首页 > 文章中心 > 高效能建筑

高效能建筑

高效能建筑

高效能建筑范文第1篇

关键词:高效节能建筑;保温材料;性能

在能源逐渐紧张的今天,为了能够有效的实现能源节约,各个行业都开始采取有效的措施,减少对能源的消耗和浪费,使得能源的利用率可以得到提升。而建筑行业对于能源的消耗最为严重,为了使得建筑的能源消耗可以得到减少,建筑施工企业开始将高效节能建筑保温材料应用到建筑建设中,从而使得建筑对于能源的消耗量大大减少,同时也对建筑的发展起到了积极的推动作用,实现了建筑行业的可持续发展。下面就对高效节能建筑保温材料进行合理的研究。

1 试验研究

1.1 原材料性能及作用

1.1.1 增强纤维。在对建筑进行施工的过程中,要尽可能的采用无机纤维,这种纤维较长而且质地比较轻,其很容易就可以被溶解,并且具有较强的稳定性和粘粘性,能够对水分进行有效的吸收,纤维中的水分含量增多,其本身的柔软度会得到相应的提高,而在干燥后,其又会就有较强的坚韧性。这种无几纤维材料主要是用来对保温材料进行骨架的构建,从而形成一个保温材料网络,这样就能够有效的提升保温材料的抗拉伸性能以及保温的性能。

1.1.2 膨胀珍珠岩。这种材料属于一种保温集料,其本身的质地较轻,而且在导热系数上相对较小,并且具有一定的吸附力。通常来说,这种材料本身的松散密度在80kg/m3。

1.1.3 复合外加剂。采用的复合外加剂属于一种添加剂,这种添加剂主要是由各种有机的改性材料以及无机的改性材料混合制成,将这种复合外加剂添加到保温材料中,能够使得保温材料自身的胶粘性得到提高,在一定程度上,也能够使得材料的强度得到提升,这对于纤维的疏解具有积极的影响作用。

1.2 生产工艺

在对高效节能建筑保温材料进行生产的过程中,需要对该保温材料的产品性能指标进行反复的核实,并且依据相应的性能指标,选择适宜的生产原材料,依据各种原材料的性能和自身的作用,对原材料的实际应用量进行合理的规划,在对原材料的实际应用量进行合理的分配后,需要进行试验配置以及检验工作,同时对试配的材料进行对比分析,依据对比分析的结果来对试配的材料的原材料搭配比例进行调节,从而确定出最佳的配比比例,进而形成最为适宜的生产工艺。高效节能建筑保温材料主要是利用机械对原材料进行拌合,采用的生产工艺为一次性生产工艺。在将各种原材料都按照相应的比例进行调配后,再依照一定的搅拌顺序将其缴入到混料机中,利用混料机对原材料进行搅拌,直到搅拌均匀位置,一般来说,物料的总重量为0.5t时,则搅拌的时间则为10min。针对高效节能建筑保温材料在进行使用以及搅拌的时候,需要在其中加入适量的水,直至将其搅拌均匀,然后再放置4分钟左右,就可以开始使用,值得注意的是,所配置完成的料浆必须要在4h内使用完毕,不然其应用效果将大打折扣。

1.3 反应机理简析

按照上述工艺生产出的混合粉料,即为成品,它可以在常温干燥环境中长期贮存,使用时,加水拌合均匀成浆料。首先,增强纤维吸水“润胀”,在外加剂作用下得到合理的疏解,并带上一定的电性,互相“交联”,在整个浆体中形成网络结构;复合外加剂中的两种成份可以改善案体的凝结时间、提高其早期强度,而另外一种有机物遇水后迅速溶解,形成长分子链,改善浆体的胶粘性。浆料被涂覆于墙表面后,被墙体吸收掉一部分水开始凝聚,强度逐渐增强,在4小时左右即可硬化到一定强度。干燥过程中,由于水分子的蒸发及低分子有机物的挥发,在保温层中形成大量封闭的微孔,这些微小气孔是降低材料热导率的因素之一。

