有通过人的行为才能够发挥有效的作用,在这个意义上,设计与使用先进的交通监控系统固然是解决交通问题的技术条件,但是,交通问题的解决,最终还必须依赖于人的素质的全面提高。

参考文献:

[1]戴俊乔.城市道路交通视频监控系统架构和性能的研究[J].科技与创新,2014(06).

[2]张伟龙,李刚,王雨翔.基于计算机视觉的智能交通监控系统[J].小型微型计算机系统,2014(07).

[3]庞其富.浅谈城市轨道交通视频监控系统设计方案[J].通讯世界,2014(01).

计算机视觉的原理范文第4篇

Abstract: For now the defects of fire monitor’s location technology in large space building, the binocular stereovision is applied to orientating fire in these buildings, the problem of real-time of fire monitor is well solved,having very high use value.

关键词:高大空间建筑双目立体视觉火源定位

Key Words: Large Space Building, Binocular Stereovision, Fire Location

中图分类号:G267文献标识码:A 文章编号:

1.概述

改革开放以来,我国各种民用建筑类型都得到了长足的发展。特别是近年来高大空间建筑日益增多。高大空间建筑由于建筑结构的特殊性和使用功能的复杂性,导致其防火分隔很困难,常规的灭火设施功能难以施展。针对这一情况,人们对适合于此类建筑的灭火技术进行了大量的研究,已有相关产品(智能消防炮)应用到实际工程中。目前消防炮定位技术主要集中在红外线、紫外线火灾探测器的扫描搜索定位以及基于机器视觉技术进行火灾空间自动定位,这一方法是利用安装在炮管上的单目摄像机进行扫描定位。然而这两种装置完成对一个火源的定位,需要把探测器调整到两个理想位置,硬件调整所需时间较算法实现所需时间要长的多,因而系统定位过程所需时间主要花费在探测器位置调整上,因而具有明显滞后性,不符合火灾扑救实时性要求[1]。针对这一情况,本文采用双目立体视觉定位技术来实现火源定位来弥补滞后性问题,具有很高的利用价值。

2.双目立体视觉定位基本理论介绍

2.1双目立体视觉原理[3]

双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。己知两摄像机之间的位置关系,便可以获取两摄像机公共视场内物体的三维尺寸及空间物体特征点的三维坐标。

2.2摄像机模型

摄像机采集到的图像二维信息,要想根据这个二维信息得到物体实际的三维信息,就要建立图像坐标系与世界坐标系之间的映射模型。本文用经典针孔摄像机模型来描述这一关系,如图1所示。其中XWYWZW为世界坐标系,XCYCZC为摄像机坐标系,xy为图像物理坐标系,uv为图像像素坐标系。

图1 摄像机针孔模型

上述模型存在以下关系:

(2-1)

M1为内部参数矩阵,M2为外部参数矩阵。

2.3双目立体视觉三维测量原理

双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心连线的距离,即基线距为B。两摄像机在同一时刻观看空间物体的同一特征点P,分别在“左眼”和“右眼”上获取了点P的图像,它们的图像坐标分别为Pleft=(Xleft,Yleft),Pright =(Xright,Yright)。假定两摄像机的图像在同一个平面上,则特征点P的图像坐标的Y坐标相同,即Yleft = Yright ,则由三角几何关系得到:

(2-2)

图2 双目立体成像模型

则视差为:D =Xleft-Xright。由此可计算出特征点P在摄像机坐标系下的三维坐标为:

(2-3)

因此,左摄像机像面上的任意一点只要能在右摄像机像面上找到对应的匹配点,就可以确定出该点的三维坐标。这种方法是点对点的运算,像面上所有点只要存在相应的匹配点,就可以参与上述运算,从而获取其相应的三维坐标。

3.双目立体视觉定位关键技术

双目立体视觉系统包括图像采集、摄像机标定、特征提取和立体匹配等部分,其中最关键的是摄像机标定和立体匹配这两项技术[2]。

所谓摄像机标定,就是确定摄像机内外参数M1、M2的过程,本文使用Zhang Z.Y.提出的基于2D平面靶标的摄像机标定方法[3]。

立体匹配其基本原理是从两个视点观察同一景物以获取立体像对,匹配出相应像点,从而计算出视差并获得三维信息。从各具特色的双目立体匹配算法框架来看,算法有效性主要依赖3 个因素,即选择准确的匹配基元(决策变量)、寻找相应的匹配准则(目标函数和约束条件)和构建能够准确匹配所选基元的稳定算法(求解过程)。

在本文中,考虑到火灾火焰定位报警这种实时性要求较高的场合,我们采用的匹配算法主要是局部匹配算法中的区域匹配法。区域匹配是直接对图像像素进行匹配,匹配结果不受特征检测精度和密度的影响,可得到较高的定位精度,使得区域匹配的鲁棒性有很大提高,同时也能满足实事性需求。匹配准则利用双目立体视觉中的极线几何约束条件。

