首页 > 文章中心 > 英语硕士论文

英语硕士论文

英语硕士论文

英语硕士论文范文第1篇

关键词:研究生教育;基础能力;创新精神;学术个性

中图分类号:G643.2文献标识码:A文章编号:1671—1580(2013)02—0049—02

在我国,随着硕士点不断增多和研究生招生规模的不断扩大,英语语言文学硕士点也在不断增多,如何提高英语语言文学专业硕士研究生的培养质量成了许多高校面临的课题。本文将就我国目前英语语言文学专业硕士阶段存在的普遍问题加以分析,并就如何提高该专业硕士研究生的综合素质和研究能力提出几点建议。

关于英语语言文学专业硕士研究生的培养方案,大部分院校涉及到了以下大同小异的官话:“本专业所培养的硕士研究生应具有坚实的英语语言文学及相关学科的基础理论和较系统的专业知识,掌握本学科的研究现状和发展趋势;毕业后能在本学科领域独立从事教学和研究,或在实际工作部门从事相关工作。”但如果对许多院校给该专业开设的课程做一些调查研究,结果就会发现,大多院校在培养方案的制定上都忽略了英语语言文学专业由于本科阶段课程设置所带来的一些问题或现象。那就是中文功底较差,中英文语言表达尴尬。培养方案上没有继续加强这些本科语言生的语言基础教育,较为缺乏分析问题和解决问题的能力。因为他们本科阶段的主要任务就是打好语言基础。

鉴于以上种种问题,英语语言文学专业硕士研究生的培养究竟应该如何进行,如何引导学生全面发展,重点突出,又如何才能使得他们在校期间获得一定的研究能力,并在以后的工作中获得长足的发展呢?我认为,无论是作为英语语言文学方向的研究生,还是作为英语语言文学专业研究生的培养者,都应当从以下三点出发提高研究生的综合素质和教育水平。

一、加强基础能力培养

美国研究生培养体系的建立是与美国19世纪工业革命和经济发展的浪潮急需大批专业人才相适应的。而我国目前经济的飞速发展也同样急需大量的专业人才,硕士生的扩招也正是为满足这一点的需要。经多年发展,研究生培养的规则规范、方法程序的不断完善,形成了美国研究生教育独特的风格和模式。由于研究生教育主要在培养环节,培养的过程和方式就直接决定着研究生的质量。美国的大学尤其是名牌大学在研究生培养机制上的最最主要特点是注重基础训练。与本科教育培养合格劳动力的目标不同,美国大学的研究生教育目标始终定位在培养高层次创造型人才上。他们特别重视学科基础训练以及相关知识和方法的深厚积累。认为基础牢固,学科方法熟练,才有可能从事高深的、具有创造性的工作与研究,从而达到较高的成就。如果我们承认美国在研究生培养方面加强基础能力的培养是正确的话,那么我们也应当加强硕士生基础能力的培养。

我国的英语语言文学方向的研究生和国外以英语为母语的同方向研究生的培养方案有且一定有很大的差别。我国英语语言文学方向的研究生所肩负的任务是“洋为中用”,也就是说要把西方的文学作品、艺术、理论、文化、语言等引进、介绍、翻译、诠释甚至改造为我国本土所使用。所以,任务是复杂的,艰巨的,有重大意义的,而此项任务所要求的能力也是非常的。它既需要英语语言的综合功底,也需要中文语言的综合功底。既需要双语纯语言的功底,也需要双语的文学功底,还需要做研究的理论功底。

二、鼓励发扬创新精神

加强研究生创新能力和科研创新意识的培养,鼓励研究生开展原创性研究是研究生培养的一个重要任务之一。英语语言文学专业也不例外。因为只有这样,研究生才可能出成果,甚至出新成果,出好成果。而要达到这种创新的效果,就要求研究生教育的协同式创新。就是说,既要求和鼓励学生创新,又要从培养模式上开展创新。

从培养模式上,首先要推进研究生教育培养、管理模式改革。为了适应研究生教育规模扩大的需要,要建立开放的研究生教育管理模式。鼓励和推进研究生培养模式由导师培养为主转向以导师组或导师团队为主,创造条件,积极为研究生提供助教、助研岗位。英语语言文学方向的研究生教育可争取校内部分学科间(如汉语言文学,哲学,历史等学科)交叉培养并学分互认,实现研究生教育优质资源的共享共用,探索出英语语言文学方向创新型的研究生教育和管理模式。

从鼓励和激发学生的创新精神上讲,首先,可以通过增加学术讲座,积极主动地开拓学生的视野。因为每一场学术讲座凝聚着该学者的学术研究精华。作为英语语言文学专业,除了从国内聘请相关学者做学术讲座外,主要考虑从英语国家邀请更多的本学科的学者来讲座,让学生直接面对国外该学科的前沿。同样为了开拓学生的视野,鼓励学生积极参加本校内举办的各种学生本人感兴趣的学术讲座。也提倡鼓励学生走出去,关注其他高校学术讲座动态,并在条件允许的情况下,由导师带领学生参加学术会议为研究生进行学术交流积极提供平台。

不过,研究生、导师和培养环境这三个要素在研究生教育中均具有双重性。研究生教育协同式创新的结果会是和谐发展、激发创新、师生双赢。在这样的浓厚学术氛围里,它起到了对研究生的成长引导、激发的作用。他们在一起交流体会,砥砺思想,从这个意义和作用上来说,是其他任何形式难以替代的,他们得到的不仅是有形的知识,更重要的是对心灵的启发、灵感的滋润、思想的激荡,是终生受益的。因此,在研究生拥有了扎实的基本研究能力后,在他们的积极主动的创新能力得到保护和发扬后,然后才谈得上他们在学术上的个性化研究与发展。

三、积极提倡学术个性

蔡元培先生曾经给即将赴欧美留学的同学这样讲过:“不要失去‘我性’,作为中国人的个性,不要被同化。”由此可见,老一代中国学者是十分重视“我性”即“个性”的。当今大部分的学术著作都缺乏“我性”,缺乏作者个人的性情与见解,这种没有“我性”的学术当然也就不可能引起同行的兴趣,也不值得推广或参考,它只是作者自己用来当作晋升的资本而已。因此,坚持个性化学术研究,才利于创新,也有利于个人甚至中国学术的发展。

对于英语语言文学方向的研究生来说,研究国外的东西,如果没有创新与个性,就很难做出成果,这就更要求学生进行个性化研究。比如,我们研究美国诗歌,也许比不了美国同行。但美国学者研究美国诗歌欧洲学者研究美国诗歌,和我们研究美国诗歌同样都有其价值,他们有他们的思想,我们有我们的感受。有些东西,他们未必想到,我们会可能提出新的研究角度或新的看法。

从另一方面讲,英语语言文学学科学生可以利用对中西文化相通的优势,进行中西对比的研究。可以从文学、文化,语言学、宗教、翻译等自己感兴趣的方面入手研究。或从其他学科入手,比如,从心理学,生理学,犯罪学,人类学,美学等方法入手研究文学等。

简言之,培养和保护研究生的研究个性,要发挥导师在研究生培养中的作用,支持导师尊重学生个性和兴趣,根据研究领域设立“个性化”培养方案,从而达到因材施教,鼓励创新,激扬个性风采的效果。

综上,英语语言文学方向研究生的培养,和其他学科研究生的培养模式一样,要结合本学科的特点,从基础抓起,注重基本能力和技能的培养,并在此基础上,创造协同式创新的培养模式和氛围,积极鼓励学生发扬创新精神,提倡引导研究生向个性化学术研究发展。

[参考文献]

[1]李美霞.英语语言文学专业硕士研究生教育问题思索[J].北京第二外国语学院学报,2005(04).

[2]徐烈炯.外文系怎么办[J].外国语,2004(01).

英语硕士论文范文第2篇

EE6442 Assignment 3

Fan Zhang

University of Limerick

MEng. Computer and Communication Systems

ID: 0526401

Abstract: I am a video game fan, but not an addict. Since this topic attracted me a lot, I decided to choose this one as my topic for the third assignment of Processor Architecture Module. I started to play video games since I was five. While I was playing games, I found the game console itself just like a mystery, how could they react our actions to the controller then reflects so amazing pictures on TV? Although I have read a lot about it in game magazines, I admit that I didn’t try to find the answer until I found this topic. This is a great chance for me to answer the question myself. At the same time, I want to present you this paper, which should be fun.