2 技术性能及应用效果

2.1 技术性能

就高效节能建筑保温材料的原材料构成以及生产工艺来看,这种材料的导热系数在0.0639W/m・k左右,而其粘结的强度则为0.208MPa。另外,其抗压的强度以及松散容重分别为1.77MPa和580kg/m3,其偏碱性,具有较强的抗冻性能,能够在常温环境喜爱,保持完整性,不怕燃烧,在4h之内就能够有效硬化,由此可以看出,高效节能建筑保温材料具有较强的技术性能。

2.2 应用效果

高效节能建筑保温材料是一种用于外墙内保温的新型墙体材料,它可以替代原来的砂浆层,不用额外施工,其所具有的应用效果包括以下几点:

2.2.1 使用高效节能建筑保温材料后,240mm砖墙的保温效果高于370mm砖墙+普通混合砂浆的保温效果,接近于490mm砖墙+混合砂浆的保温效果。

2.2.2 某市普遍采用的370mm砖墙+20mm混合砂浆的墙体结构,远没有达到《民用建筑节能设计标准》规定的近期节能标准的要求,而改用保温砂浆层后,其节能效果高于近期节能标准。

2.2.3 370mm砖墙+20mm保温砂浆层,其保温效果超过了940砖墙的保温效果,达到620mm普通砖墙的保温效果。由上述分析比较可以看出,高效节能建筑保温材料是一种很有前途的墙体保温材料,采用它和其它砌体复合的墙体,可以大量节省粘土砖和运输量,节约土地和生产能源,可以使墙体减薄,扩大房屋使用面积,它的研制和应用具有显著的经济效益和社会效益,必将为建筑节能发挥重要作用。

3 生产设备及施工方法

3.1 生产设备

由上面的生产工艺流程可以看出,该材料一次混合成型,工艺简单,设备投资少。主要设备有:混料机一台(容积0.5吨或1吨),秤、电动筛等。

3.2 施工方法

3.2.1 施工前,应首先检查建筑的内墙表面,基层应平整、清洁,并提前将基法用水浸湿。

3.2.2 将粉料与水拌合,调成均匀的浆料,静置5分钟后使用。调好的浆料应在半日内用完。

3.2.3 抹墙面时,可一次成活,也可分层进行,但抹层过厚(超过20mm)时易造成流坠和空鼓,必须分层进行。

3.2.4 应待抹面层干透后,再做其它内墙装修。

结束语

综上所述,高效节能建筑保温材料的应用在一定程度上使得建筑的节能效应得到了提升,有助于推动建筑行业的发展。高效节能建筑保温材料本身属于一种较为优秀的保温材料,其主要应用在墙体上,这种保温材料除了具有保温的效用,同时还具有保健的性能,其能够对人体的微循环形成有效的促进作用,发挥出一种医疗保健的作用,从而对人体的健康形成保障。同时这种材料在实际的应用中,应用较为简便,能够一次成型,有效的达到了节省施工费用的目的。可以说,这种高效节能建筑保温材料具有广泛的实用意义。

参考文献

[1]颜艳.建筑外保温材料有关问题的思考[J].新疆师范大学学报(自然科学版),2011(4).

[2]陈旭.建筑节能技术市场发展前景及推广应用研究[D].成都:西南交通大学,2012.