4.实验平台

4.1硬件平台实现

采用陕西维视数字图像技术有限公司提供的系统开发平台方案搭建硬件平台,整个系统总体构架如图3所示。

图3 硬件系统总体架构

该系统介绍如下,用两部微型高清晰黑白工业相机获得火灾图像,该两部摄像机摄像机水平平行放置。经两路工业高清图像采集卡(MV-采集后送至台式电脑,该采集卡支持VB、VC、DELPHI二次开发,提供开发实例源代码。带软压存储软件,支持多种操作系统。利用安装在电脑里的开发软件(Visual C++ 2008 + OpenCV 2.0)来实现摄像机标定以及火源空间定位软件的开发工作。利用开发的软件计算出火源空间三维坐标后,电脑给机器视觉可精确控制运动高速云台发出指令,来验证定位的准确性和实时性。该云台可通过运动控制卡(内置)来精

确控制。控制范围水平面不小于-157度到+157度,垂直平面内不小于-36度到+36度,控制精度0.0129°,60步/s-1000步/s数字化加速度控制,运动速度可控可调,用于自动控制、自动跟踪、视觉仿真等机器视觉平台的搭建,可以二次开发。

4.2软件平台实现

OpenCV(open source Computer vision Library)[4]是Intel公司开发的开源计算机视库,它由一系列C函数和少量C++类构成,实现了图像处理和计算机视觉方而的很多通用算法,具备强大的图像和矩阵运算能力。它拥有包括300多个c/c++函数的跨平台的中、高层API,不依赖于其它的外部库(尽管也可以使用某些外部库),通过调用OpenCV算法库,研究者们可以在前人己完成的成熟算法基础上迅速开展自己的工作。作为一个基本的计算机视觉、图像处理和模式识别的开源项目,OpenCV可以直接应用于很多领域,作为二次开发的理想工具。

该平台基于 Windows7操作系统,利用Visual C++ 2008 开发了一个基于OpenCV2.0的火源定位系统。

图4软件平台模块功能图

图5是在本系统在OpenCV下生成的Tsukuba三维重建图,由此可见我们便可以借助三维重建的方法,达到对火灾火源空间定位。

图5 Tsukuba图相对的三维重建图

5.结论

随着经济和社会的不断发展进步,大空间建筑越来越多,随之带来的高大空间建筑的火灾扑救问题受到更多的关注。本文针对目前消防炮定位技术的不足,提出了双目摄像机立体视觉空间火源定位技术,将定位和联动独立开来,可以更实时地实现定点灭火,把火灾造成的损失减小到最小程度,必将具有广阔的应用前景和使用价值。

参考文献

[1]侯杰,钱稼茹等.高大空间建筑火灾探测及扑救技术发展思考[J].华中科技大学学报(城市科学版),2008,25(4):196-201.

[2] 原思聪,刘金颂等.双目立体视觉中的图像匹配方法研究[J].计算机工程与应用,2008,44(8):75-77.

计算机视觉的原理范文第5篇

关键词:OpenCV;计算机视觉技术;三维模拟技术

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)30-0137-02

21世纪是国际计算机技术高度发展的时代,人们生活中的每个角落都可以看到计算机技术的身影,尤其是现代计算机视觉技术和图像处理功能发展更加迅猛,各技术分支也逐渐趋于成熟。计算机视觉技术主要指的就是利用智能计算机系统来代替人类的眼睛对现实三维世界进行辨识和理解,整个过程均是计算机自我学习的过程,而随着这项技术研究的不断深入,其不再仅仅包含计算机技术科学,同时还涉猎了包括生理学、神经学、物理学、应用数学等多门学科,为人类科技的进步提供了有效的动力。

1 计算机对视频中运动物体检测的原理概述

在现代计算机技术基础下,对视频当中的运动物体检测原理主要包括两种,分别是从微观和宏观的角度出发。其中宏观检测技术指的是当计算机截取了视频中的某一个图像,其以整幅图像为对象进行检测;微观检测技术是指在截取图像后,根据实际需求对某一区域内的图像内容进行检测。在计算机视觉技术实际应用时,其第一步就是对图像的采集,第二步是对已经采集的图像进行预分析处理,如果采用宏观检测技术则对图像整体进行分析;如果采用微观检测技术则首先将图像进行分割,然后对分割后各图像内容中出现的运动物体影像进行分析。在图像数据获取过程中应用的是背景差分法,这一技术主要是将背景和运动物体进行分离提取,以获取没有背景图像的运动物体影像数据。还可以利用帧间差分法,这种方法主要是对一个视频图像的逐帧画面进行差别比较,从而获得各帧图像上的差值,而将这些差值帧图结合起来就是一个物体在计算机视觉下的运动轨迹。现代研究者更倾向于将背景和帧间差分法进行结合运用,这样可以获得无背景下的运动物体轨迹,进而提升计算机视觉系统捕捉数据的准确性。