This paper concerns the differences of architecture between PC and PlayStation 2. Since the purposes of PC and PlayStation 2 are different (or maybe I should say the purposes of PC include that of PlayStation 2), the different objectives decide the different design orientation. I think PlayStation 2 is a good game console for the comparison. First, a lot of documentations about PlayStation 2’s Emotion Engine can be found in the Internet. Second, as far as I know, PlayStation 2’s design has straightforward purposes: 3D games and multimedia, which makes the game console is seemed to be born for these two reasons. Contrasts to PlayStation, current PCs do very well on these two aspects, but the cost is the unstoppable upgrade of hardware. PlayStation 2 is a product born 5 years ago. Today tens of millions of people are still enjoy PlayStation games at home. 5-year-old PCs have been washed out already.

Keywords: PC, processor, video card, system controller, bus, Emotion Engine, Vector Unit, Graphics Synthesize.

1. INTRODUCTION

1.1 The evolution of game performance

The computer technology has achieved rapid evolution this year. From Figure 1.1 to Figure 1.5 you can see, in almost twenty years, how great changes of game performance are, both PC and game consoles.

Figure 1.1: Final Fantasy I (FC) 1987 by SQUARE

Figure 1.2: Final Fantasy XII (PlayStation 2) 2006 by SQUARE ENIX

Figure 1.3: Prince of Persia (PC) 1989 by Broderbund

Figure 1.4 Prince of Persia: The Two Thrones (PC) 2006 by Ubisoft

The screenshots above are the evidences of technique developments. In these twenty years, computers are almost 10 times faster than in the 1980’s. The cost of buying a computer is decreasing simultaneously. However, the development orientations of both PC and game consoles didn’t change much during these 20 years. Here I want to say game consoles and PC are different, although they both can be classified to ‘computer’ class, although PC includes all game consoles’ functions (but the software are not compatible each other). The differences include many areas, the architecture, the media, the software producing and selling model, and the customers.

1.2 Why they are different?

I would rather to say it is because of the distinct purposes. Of course PC can play games, can do anything that game consoles do, and in the present, PlayStation 2, the most famous game console in the world, can connect to Internet, can print paper, even can run complete Linux operating system, but PC is general purpose, this means PC should care too much things, and be good at almost everything. For instance, PC should be good at text processing , games, printing, Internet connection, a huge amount of protocols are settled for it; PC also need to compatible with all components and software that are designed and implemented by current standards. But game consoles are different. They need only care about games, which mean most designs are flexible. At the same time, the standards which PC has to obey do not affect it at all. No extra cost, no burden, only focus on games.

Figure 1.5: Sony’s PlayStation 2

1.3 Multimedia

From later 20th century, multimedia has become one of the main purposes of PC. Corresponding new technology for enhancing the capability of multimedia processing on PC has been developed as well. However, the reality of transmission speed bottleneck hasn’t been changed much. Keith Diefendorff and Pradeep K. Dubey published an article named “How Multimedia workloads will change Processor Design” in 1996. They argued the dynamic media processing would be a big challenge for current processor architecture. They also thought it will force the fundamental changes in processor design.

Before Pentium 4, the processors shared the same character: their data cache memory was big, but instruction cache memory was relatively small. It was quite useful for most usage, for instance, word editor, e-business, stock information processing, and so on. However, Diefendorff did not think it is useful, or efficient enough for multimedia processing, for multimedia data come and forth constantly, no need to settle a huge bulk of storage space for holding the information that rarely has chance of reuse. Contrarily, multimedia processing requires more calculation than others. So, for multimedia calculation, the instruction cache memory should become larger, both caches require faster transmission speed as well. We shall see this prediction has realized much in both Pentium 4 and PlayStation 2.

1.4 The purpose and the brief layout of the article

This paper is mainly talk about the architectural differences between PC and PlayStation 2, which is the most famous game console in the world. The article will discuss several aspects, the whole architecture, the CPU, the motherboard, and the graphics. In the following section, the whole architectures are compared. Two processors, Intel’s Pentium 4 and PlayStation 2’s Emotion Engine are discussed and compared in the third section. The fourth section is about the bus and caching comparison. The fifth section mainly talks about PC and PlayStation 2’s graphic devices, Video card and Graphics Synthesizer. The conclusion will be made in the last section.

2. WHOLE ARCHITECTURE COMPARISON

2.1 PC architecture

The basis of PC could root back to 1940’s. John von Neumann (1903-57), who constructed a very basis structure of computer, stayed his name in the history forever. The architecture of modern PC is still based mainly on his architecture. Let’s see a diagram of PC architecture as our basis of illustrating how PC works for game performance in the future.

Figure 2.1: PC architecture--------------------------------->

Different regions in the diagram have different clock speed. We can see the system controller is the heart of whole PC system. It carries data between processor and other components in PC over bridge. The bridge is used to connect interfaces and buses. Two kinds of bridges exist in PC, North Bridge (the system controller) and south bridge (the bus bridge). The system controller provides an interface between the processor and external devices, both memory and I/O. The system controller works with the processor to perform bus cycles.

From the diagram we can see, the system controller makes the whole diagram to be complicated. This is because the system controller has to adjust the bus cycles between the processor and the external device that it wants to access. Briefly, the PC’s working procedure can be described as follow:

PC executes commandsèaccess data with the help of system controllerèreturns the execution resultèexecute commandsè…

System controller also possesses the function of controlling DMA (Direct Memory Access), which is the ability to transfer data between memory and I/O without processor intervention.

2.2 PlayStation 2 Overview

Let’s first see the architecture of PlayStation 2.

Figure 2.2: the architecture of PlayStation 2---------------->

PlayStation 2 is composed of a graphics synthesizer, the Emotion Engine, the I/O Processor (IOP), and a Sound Processor Unit (SPU). The IOP controls peripheral devices such as controller and disk drive and detect controller input, which is sent to the Emotional Engine. According to this signal, the Emotional Engine updates the internal virtual world of the game program within the video frame rate. Many physical equations need to be solved to determine the behavior of the character in the game world. After this is determined, the calculated object position is transformed according to the viewpoint, and a drawing command sequence (display list) is generated. When the graphics synthesizer receives the display list, it draws the primitive shape based on connected triangles on the frame buffer. The contents of the frame buffer are then converted from digital to analogue, and the video image appears on the TV. Finally, the Sound Processor is in charge of sound card thing, it outputs 3D digital sound using AC-3 and DTS. This is the overview of PlayStation 2 working procedure.

2.3 Comparison

Compare Figure 2.1 and Figure 2.2, we can see that the PC’s architecture is far more complex than that of PlayStation 2’s. There are many reasons. PC has more devices has to care. For instance, PlayStation’s I/O processor, which is act as the same role as the system controller bus in PC, the chief responsibility of this chip is to manage the different devices attached to the PS2. 2 PlayStation controller port, and MagicGate-compatible memory card interface, 2 USB ports, and a full-speed 400Mbps IEEE 1394 port, which are much less than PC. The other main reason is processor’s speed increased much faster than other devices; the devices themselves had uneven speed increments as well. In general, PlayStation 2 has simpler architecture and less components and devices.

3. ALL ABOUT PROCESSORS

3.1 Pentium 4 Processor

Pentium 4 adopts Intel’s 7th generation architecture. We can see in detail from the diagram below. Since the birthday of PlayStation 2 waiting for exploring was 4th March 2000, when Pentium 4 was not published yet. It is unfair to PlayStation 2. However, Pentium 4 is the (文秘站:)most popular processor in the present, and PlayStation 2 is globally the most popular game console, whatever.

Figure 3.1: Pentium 4 processor architecture

Since the previous generation architecture (Pentium III) Intel began to use hybrid CISC/RISC architecture. The processor has to accept CISC instructions, because it has to be compatible with all current software (most software is written using CISC instructions). However, Pentium 4 processes RISC-like instructions, but its front-end accepts only CISC x86 instructions. A decoder is in charge of the translation. Intel doesn’t create the path for programs using pure RISC instructions.

CISC instructions are rather complex, decoding one may cost several clock cycles. In Pentium III era, once a CISC instruction needed to be processed several times (i.e. a small loop), the decoder had to decode the instruction again and again. In Pentium 4 this situation has been improved by replacing Pentium III’s L1 instruction cache to Trace Cache, which is placed behind the decoder. The trace cache ensures that the processor pipeline is continuously fed with instructions, decoupling the execution path from a possible stall-threat of the decoder units. After decoding stage, Intel introduces the Renamer/Allocator unit to change the name and contents of 32-bit CISC instructions of the registers used by the program into one of the 128 internal registers available, allowing the instruction to run at the same time of another instruction that uses the exact same standard register, or even out-of-order, i.e. this allows the second instruction to run before the first instruction even if they mess with the same register.

The other big advance of Pentium 4 is its SSE2 - The New Double Precision Streaming SIMD Extensions. 128-bit SIMD package offers 144 strong instructions. Intel prepares two SIMD instruction units for Pentium 4 (64-bit each), one for instructions, and the other for data. Let’s recall Section 1.3, Pentium 4’s 128-bit SIMD extension is Intel’s efforts for meeting the future requirements for multimedia implementations. Because of that, video, games implementation capability gained the drastic enforcement.

Pentium 4’s pipeline is the most disputable place. When it was announced, 20-stage pipeline surprised a lot of people. Intel did so because the more stage pipeline can increase the clock rate of processor. However, once the pipeline does not contain the information what processor need, the pipeline refill-time is going to be a long wait. In fact, Pentium 4 is only faster than Pentium III because it works at a higher clock rate. Under the same clock rate, a Pentium III CPU would be faster than a Pentium 4.

Figure 3.2: Pentium 4 Pipeline

The scheduler is a heart of out-of-order engine in Pentium 4. It organizes and dispatches all microinstructions (in other words, uops) into specialized order for execution engines.

Figure 3.3: Pentium 4 scheduler

Four kinds of schedulers deal with different kinds of microinstructions for keeping the processor busy all the time. The ports are Pentium 4’s dispatch ports. If you read the diagram carefully, you can see Port 1 and Port 0 each is assigned a floating-point microinstruction, Port 0 is assigned Simple FP Scheduler (contains simple Floating-point microinstructions) and Port 1 is assigned Slow / Floating Point Scheduler (contains complex floating-point microinstructions). Port 0 and Port 1 also accept the microinstructions came from Fast Scheduler. For the floating point microinstruction may run several clock cycles, Pentium 4’s scheduler monitor decides to transfer the microinstruction to Port 1 if Port 0 is busy, and vice versa. Port 2 is in charge of Load microinstructions and Port 3 deals with Store microinstructions.

3.2 PlayStation 2’s Emotion Engine

PlayStation 2’s designers focus deeply on the purpose of 3D games. At the same time, they had to ensure it was completely compatible with DVD video. For per forming 3D games well, PlayStation 2 has to possess perfect vision and audio functions. Emotion Engine acts as the role of Geometry calculator (transforms, translations, etc), Behavior/World simulator (enemy AI, calculating the friction between two objects, calculating the height of a wave on a pond, etc). It also in charge of a secondary job of Misc. functions (program control, housekeeping, etc). In general, Emotion Engine is the combination of CPU and DSP processor.

Figure 3.4: The architecture of Emotion Engine

The basic architecture of Emotion Engine is show in Figure 14. The units are composed of

(1) MIPS III CPU core

(2) Vector Unit (two vector units, VU0 and VU1)

(3) Floating-Point Coprocessor (FPU)

(4) Image Processing Unit (IPU)

(5) 10-channel DMA controller

(6) Graphics Interface Unit (GIF)

(7) RDRAM interface and I/O interface.

Something interesting in the diagram you may have noticed. First, inside the Emotion Engine, there is a main bus connects all components for data communication. However, between MIP III core and FPU, VU0 and MIP III, VU1 and GIF, there are dedicate 128-bit buses connect them. Second, VU0 and VU1 have certain relationship shown in the diagram. This design extremely enhanced the flexibility of programming with Emotion Engine.

MIPS III Core connects with the FPU and VU0 directly with the dedicated buses. The pipeline of MIPS III is 6-stage. The MIPS III is the primary and controlling part, VU0 and the FPU are coprocessors to MIPS III. They compute the behavior and emotion of synthesis, physical calculations, etc For example, in a football game, the flying orbits of the ball, the wind effect, the friction between ball and the ground need to be calculated. At the same time, 21 player’s AI needs to be implemented (the last player is controlled by the user), the activity, the lineup, etc. After the calculation, MIPS III core sends out the display list to GIF.

VU1 has a dedicated 128-bit bus connected to GIF, which is the interface between GS (Graphics Synthesizer) and EE (Emotion Engine). VU1 can independently generate display list and send to GIF via its dedicated bus. Both of these relationships forms a kind of dedicate and flexible structure. The final goal of EE is generating display list and send to GS. The programmer can choose either programming two groups (MIPSIII + FPU + VU0 and VU1 + GIF) separately, send their display list in parallel, or programming purposely, making MIPS III + FPU + VU0 group as the “coprocessor” of VU1, for instance, generate physical and AI information then send to VU1, VU1 then produces corresponding display list. The diagram below shows the two programming methods.

(a) (b)

Figure 3.5: Two programming methods of Emotion Engine

MIPS ISA is an industry standard RISC ISA that found in applications almost everywhere. Sony’s MIPS III implementation is a 2-issue design that supports multimedia instruction set enhancements. It has

(1) 32, 128-bit general purpose registers

(2) 2, 64-bit integer ALUs

(3) 1 Branch Execution Unit

(4) 1 FPU coprocessor (COP1)

(5) 1 vector coprocessor (COP2)

What I really want to cover are two vector processors, VU0 and VU1. This is the main reason why PlayStation 2 is powerful.

VU0 is a 128-bit SIMD/VLIW design. The main jo b of VU0 is acting as the coprocessor of MIPS III. It is a powerful Floating-point co-processor; deal with the complex computation of emotion synthesis and physical calculation.

The instruction set of VU0 is just 32-bit MIPS COP instructions. But it is mixed with integer, FPU, and branch instructions. VIF is in charge of unpacking the floating-point data in the main bus to 4 * 32 words (w, x, y, z) for processing by FMAC. VU0 also possesses 32 128-bit floating-point registers and 16 16-bit integers.

VU0 is pretty strong. It is equipped with 4 FMACs, 1 FDIV, 1 LSU, 1 ALU and 1 random number generator. FMAC can do the Floating-Point Multiply Accumulate calculation and Minimum / Maximum in 1 cycle; FDIV can do the Floating-Point Divide in 7 cycles, Square Root in 7 cycles, and Inverse Square Root in 13 cycles. In fact, as the coprocessor of MIPS III, VU0 only uses its four FMACs. However, VU0 doesn’t have to stay in coprocessor mode all the time. It can operate in VLIW mode (as a MIPS III coprocessor, VU0 only takes 32-bit instructions. In VILW mode, the instruction can be extended to 64-bit long). By calling a micro-subroutine of VLIW code. In this case, it splits the 64-bit instruction it takes into two 32-bit MIPS COP2 instructions, and executes them in parallel, just like VU1.

VU1 has very similar architecture than VU0. The diagram below is the architecture of VU1 possesses all function that VU0 has, plus some enhancement. First, VU1 is a fully independent SIMD/VLIW processor and deal with geometry processing. Second, VU1 has stronger capability than VU0: it has a 16K bytes’ instruction memory and a 16K bytes’ data memory, which VU0 only has 4K bytes each. VU1 acts as the role of geometry processor; it burdens more instructions and data to be computed. Third, VU1 has three different paths to lead its way to GIF. It can transmit the display list from 128-bit main bus, just as VU0 + CPU + FPU do; or it can transmit via the direct 128-bit bus between its VIF and GIF; the last one is quite interesting, the path comes out from the lower execution unit (which I will talk about later) and goes directly to GIF. Three individual paths ensure two main problems of PC 3D game programming will not happen: first, the bottleneck of bus bandwidth; second, the simplex way of programming.