2 OpenCV的应用概述

OpenCV是现代计算机视觉技术当中具有开源性的视觉库,其最早是由俄罗斯Intel分公司所研发,不仅高效,而且具有兼容的优势。同时与传统IPL图像处理系统相比,OpenCV所处理的图像数据等级更高,例如在对运动物体进行特征跟踪、目标分割、运动轨迹分析以及三维模型重建等方面都有着巨大的优势。

OpenCV本身编辑的源代码是开放式的,编写过程简洁且方便,并且程序中大多数函数已经通过了汇编的最优化,使其能够更加高效地被应用。在使用OpenCV的摄像机标定模块已经为用户设计了实用性较强的接口,并且能够支持Windows界面的操作平台,使得这一技术的操作更加简便。这一技术本身操作简便,对于编程人员和检验人员个人技能素质要求并不高,视觉技术系统研发人员可以利用简便的操作来检验其设想是否能够实现,这就使得现代计算机视觉技术开发团队能够形成更好的协作研发关系,进一步提升技术研究效率。目前已知OpenCV编程系统在航空航天定位、卫星地图绘制、工厂大规模生产视觉检测等方面得到了广泛的应用,同时对于无人飞行器的视觉捕捉技术也有极大的帮助。最为重要的是OpenCV编程语言的兼容性较强,编程人员可以根据自己的意愿对源代码进行披露,并且国内也已经形成了规模较大的交流社区,给更多同行业者提供答疑解惑的场所,进一步扩大了OpenCV的应用范围。

3 基于OpenCV的计算机视觉技术

3.1 基于OpenCV下的运动物体检测技术

在常规运动物体检测技术下,均是直接通过图像背景和运动物体的区分来实现运动物体的捕捉。而基于OpenCV下的运动物体检测技术则不仅能够针对于图像背景的分离实现运动物体的观察,还可通过物体本身特定的信息来进行检测,主要包括形状、轮廓以及颜色等。这样就能够实现在复杂的背景当中将特定的运动物体完整抽离出来。其基本流程包括:首先,对影像数据当中某一时间点的图像进行捕捉,然后对这一视频图像的格式进行转化;其次,对转化格式后的视频图像进行早期处理,并将运动物体和复杂的背景区分开,降低周围各环境因素对运动物体主体图像的影响;第三,根据完成提取后的运动物体图像进行辨识,然后再从视频当中捕捉拥有相同特征的物体,并对该物体进行跟踪识别。而这一过程的实质则在于先利用图像捕捉技术对画面进行截取,然后同时利用背景差分法和帧间差分法对图像进行分割,逐帧地将运动物体完成提取出来,以供计算机进行视觉跟踪处理。

3.2 基于OpenCV的图像预处理技术

一般情况下,计算机视觉处理技术应用的环境情况较为复杂,大多数应用环境当中均有光照的变化,并且部分计算机视觉处理设备还需要在露天环境下进行工作,此时周围环境中的风、温度、光照、气候以及运动物体数量等对视频图像的采集均有着极大的影响。环境因素会使图像采集的质量大幅度降低,同时图像当中的噪点问题也难以避免,而噪点是视觉捕捉和图像处理当中最大的影响因素。因此,在基于OpenCV下的计算机视觉技术在捕捉视频图像之后先对其进行预处理,然后再由系统对运动物体进行分离、检测和跟踪。一般的预处理过程主要包括平滑度滤波、图像填充、背景实时更新等。

1)图像的平滑度滤波预处理技术

由于在实际计算机视觉捕捉过程中图像噪点是难以避免的问题,以此在对图像中运动物体进行检测前,应该相对这些噪点进行预处理,降低环境噪声对图像的影响。图像的平滑度滤波处理共分为两种方式,分别为线性和非线性。其中线性处理方式就是通过计算机处理设备的简单运算,对图像当中的噪点进行直接清除,但这一技术使用后会造成截获图像模糊不清的情况,因此仅对噪点较少的图像采用该处理方式;非线性滤波处理则是利用复杂的图像处理运算,将截获图像当中的噪点无限缩小,使其不对图像整体造成影响,并且可以有效保证图像的局部调整,但这种处理方式在运算时速度没有线性滤波处理快,因此需应用在噪点较多,图像信息较复杂的处理当中。