Figure 3.6: The architecture of VU1

VU1’s VIF does much more than that of VU0 does. The VIF takes and parses in which Sony called 3D display list. The 3D display list constructs of two types of data: the VU1 programming instructions (which goes to Instruction memory) and the data that the instruction deal with (which goes to Data memory). The instruction itself can be divided into two units, Upper instruction and Lower Instruction, which directly operate on two different execution units, Upper execution unit and Lower execution unit. The 64-bit VLIW instruction can be used to deal with two operations in parallel. Recall that VU0 possesses the same function but most of time it acts only as the coprocessor of MIPS III, this mode can only operate 32-bit SIMD instructions. Programmers also rarely ask VU0 to do the same thing what VU1 is good at.

3.3 Comparison

I strongly agree if you think Emotion Engine is more flexible than Pentium 4. The design of Emotion Engine is completely around the performance of 3D games. Two vector units, VU0 and VU1, contribute a lot for the game performance. Pentium 4 architecture is straight, you can trace the path of data from the very beginning, and soon you will be able to know how P entium 4 works easily. For Emotion Engine, except you are the game designer, you will never know exactly.

I did not put too much digits in this section, the comparison of digits does not make sense at all. The comparison between two PC processors depends on digits, because they are the same kind and work in the same situation. For game consoles, without the burden of compatibility, the designers think a lot for the perfect cooperation. This would results in better performance, plus less cost. Unfortunately the programmers don’t think it is a good idea, it cost them quite a lot of time to investigate the processor to figure how it works.

4. BUSES AND CACHEING

4.1 PC Motherboard

While multimedia processing requires massive quantities of data to move rapidly throughout the system, the speed difference between processor and external devices is the main bottleneck of PC. Processor companies like Intel have put a lot of energy into getting the rest of the system components to run faster, even if other vendors provide these components. Improving the performance of motherboard is a good idea. Figure 4.1 is the main structure diagram of GIGABYTE GA-8TRX330-L Pentium 4 Motherboard. The bandwidth between Processor and system controller, main memory and system controller has reached to equally incredible 6.4GB/S. However, the latency of memory is still impossible to remove. Here I want to talk something about the processor caching mechanism.

In the present, motherboard’s FSB (Front Side Bus) frequency has over 800 megahertz. However, it is slower than that of Pentium 4, which is over 3 gigahertz. Processor runs at a multiple of the motherboard clock speed, and is closely coupled to a local SRAM cache (L1 cache). If processor requires data it will fist look at L1 cache. If it is in L1 cache, the processor read the data at a high speed and no need to do the further search. If it is not, sadly processor has to slow down to the motherboard clock speed (what a drastic brake!) and contact to system controller. System controller will check if L2 cache has the required data. If has, the data is passed to processor. If not, processor has to access the DRAM, which is a relatively slow transfer.

4.2 About PlayStation 2’s buses and caching.

Recall Figure 2.2, we can see 32-bit interfaces between processor and I/O Processor, main memory and I/O Processor, which can achieve 3.2GB/S bus speed. Although slower than Pentium 4, Emotion Engine itself is relatively slow as well, 300MHz MIPS III processor. However, PlayStation 2’s 32-bit interface, 10-channel DMAC, 128-bit internal bus, and small cache memory group to an incredible caching condition. Any data necessary can be store or download in time. This strategy takes 90% of DMA capability. It makes the latency which main memory generates is acceptable for Emotion Engine.

4.3 Comparison

This time we can talk about digits some more. Let’s see a Pentium 4’s cache memory

L1 trace cache: 150K

L1 data memory: 16K

L2 memory: 256K ~ 2MB total: 422~2204K

Let’s see PlayStation 2 next

VU0 data memory: 4K

VU0 instruction memory 4K

VU1 data memory 16K

VU1 instruction memory 16K

MIPS III data memory: 2-way 8K

MIPS III instruction memory: 2-way 16K total: 64K

Contrast to Pentium 4, the cache memory of PlayStation 2 is too small. Its capability is indeed ‘weak’ in the present. Pentium 4 is able to hold more data and does more computations in parallel. However, PC archite cture hasn’t been improved along with the processor. No matter how Pentium 4 fast is, present bus architecture is never going to perform Pentium 4 100% capability. PlayStation 2 achieves a nearly perfect structure and mechanism, which helps it exert as much as it can (or maybe I should say because Pentium 4 is too fast, the memory speed is relatively too slow). Besides, it remarkably low down the cost, you can afford a PlayStation 2 plus a controller with the same price of a single Pentium 4 chip.

5. VIDEO PERFORMANCE

5.1 Comparison of performance between PC and PlayStation 2

Figure 5.1 Need for Speed Most Wanted (PlayStation 2) 2006 by EA GAMES

PlayStation 2 Graphics Synthesizer (GS)

· 150 MHz (147.456 MHz)

· 16 Pixel Pipelines

· 2.4 Gigapixels per Second (no texture)

· 1.2 Gigatexels per Second

· Point, Bilinear, Trilinear, Anisotropic Mip-Map Filtering

· Perspective-Correct Texture Mapping

· Bump Mapping

· Environment Mapping

· 32-bit Color (RGBA)

· 32-bit Z Buffer

· 4MB Multiported Embedded DRAM

· 38.4 Gigabytes per Second eDRAM Bandwidth (19.2 GB/s in each direction)

· 9.6 Gigabytes per Second eDRAM Texture Bandwidth

· 150 Million Particles per Second

· Polygon Drawing Rate:

· 75 Million Polygons per Second (small polygon)

· 50 Million Polygons per Second (48-pixel quad with Z and Alpha)

· 30 Million Polygons per Second (50-pixel triangle with Z and Alpha)

· 25 Million Polygons per Second (48-pixel quad with Z, Alpha, and Texture)

· 18.75 Million Sprites per Second (8 x 8 pixel sprites)

Figure 5.2 Needs for Speed Most Wanted (PC) 2006 by EA GAMES

PC Graphics Chip RADEON X300 SE PCI Express

· Bus type PCI Express (x16 lanes)

· Maximum vertical refresh rate 85 Hz

· Display support Integrated 400 MHz RAMDAC

· Display max resolution 2048 x 1536

· Board configuration

· 64 MB frame buffer

· Graphics Chip RADEON X300 SE PCI Express

· Core clock 325 MHz

· Memory clock 200 MHz

· Frame buffer 64 MB DDR

· Memory I/O 64 bit

· Memory Configuration 4 pieces 8Mx16 DDR

· Board configuration

· 128 MB frame buffer

· Specification Description

· Graphics Chip RADEON X300 SE PCI Express

· Core clock 325 MHz

· Memory clock 200 MHz

· Frame buffer 128 MB DDR

· Memory I/O 64 bit

· Memory Configuration 4 pieces 16M x 16 DDR

· Memory type DDR1

· Memory 128 MB

· Operating systems support Windows? 2000, Windows XP, Linux XFree86 and .

· Core power 16 W (Max board power)

From the data we can see. GS is too weak, contrast to low-level video card of PC. However, the performance of PlayStation is not too that bad. I don’t want to analyze data here. What I am interested to discuss is about the performance itself.

Let’s see Figure 5.2 in detail. Texture is very clear and exquisite. This is what big video memory offers. The tree leaves in distance need a lot of polygons to build. The video card itself is low-level; possess no special effect for the game rendering. No refection and other sparking place can be found. In general, the game performance is only ok.

Figure 5.3 PC game rendering related architecture

Now let’s see PlayStation 2’s performance, which is in Figure 5.1. We see a good image. If you look the image in detail, y ou may found the mountain beside the road is weird: the shape of mountain is not that nature, like some spectrum graphics. This is done by VU1, which draws the Bezile, build 3D graphic based on the curve. Although not good enough, how many people will actually notice that when dashing at over 200km/h with his virtual car? VU1 does a lot of job like that and it could generate a lot of shapes without too many polygons to build. Now let’s see the car, the refection of cars is true reflection (which means it is not fake texture pretended to be the reflection), we can distinguish the mountains behind, however very blur. The whole image is not as clear as Figure 5.2 because the limitation of GS’s video memory (4M). However, this image is good enough for most PlayStation 2 players.

5.2 Some more about the video performance

Although Pentium 4 has enough capability to process image real time, the way of implementing games is still no change. The video card read the content of texture into its local memory card, the processor only deal with the data and instructions. After the calculation, the processor stores the display list (a list, recorded with the details of all elements, for instance, one single polygon’s position and texture code) back to the main memory. Video card then access the lists and process them, generate picture, transfer to analogue signal and output. Most special effects depend on the video card. So, no good card, no good performance.

Let’s see figure 2.2, we will see there is no direct connection between GS and main memory. At the PC’s point of view, 4MB video-memory is not enough to show a single frame with 1024*768 pixels. How is PlayStation 2 able to perform like that? The answer is bus. So we come back to section 4 again. The specialized display list (which Sony called 3D display list) is directly sent to GS, along with the required texture. GS has a huge bandwidth (3.8GB/S), its local memory can work as fast as it is (maybe it is more suitable if we call the memory as cache). GS itself supports only a few special effects. However, this situation can be improved by the simulation calculations finished by Emotion Engine… Again, PlayStation 2’s elegant design makes its all components work as a whole.

6. CONCLUSION

Hopefully you have got the idea of how PlayStation 2 and PC architecture differ. Let’s go through it again.

General architecture. PCs are more complex to read, but easier to implement. The system bus directly manages all devices inter-communications. PlayStation 2’s is easy to read, but much harder to implement. The communication between each other is convenient.

Processor architecture. The trend of processor architecture design is meeting the requirement of multimedia. Both PC’s Pentium 4 and PlayStation 2’s Emotion Engine are qualified to run multimedia applications efficiently. Pentium 4 is much stronger than Emotion Engine, but the architecture is very ‘straight’ and has to do extra jobs of translating instructions to be compatible with current applications. Emotion Engine has no this burden, the specialized 3D game performance design make it easy to handle complex calculation jobs with relatively low clock rate.

Buses and Caching. PC has classic bottlenecks and there is no way to overcome it. Current PC buses and cache has improved a lot by increasing the bandwidth and cache volumes, but the latency of main memory cannot be solved. PlayStation 2 works on nearly full load; perfect coordination between components is almost achieved.

Video . Although Pentium 4 can run perfectly on multimedia applications, the PC game developers don’t think so. They still stick to push the texture and other data into the video memory for one time. The awkward situation is, when you want to update your PC for high requirement games, the first component came into your mind must be the video card but processor. It is impossible to ask PlayStation 2 players to update. Emotion Engine is in charge of many jobs what PC’s video card does. The good condition of data transmission makes it is possible to implement ‘true’ multimedia processing in games, that is treating game image as media streams, no need to supply huge data storage to hold that.

Purpose: PC’s general—purpose VS PlayStation 2’s 3D game rendering purpose.

PlayStation 2 is 6 years old now. According to the principle of game console life expectance, it is time to hand the baton to its offspring, PlayStation 3. It is a successful game console of Sony. Contrast to PC, it is too weird, but all its weird compositions seemed so reasonable as well. PC’s architecture is classical; all components have its space for upgrade. Maybe it is too early to say the architecture should evolve. However, PlayStation 2’s architecture gave us a good lesson. If you only were interested in games, you should buy a PlayStation series, not a PC. At least, you need not worry about upgrading your components for the next game. Special architecture can make it becomes the best in specialized region.

7. REFERENCE

[1] William Buchanan and Austin Wilson, “Advanced PC Architecture”, ISBN: 0 201 39858 3

[2] John L. Hennessy and David A. Patterson, “Computer Architecture—A Quantitative Approach”, ISBN: 1 55890 724 2

[3] Keith Diefendorff and Pradeep K. Dubey, "How Multimedia Workloads Will Change Processor Design." Computer, September 1997

[4] Jon "Hannibal" Stokes Sound and Vision: A Technical Overview of the Emotion Engine Wednesday, February 16, 2000

[5] K. Kutaragi et al "A Micro Processor with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point Dividers, and an MPEG2 Decoder," ISSCC (Int’l Solid-State Circuits Conf.) Digest of Tech. Papers,Feb. 1999, pp. 256-257.

[6] Jon "Hannibal" Stokes “SIMD architectures”

[8] “The Technology behind PlayStation 2”

[13]Howstuffworks “How PlayStation 2 Works”

/ps21.htm

[14] Craig Steffen “Scientific Computation on PlayStation 2 home page”

英语硕士论文范文第3篇

关键词:共性与个性;翻译思维能力;翻译问题求解能力

中图分类号:G643 文献标志码:A 文章编号:1674-9324(2014)35-0102-02

“翻译是基于情境和经验的一个创造性构建过程,自有认识与外部认识的共现与交互是译者的认知前提,问题求解是译者思维过程的核心特征,思维能力是译者实现问题求解的主观条件。”译者能力的核心是解决翻译问题所需的高阶思维能力,培养和训练翻译硕士的翻译思维能力是提升翻译硕士能力的关键。以英译汉为例,译者的英、汉双语能力要过关,要有广博的百科知识,要有科学严谨的翻译精神,要有一定的翻译理论知识,要有掌握网络等翻译媒体技能,更重要的是翻译思维能力。因为前面几个能力是译者必备的客观能力,而翻译思维能力,即翻译问题求解能力是译者翻译工作的主观条件。面对一个翻译任务,在分析源语文体、风格、背景、主旨等基础上,要采取什翻译策略则是译者思维过程的结果。所以,所谓的异化与归化、文言与白话、忠实与创造的度的把握等,皆是翻译策略的体现,皆是译者在分析源语的基础上思维过程的产物。由此可见,在译者具备了翻译的客观条件的前提下,最主要的是加强译者翻译思维能力的训练。

一、如何加强翻译思维能力的训练

1.加强译者问题求解能力训练。把每次翻译当作一次任务,借助已有知识储备,仔细研读原文,找出诸如术语、新表达等翻译难点,然后重点把思维的重点和难点放在这些“硬骨头”上。借助网络等电子工具,请教专家或与翻译小组成员共同探讨,但最终的译文表达则是经过反复质疑和查证等翻译思维能力的结果。因此,译者的翻译思维能力越强,越能做好翻译。

2.加强译者严谨、质疑、思辨、创新和科学求证精神的培养。译界大师傅雷素以严谨著称,堪称译界楷模。傅氏在动手翻译前,保持着一个习惯,就是先认真研读原文,力求把握原文的文气、灵魂和主旨,在最少研读四、五遍之后,才着手翻译,并力求传神地再现原文风采及众所周知的“神似”翻译观。翻译文本、翻译工具、翻译环境、译者的知识和翻译经验等在不断变化发展,因此翻译也应与时俱进,尤其是要译者敢于质疑、敢于思辨、敢于创新,并且不断提升科学求证的能力。通过对中西方一些译学理论的研究,专家们发现,有些理论知识假设还有待接受实践的检验,有些理论只是在一定时间、一定领域适用,因此译者不能墨守陈规,而应大胆质疑、求证,不断地完善翻译理论与应用能力。如对翻译忠实与创造的理解上,翻译观就发生了变化。以前翻译停留在忠实与美的争论上,后来引进了文体与翻译。译文忠实多少、译文创造多少,这取决于翻译文体。以文学翻译为例,在忠实原文的基础上,应给译者一定的创造性,否则译文的文学性荡然无存,尤其是诗歌翻译,创造性的成分会更大;再以宗教法律翻译为例,译者不能随意发挥创造,否则就会不忠实,甚至“吃官司”。

3.既要考虑作者因素,又要充分考虑读者因素。译者既不能抛开原文不顾,乱译胡译;又不能太忠实源语,甚至照搬源语句结构,让读者不知所云。翻译是以交际为目的的,要充分考虑焦急的数量、质量和风格等原则。因此,理想的结合点就是,在重视源语的基础上,考虑原语的体裁,充分考虑译入语的读者对象,采取适当的翻译策略以便于交际。究竟异化多一些,还是归化多一些,这只是翻译策略问题,取决于文体与译语读者群体。

二、英语翻译硕士相对于翻译的个性

英语翻译硕士属于专业型硕士,因此英语翻译硕士一个显著特点就是培养实用英语翻译技能人才。从这个角度来讲,它不同于传统意义上的偏重理论研究的翻译学习。简言之,学翻译硕士,就是要在大量翻译实践的基础上,不断反思、不断总结、不断积累经验并上升到理论,使翻译成为一种职业,成为一种实践活动,而不是停留在理论研究的层面上。重实践不是忽视理论。殊途同归,翻译硕士,从研究翻译问题开始,采取问题的翻译策略,进而发散到平行文本的翻译,希望在这种尝试中,训练译者的翻译思维能力、问题求解能力,进而积累翻译经验,完善翻译理论。这符合人们“理论来源于实践的并接受实践检验”的认知规律。