2)图像的填充预处理技术

这一处理技术在使用过程中运算速度较慢,主要是由于其需要对逐帧的图像均进行处理,也包括两种处理方式,分别为边缘填充和腐蚀膨胀处理。其中边缘填充处理主要指的是在确定运动物体之后,利用计算机系统自身的边缘检测处理技术,对物体的轮廓进行辨识,并利用形态学上的漫水填充方式对运动物体周围的噪点进行颜色填充,减小其对画面整体元素的影响。而腐蚀膨胀处理与边缘填充处理原理相类似,但这种处理技术主要是针对于噪点进行腐蚀和膨胀,使其在画面当中所占比例扩大,但对运动物体本身不造成影响,这使运动物体和噪点之间的差异就会更加明显,就可以将噪点的影响降到最低,但这种处理方法的效果和摄像机本身的性能、质量等有着密切的关联。

3)背景的实时更新预处理技术

在进行运动物体和背景分离过程中,计算机系统需要对图像上的背景元素进行辨识,并对其开展初始化处理,这样就能够为后期实时背景图像的差异进行凸显,以增加前景图像的效果,降低噪点对图像的影响。在运用这一技术时,首先要先对第一帧的图像进行确定,并将第一帧图像当中的背景图像元素进行辨识,然后在后期图像更新和运动物体检测过程中对背景进行实时更新处理。在更新的过程中其流程主要包括:首先,系统要对所读取的画面进行有效的判断,了解该图像是否为第一帧;其次,将Opencv处理的图像转变为单通道灰度值;第三,对转变后的图像进行高斯平滑度滤波处理,将图像当中的噪点进行去除;第四,采用形态学噪点填充技术对图像当中的噪点进行二次处理,以获得所需要更新的背景图像。

3.3 前景运动物体的提取技术

在计算机视觉技术进行运动物体的检测时,只有有效保障检测流程的准确度,才能够有效保障对前景运动物体的跟踪效果。其主要分为两大步骤,其一是对二值化后的图像数据进行分割处理;其二是在图像分析前对其进行充分的填充处理,保证前景图数据的完整性。同时,在前景图像提取的过程中也分为多个步骤,其包括:首先,对所提出的前景图像和背景图像进行差分处理;其次,将差分处理后的图像二值化处理;第三,对背景当中前景物体的轮廓或边缘进行辨识,根据前景图像的轮廓对其进行填充。由于在实际操作过程中,摄像头所处环境的变化较大,并且会在不同场所内的不同角度捕捉画面,因此就需要在前景图像提取时有效提高背景图像实时更新的效果。

利用阀值二值化的分割方式能够有效将前景图像和背景图像分离开,从而使目标运动物体能够呈现独立化,并且阀值分割方式开展前要相对每个像素点进行确定,判断其是否位于灰度值的范围内。而将该图像的像素灰度和阀值进行对比后会出现两种结果,分别是灰度值低于或高于阀值。在实际应用过程中,有效确定图像的分割阀值T,就能够降低环境当中光照因素对图像质量的影响。

4 计算机视觉技术当中的三维重建技术

1)三维重建的视觉系统

计算机视觉技术在对图像进行捕捉时可以视为是对大量的图像信息进行处理,从摄像机的视觉角度出发,其所输入的图像一般为二维属性,但输出的信息确是三维数据,而这种三维空间数据能够提升对运动物体所处空间位置、距离等描述的准确性。在三维重建视觉系统工作过程中,其相对基本的图像数据框架进行确定,然后利用一个坐标点建立2.5D图像数据,即以此点为视角能够观察到的图像数据,再将2.5D图像数据进行整合从而建立三维图像。

2)双目视觉系统

当人体利用双眼在不同角度、同一时间内观察同一个物体时,就可以利用算法来测量该物体和人体之间的距离,而这种方法也被称为双目立体感,其应用的原理主要是人体视觉差所带来的影响。同时利用两台摄像机对同一图像从不同角度进行观察,就能够获得人体双目观察后的效果,因此这一三维重建技术也被称为“双目视觉系统”。两台不同的摄像机即可代表人体双眼,其对图像进行逐帧捕获,但由于角度不同和环境影响因素的差异,因此造成了图像差异,必须对其捕捉的图像进行预处理。

3)三维重构算法

在计算机视觉技术中对于视频流的采集主要依靠的是彩色摄像机、红外摄像机、红外接收摄像头等设备。还可以利用微软所提供的Kinect设备,在进行运动物体检测前能够对NUI进行初始化处理,将系统内函数的参数设定为用户信息深度图、彩图、骨骼追踪图等数据。在使用Kinect设备对视频流进行打开时,其可以遵循三个步骤,其一是彩色和深度数据的处理;其二是根据数据的索引添加颜色信息,并将其引入到深度图数据当中;其三是骨骼追踪数据。

5 结束语

计算机视觉捕捉技术是现代计算机应用当中较为先进的内容,其应用范围较广,对于运动物体的捕捉准确度较高,能够有效推进现代计算机模拟技术的发展。

参考文献:

[1] 张海科.基于Opencv的人手识别与跟踪定位技术研究与实现[D].昆明: 云南大学,2013.