三、翻译硕士使用译语要非常准确、简洁、传神,要符合规范

要避免翻译腔,不能“的的不休”,污染了译语生态环境。散文家、翻译家余光中先生在翻译名篇“论的的不休”中,大量列举国语恶性西化之弊,力主保持中文之生态。毋庸置疑,英译汉是把英文传达的意思用中文表达出来,从而达到信息交流之目的。然而,时下众多英文中译刻意求“精”,置“通顺”于不顾,句法夹缠,畸形西化,令读者不明不白,妨碍了正常交流,甚至污染了中文简洁对称、铿锵有力之常态。译文的语言文字是原文信息的载体,译文生硬繁琐、恶性西化,势必与翻译之目的相悖,甚至严重破坏了中文常态,后果不堪设想。译坛译意派认为,英文中译首先应遵循两条原则:忠实原文和中文表达习惯。现代翻译理论认为,译者能力实质上存在于环境、译者、知识等要素等交互等多维空间,是译者与原作者及其描写的社会存在、读者等因素的跨时空对话。怎样才能在各个时空有效地与作者、作品角色以及读者对话呢?看不懂源语或看不懂译语,是信息不匹配造成的。因此关联信息匹配度与交际效果成正比例,匹配度越高,交际过程就越顺利。从这个角度上来讲,提高英语翻译硕士翻译能力,既要关注文本与受者互动的脑力活动,又要培养译者推导源语意图的能力。简言之,翻译即搭建、解释相似性,追求源语与译语的最佳匹配(相似性)。翻译硕士学习,就是提高译者这种与源语对话的有效性,因此译者要训练这种双语信息匹配能力。翻译硕士要按以下的标准严格要求自己:翻译策略属于情境构建型;关注任务环境、生态环境、社会环境;关注动态系统的深层知识;翻译以意义翻译为主,采取整体角度自上而下或交互式的翻译顺序;翻译思维相对复杂,以高阶思维为主;译文符合专业规范,交际性强。

简言之,笔者认为英语翻译硕士学习,一方面要继续加强双语学习,提升双语应用能力;另一方面在大量翻译练习的基础上,不断提升翻译思维能力和翻译问题求解能力,时刻以一名优秀、合格的译员的要求来严格要求自己。

参考文献:

[1]冯建文.译文归化与保存异域情趣[J].外语教学,1993,(53):11-14.

[2]连淑能.英汉对比研究[M].北京:高等教育出版社,2007.

[3]刘宓庆.文体与翻译[M].北京:中国对外翻译出版公司,2009.

[4]怒安.傅雷谈翻译[M].沈阳:辽宁教育出版社,2005.

[5]沈苏儒.翻译的最高境界“信达雅”漫谈[M].北京:中国对外翻译出版公司,2006.

[6]许钧.翻译思考录[M].武汉:湖北教育出版社,2006.

英语硕士论文范文第4篇

论文摘要:本文总结分析了我国目前工程硕士英语教学中取得的成绩和存在的问题。基于建构主义学习理论,阐明英语学习是一个学生依靠自身已有知识结构和经验在良好的教学环境中建构知识、培养英语交际能力的过程,从而对目前工程硕士英语教学提出了教学改革的思路和具体措施。

近年来,工程硕士作为我国研究生的主要专业学位之一迅速发展。在工程硕士的教学体系中,英语作为一门主要必修课程具有重要作用与意义。《全国工程硕士专业学位研究生英语课程教学大纲》指出,工程硕士研究生的英语教学目的是“培养攻读该学位的在职人员具备硕士学位研究生应有的实际英语运用能力”,即具有较熟练的阅读理解能力,一定的翻译写作能力和基本的听说能力,以适应在本学科研究中大量查阅外国文献和进行对外交流的需要。但工程硕士研究生是一个特殊群体,如何通过英语课程的学习来提高他们的英语交际能力?本文基于对目前工程硕士研究生英语教学实际情况的分析,阐明了建构主义学习理论对提高本课程教学质量的启示作用。

一、当前工程硕士英语教学状况分析

近五年来,笔者曾在华中科技大学为计算机专业以及软件专业工程硕士研究生教授过学位英语课程,通过教学实践,认为工程硕士研究生英语教学情况具有以下特殊性:

1从生源看。

(1)工程硕士研究生英语水平差距较大,总体上看基础相对薄弱。具体表现在英语基础较为薄弱,词汇量、基础语法知识、阅读和翻译能力及写作水平都不十分理想,口语和听大相比之下更差。因为相当一部分学生大学毕业多年,在工作中很少用英语。另有一些外资企业的员工,大部分为技术人员,平时接触外文科技资料和外籍员工的机会较多,英语阅读能力和翻译能力都较好,但领域太狭窄,主要限于专业技术上的探讨,因此口语交流也有困难,英语写作能力也不算强。

(2)学生年龄偏大,大学毕业时间较长。本人曾经教授的班级中,35岁以上的学员一般都达35%左右,有10%左右大学毕业近20年,严重影响了第二语言习得效果。如在词汇记忆等方面劣势明显,语音语调的习得也常受负迁移的影响。

(3)学生的英语学习动力,无论是内部动力还是外部动力都不足。英语对大部分学生而言,现实用途似乎并不太大,最关心的是能否通过课程考试。

2.从教学条件看。

(1)学生“进校不离岗”。教师到各教学点集中授课,一般每次至少印学时。

(2)面授课时少。教学大纲规定,工程硕士面授课时为80学时,而全日制研究生英语课时一般不少于240学时。

(3)教材单一。一般使用由清华大学出版社出版、全国工程硕士学位教育指导委员会推荐的《工程硕士英语研究生英语基础教程》作为教材。

(4)课型单一。大多只开“基础英语”,无听力、口语等课程。

3.从教学手段和方法看。

各个教学点都使用多媒体方式授课,但教学方法比较单一,大多采用灌输式的教学模式,不能有效激发学生自主学习兴趣,不能达到最终使学生构建知识、培养英语交际能力的目的。

二、建构主义学习理论对工程硕士英语教学的启示

建构主义(Constructivism)又称结构主义,是认知理论的重要分支,最早由瑞士著名心理学家皮亚杰(Piager)于20世纪60年代提出。后来,许多心理学家和教育家,如维果茨基(Vygotsky)和布鲁纳(Bruner)等丰富和发展了建构主义理论,也为其具体应用于教学过程创造了条件。它揭示了人类学习过程的规律,阐明了学习如何发生,意义如何建构以及学习环境对知识建构的作用。

建构主义学习理论强调学生是认知活动的主体,教师的任务是为学生的自主性学习提供引导。在教学过程中,教师可利用情境、协作、会话等学习环境要素充分发挥学生的卞动性、积极性和创造性,最终达到使学生有效实现对当前所学知识的意义建构的目的,教材是学生进行主动学习的认知工具,而不是学习的终极目标,多媒体的应用是为了学生的自主性学习和优化学习资源,而不是作为灌输型教学的工具。借助这一理论,能为我国目前工程硕士英语教学各个环节的改进提供有益的启示。

1.教学计划。

建构主义学习理论认为,学生学习是一个积极主动的建构过程。每个学习者都要对新旧知识经验进行反复发现,都以自己原有的经验系统为基础对新信息进行编码,建构自己的理解,而原有知识又为新经验的进人发生调整和改变。同时,由于学生特点各异,建构活动的方式也不尽相同,对意义的理解也因此不同。教学过程不再同步,不同学生可以沿着不同学习途径,建构相同结果。因此,每个教学点在遵守《全国工程硕士专业学位研究生英语课程教学大纲》的前提下,应根据学生现有知识结构特点,采用不同教学计划。

建议每一教学点在第一次上课时,可对学生人学时的成绩、年龄、大学毕业时间、目前工种、使用英语情况和英语学习动力等进行统计。在此基础上,以统编教材为基础制定出该教学点的教学内容和计划,既要充分考虑不同学生个性,又要尽可能使用学生期待的教学方法,同时解决好语言知识和交际能力间的矛盾。

2.充分利用有限面授时间。

建构主义学习环境下的英语教学设计的流程应该是:依据教学目标一进行情景创设一引人主题一进行自主学习或协作学习一加人强化练习一进行学习效果评价。换言之,依据培养目标及课程特色,结合学生实际,充分贯彻建构主义教学观,进行量体裁衣式教学设计。

建议将工程硕士英语面授时间分三阶段来完成:一是温故阶段;二是提高阶段;三是技能训练阶段。温故阶段指复习原有基础知识(包括语音、词汇和语法等基础知识)。此阶段的课时数各个教学点可根据学生原有英语知识结构来确定,不宜太长,不超过总课时的1/4为宜;提高阶段是指针对语篇的阅读、写作和翻译的教学,本阶段是教学的主体,课时至少应占总课时的2/4;技能训练I价段,着重培养学生基本的英语日常听说能力,可根据学员工作的需要有选择地训练。一般不超过总课时的1/40。

3.教学方法。

根据建构主义学习理论,学生是自己知识的建构者,不是被动接受外在信息的存储器,而是经过主动的选择和加工,建构信息的意义。因此,教师应以学习者为中心来组织学习。在教学中,教师不宜逐字逐句地讲解,同时需要采取措施激发学生学习的兴趣和持久学习英语的动机,依据每个学生已有的认知结构、经验、心理结构以及信念的差异来进行教学。不能只向学生提供脱离现实生活的纯理论语法知识,让他们机械记忆,而应对统编教材的课文和训练内容有所取舍,在教学中尽量引用流行词汇、专业同汇和最实用句型,结合学生的专业,引用例句,鼓励学生活学活用。还要注意到每个学生自身的优势和劣势,不强求每个学生都遵守一种学习策略,允许他们采取适合自己的方法。其次,建构主义主张只有在特定的情境中学生的学习才有意义,这种情境应该具有多样性、真实性和整合性。教师不应总是将提前准备好的内容教给学生,而是提供解决问题的原型,指导他们进行探索发现。

以阅读能力的培养而言,教师要让学生自己在规定的时间内进行语篇阅读,并提出和回答与所阅读语篇有关的问题。在构建英语情境教学模式下教师可让学生用英语进行日常报告,也可就某个话题设计课堂小组活动或者个人演讲等活动来营造英语氛围,给学生足够的时间思考和练习,在这些有趣情景下,学生不再盲目被动地接受知识,而是主动地进行自我探索,将学习过程变成积极参与建构知识的高水平思维过程,使他们在解决问题的过程中掌握英语知识,更新原有知识结构,建构新的知识结构,从而提高英语交际能力。

4.利用网络优势,批改作业,答疑解惑。

建构主义学习理论注重互动学习方式。学生通过与其他学生和教师的不断交流,在一定情景下借助别人的帮助,利用相关的学习资料,在自己原有知识背景下建构新的知识。基于这样的出发点,在目前的工程硕士英语教学中构建信息化教学模式对促进学生主动学习有积极意义。鉴于面授时间有限,教师应充分利用网络资源辅助课堂教学,让学生进行课外交流和协作式学习。针对课堂教学的内容,教师应布置一定量的书面作业,通过网络群发给学生,规定他们在一定时间内完成并反馈给教师。课外阅读材料可为不少于10万字的某个领域的专著,学生要交读书报告,这样既培养了学生的阅读能力,也培养了他们的写作能力;翻译材料可指定也可自选,但译文不少于1001)字。

教师也可通过QQ和MSN聊天群以及Email等网络通讯方式,对学生的自主学习进行针对性指导。学生会在个性化自学中发现问题,并与同伴进行交流或与教师进行探讨。这种教学模式不仅能激发学生学习英语的兴趣,而且能促进学生自主学习,培养其语言交际能力。就写作而言,教师利用Email可以监控个别或群体学生的写作过程,也使作文的批改更加迅捷、科学和合理。能将学生习作中的优缺点发送给全体学生,给他们提供交流平台,大大节省课堂教学时间,提高教学效率。Email对英语阅读教学也有促进作用,如学生可通过Email进行交流阅读英语文章的心得、难点、疑点,从而相互借鉴、引发思索,真正享受阅读。对于老师布置的翻译作业,学生也可就具体的翻译方法进行切磋。此外,将信息技术自然渗透到学习中,能加深学生对信息技术的理解从而提高其运用信息技术的能力。

英语硕士论文范文第5篇

几年来各培训基地少数民族骨干人才研究生英语教学实践普遍出现一些问题,如由于少数民族地区外语教学差异,以及对少数民族骨干人才培训班没有实现研究生英语单科成绩分数受限政策,入学时许多研究生成绩参差不齐,有相当数量的研究生英语水平较差,个别研究生近乎初中英语水平,个别好的研究生学生达到大学英语六级的水平。辽宁石油化工大学对2013级少数民族骨干人才研究生的英语水平进行了入学前测,测试难度为大学英语四级到六级水平,结果平均分分差20分左右,平均分最高的班级也只有40分左右。分析其原因,多数学生对英语学习缺乏兴趣和学习动机,缺少自主学习的意识,英语听、说、读、写、译的能力均不高,这不仅为硕士研究生英语课堂教学带来极大的教学难度,如果不进行教学改革,很难实现学校既定的研究生英语教学要求和目标。要想顺利地完成少数民族骨干人才硕士研究生英语基础教学的过渡,通过一年有限的时间切实有效地提高研究生的英语综合能力,就需要研究生外语教学对传统的英语教学进行改革创新,探索一条切实可行的少数民族骨干人才硕士研究生英语课程教学体系建设之路。

二、少数民族骨干人才研究生英语课程教学改革思考

(一)课程结构改革的具体设想

以内容为依托的语言教学,又叫依托式教学,起源于20世纪60年代加拿大的沉浸式语言学习。其核心思想就是将语言教学建基于某个学科或某个主题内容教学之上,把语言学习与学科知识学习结合起来,在提高学科知识水平和认识能力的同时,促进其语言能力的发展[4]。从教育学角度看,增强课程的灵活性以不断适应社会发展,就要对课程结构本身进行改革。当今课程改革共同趋势与核心就是要改革课程结构,以增强课程灵活性和敏感性。对于非英语专业的英语课程来说,基本上是一种必修课的单一形式。要想实现学生的个性全面发展,培养学生的英语实践应用能力,提高学生英语文化素养,满足将来的专业需要,有必要改革传统的课程结构,即在原有的英语必修课的基础上,增设选修课和能力拓展课程,同时,加大力度开展英语第二课堂活动。弗雷德利克在他的《第三课程》一书中指出:无论学生活动的称谓如何,它们构成了第三课程,一种与必修课或一般课程及选修课程或特殊课程相平行的课程[5]。第二课堂活动可使英语课堂内外学习有效地结合起来,这将有助于实现研究生英语课程的教学目标。第二语言学习需要有良好而真实的语言环境,有更多的语言实践机会,这些都有利于培养学习英语的动机和兴趣。而在外语学习环境里,主要是缺少真实的语言应用环境,不利于培养和巩固学习者的外语学习动机与兴趣,不利于对语言交际能力的培养。因此,英语教学要想尽一切办法为学习者创造学习外语的良好氛围。国家政策鼓励各培训基地积极开展对少数民族高层次人才骨干硕士研究生的“三助活动”:助学、助教和助管。在少数民族骨干人才研究生中,每年都有本科为英语专业学员,为了贯彻国家政策,学校把这些英语专业的骨干人才硕士研究生组织起来,成立英语俱乐部社团组织,由英语专业带动非英语专业,开展丰富多彩的第二课堂活动,如英语演讲、英语话剧、英语书法展、英语板报、英语歌曲大赛、英语配音等一系列英语实践活动,通过开展各项外语应用活动,在竞争、奖励和评价刺激下,使得研究生拥有学习成就感,有利于英语学习动机的转化,在经过大量的实践后,使语言知识逐步向语言技能转化。

(二)课程结构改革的理论依据

从语言学角度看,国内外学者对第二语言学习的研究对外语学习有很大的影响。第二语言习得理论认为影响语言习得的因素包括外部因素和内部因素。外部因素是语言使用社会环境和语言输入。实际教学要求要有语言环境和语言输入。在Ellis的SecondLanguageAcquisition中,对第二语言学习论述并充分强调语言输入、输出和语言环境的重要作用[6]。要想学好外语必须有良好的语言环境、真实的语言输入,经过吸收、内化,才能有效输出。语言学家对第二语言和外语学习的研究,对英语技能拓展课程和选修课的开设提供了语言学理论基础。开设这些课程的出发点就是为学生创造外语学习的环境,提供语言输入与输出的机会,通过学生自身的实践活动来培养语言交际能力,这符合日前语言学的研究趋势。从心理学方面看,学习动机、学习兴趣有利于促进学习,改善学习效果。外语学习是一个非常复杂的语言习得过程,影响学生英语学习效果的因素很多,其中,学生自身因素,也是学生的非智力因素,如学习动机、学习兴趣、学习态度等都起着非常重要的作用。人的行为受意志支配,学生首先要有一种学习外语的强烈愿望,从主观上产生一种动力,然后才能付诸于行动[7]。从学习理论看,自主学习是一种积极状态下的自主能动学习过程,自主学习理论坚信每一个学生都是能动性的发展主体,自主学习理论强调尊重学生的独立性和自主性,发展学生的创造性,使学生得到生动活泼、全面的综合发展。建构主义理论与自主学习理论是共通的,自主学习理论是在建构主义理论的基础上发展起来的,建构主义学习理论和学习环境强调以学生为中心,要求学生由外部刺激被动接受者和知识的灌输对象转变为信息加工的主体,知识意义的主动建构者。建构主义教学理论则要求教师要由知识的传授者、灌输者转变为学生主动建构意义的帮助者和促进者[8]。因此,少数民族骨干人才研究生英语课程教学体系,必修的综合英语课程+必修的英语技能拓展课程+选修的英语文化欣赏通识课程+英语第二课程实践活动,实现英语知识和英语技能、课内与课外、基础培训与未来专业的统一,这样一个以内容为依托的立体化课程结构更有助于实现少数民族高层次骨干人才硕士研究生的培养目标。

三、少数民族骨干人才硕士研究生英语课程教学体系建设

从少数民族骨干人才硕士研究生英语水平的实际情况出发,对传统的英语课程教学体系建设进行改革,从课程结构、教学内容、教学模式和教学评估方面探索建立有辽宁沈阳化工大学特色的骨干硕士研究生英语课程教学体系,为学生提供丰富的英语教学资源,满足不同层次少数民族研究生的不同英语学习需求,充分调动学生的积极性,发挥少数民族研究生的特长,培养和提高硕士研究生学习英语的兴趣和主观能动性,更高地改善教学效果,以实现既定的英语教学目标。

(一)以内容为依托的立体化课程结构改革

借鉴依托式教学理论,教学可以拓展课程和选修课并按学科内容进行分解。针对不同英语水平的研究生将能力拓展课程分为初级、中级和高级三个层次,从英语的听、说、读、写、译等各项实践技能出发开设相应的课程。研究生分文理科,目标专业各异,英语水平不齐。因此,在入学初进行英语水平测试,按其实际英语水平分科、分班和分级教学。第一学期初级班以日常英语教学为主,以必修课形式开设英语口语和英语语法拓展课程,各16学时,为研究生弥补欠缺的英语知识,培养其基本听说能力,使研究生能够顺利地进行课堂英语学习。第一学期中级班的研究生在处理传统的英语课程教学时,以自修为主、教师讲授为辅,同时为研究生开设各16学时的基础英语翻译和写作课程,培养他们翻译写作能力,为研究生通过大学英语四、六级考试打好基础。高级拓展课程按文理学科的人文和科普主题、以选修课的形式开设上述一系列文化、欣赏类通识课程,研究生可以根据自己的英语水平、兴趣爱好和专业方向等选修适合的高级能力拓展课程。同时,辽宁石油化工大学非常重视少数民族人才硕士研究生的基础课程教学,在英语教师配备上下了很大功夫,其中有四名英语专业教师为少数民族硕士研究生授课,这为开设高级拓展课程提供了教学保障,以满足硕士研究生的英语学习需求,真正实现因材施教、个性化教学,为下一步研究生英语学习及专业英语的继续学习打下坚实的基础[9]。

(二)专业导向的分层次教学改革

课程设置的基础是教材,课程结构改革要想取得成功,需要在教学内容上加以调整[10]。骨干人才硕士研究生英语课程的教学内容是采用2006年教育部少数民族高层次骨干人才硕士研究生基础强化培训教材编写委员会编写的基础培训试用教材,该教材侧重于英语基础知识的学习和讲解。鉴于硕士研究生英语水平程度不一,专业需求和学生个人喜好不同,结合辽宁石油化工大学的学科优势及英语专业教师团队的加入,成功申报了2013年度辽宁省高等教育委员会外语专项教学改革课题“少数民族预科英语课程教学体系建设研究”项目,对本科预科英语课程和骨干研究生英语课程分层次进行改革,并组织教师编辑英语技能拓展教材,应用于教学实践。选取补充教学材料时,教师也要充分考虑学员的实际情况,如学生的英语水平和专业特色,坚持学一点、会一点和用一点人性化教学理念,遵循由浅入深、循序渐进的教学规律,以及秉承新颖性、实用性、交际性和主题性的教学原则,使学生能更好地适应其在目标学校的英语学习要求。针对C班的研究生,综合英语课程以完成教育部规定的教学内容为主,英语技能拓展课程教学内容为高中水平的英语语法和简单的日常口语,主要是为学生弥补基础知识的欠缺,夯实其英语基本听说技能。在阅读、翻译和写作拓展材料的选取时,要选取适度适量兼顾文理学科特点,大致是全国公共英语三级水平的英语材料。B班研究生的补充教学内容为大学英语四级水平的英语知识和技能要求,A班研究生的补充内容为大学英语六级水平的知识和技能训练。至于高级拓展课程更突显文理学科专业特色,如针对包括石油化工英语等理科科技英语、科技英文写作;针对文科的跨文化交际、英美短篇小说欣赏;同时提供文理学科兼选的影视欣赏、英文报刊选读和英语口译,但是具体教学内容还是分文理学科特色而进行的[11]。所有这些高级拓展选修课程教学材料的难度不易过难,否则会影响研究生的学习兴趣,要注重知识到技能的转化以及文化知识的导入,真实的语言输入与输出,使研究生全方位地提升英语综合能力,为下一步研究生英语学习奠定基础。

(三)灵活多样的教学模式改革

少数民族骨干人才研究生受历史及地域等诸多因素影响,有其自身的特点,这要求教学模式也应该有自己的特色,真正切合研究生的教育背景和教学实际。因此,教学模式采取的是以知识为中心的(CAAA)教学模式和以交际为中心的(CAIM)教学模式相结合的方式。开学初,硕士研究生英语学习缺乏信心、但是他们基本上有学习动机,但感到学习压力大。教学采用以讲授为主、实践为辅,引起兴趣,确立动机的以知识为中心的CAAA教学模式,意在引发他们的学习兴趣,减轻其学习压力,树立其学习的自信心。经过一段教学实践,硕士研究生的英语水平有了一定的提高后,转入CAIM教学模式。教学以交际为中心的CAIM教学模式即以实践为主、以讲授为辅,增强兴趣,维持动机。教师在教学中应用多媒体技术和网络,增加听与说的训练时间,突出教学的重点和难点,提供研究生多种英语学习途径,便于他们根据自己实际水平选择学习内容,有利实现因材施教和个性化教学,充分体现研究生学习的积极性、自主性和参与性[12]。

(四)多元化教学评估体系改革

教学评估也是整个教学体系中一个重要环节,评估是否客观、能否与教学保持一致,都会直接影响教学改革的成效。少数民族高层次骨干人才硕士研究生英语测试采用多元化评估方式,坚持过程性评估和行程性评估相结合、口试与笔试相结合的原则,严格考试管理,实行教学、考核分离。终结性评估分数占60%,期末试卷以笔试的形式进行,教学评估考核内容包括课内知识和课外知识;过程性评估分数占40%,过程性评估除传统的平时测试成绩占10%、作业成绩占10%之外,增加10%拓展课程的考核和10%口试考核;评价的主体也由传统、单一的教师评价转向教师评价与学生评价相结合的多元化评价方式,进而达到考核对硕士研究生英语学习成绩的多方面监控,切实从英语听、说、读、写、译的五项技能对硕士研究生进行全面考试,以有效检验少数民族高层次骨干人才硕士研究生英语教学体系建设的教学效果。