高效能建筑范文第2篇

关键词:建筑砂浆外加剂砌筑砂浆抹灰砂浆

l前言

当前,我国建筑工程中60%以上的建筑物仍沿用砖、砌块等墙体材料。砌筑、抹灰施工中使用的建筑砂浆都为水泥砂浆或混合砂浆。所谓混合砂浆就是在水泥砂浆中掺加一定量的石灰膏或石灰粉,以改善其和易性,使之容易施工操作。但由于石灰质量不稳定,导致所配制的砂浆强度低、粘结性差,影响砌体工程质量,而且由于石灰粉掺加时粉尘大,施工现场劳动条件差,环境污染严重,不利于文明施工。因此,如何提高和稳定建筑砂浆的质量,改善施工操作条件等是建筑施工中亟待研究解决的现实问题。国外建材市场采用干拌料商品供应砌筑、抹灰用砂浆材料,使用较方便,性能较稳定,但成本很高。国内自70年代末开始,一些地方采用微沫剂来改善砂浆的和易性,即在水泥砂浆中掺入松香皂来代替部分或全部石灰。实践证明,砂浆中掺入微沫剂后,能改善和易性,而对其强度有一定影响,加量过多将明显降低砂浆的强度和粘结性,故目前已很少使用,有的地区已明文规定禁止使用。SG系列高效建筑砂浆外加剂(以下简称SG系列外加剂)是一种新型的水泥砂浆拌合物添加剂,它完全不同于微沫剂,它的掺入不仅能显著改善建筑砂浆的和易性和保水性,而且能明显提高水泥砂浆的各项性能指标。

2配制

SG系列外加剂是根据水泥拌合物的水化机理,选用多种无机材料、有机高聚物、表面活性剂、偶联添加剂等专用材料配制而成的。为了满足不同施工要求,SG系列外加剂分为SG—l型(砌筑用)及SG—2型(粉刷抹灰用)2种。

3性能

对掺SG系列外加剂配制的建筑砂浆性能作了较系统的实验室研究,并与末掺外加剂的水泥砂浆及混合砂浆的性能作了对比。

试验采用杭州双流水泥厂生产的425#散装普通硅酸盐水泥;砂的细度模数为1.81的建筑用细砂或标准砂;SG—1型外加剂掺量为水泥用量的0.2%;SG—2型外加剂掺量为

水泥用量的0.4%~0.6%。试验方法按JGJ70—90要求进行。

3.1SG系列外加剂对砂浆用水量、稠度及凝结时间的影晌

掺加SG系列外加剂后,砂浆的用水量明显下降,在稠度相近时,其用水量可减少10%以上,有的可达20%~30%,甚至更多。

测定结果显示,在水泥砂浆中掺入SG系列外加剂后,其初凝及终凝时间略有延缓,但总体影响不大,略有延缓对施工操作是有利的。

3.2砂桨分层度对比试验

测试结果显示,掺SG系列外加剂的砂浆分层度完全符合砂浆技术要求的规定不大于3cm,明显低于基准砂浆的分层度,甚至比混合砂浆还低,其中SG—2型效果更好,这

说明掺SG系列外加剂后,砂浆的保水性能得到很大改善,砂浆的施工性能十分优良。

3.3掺SG系列外加剂砂浆的体积变化

掺SG系列外加剂后,砂浆的表观密度减小,这是因为SG系列外加剂具有表面活性作用,通过搅拌产生引气作用,使砂浆含气量适量增加,和易性提高。与基准砂浆相比,在相同质量比时体积增加,在不影响砂浆强度的情况下,适当调整砂灰比例后,其砂浆体积比仍可达到或超过混合砂浆。

掺加SG系列外加剂后,砂浆的和易性明显改善,用水量相应减少,搅拌后产生的适量微气泡使拌和物骨料颗粒间的接触点大大减少,降低了颗粒间的摩擦力,砂浆表观松软,粘性好,操作方便,在现场施工中获得好评。

3.4SG系列外加剂对砂桨强度的影响

3.4.1对抗压强度的影响砂浆的抗压强度是性能检验的主要依据,我们对掺有SG—l系列外加剂砂浆及基准砂浆的试块作了一系列抗压强度对比试验。

可见,砂浆中SG—l型外加剂的掺入,当控制砂浆稠度基本一致时,砂浆抗压强度随着外加剂掺量增加而呈增加趋势,直至掺量为水泥用量的0.3%时达最高值,随后略有下降,但在掺量为0.5%时仍比基准砂浆的强度高。其中掺量在0.2%~0.3%效果较显著,因此掺量为0.2%较合适,这样在施工中即使掺量略有波动,也不会造成砂浆强度的下降。

影响砂浆抗压强度的因素比较多,其中砂的细度对砂浆抗压强度影响较大,选用中砂砂浆的抗压强度有明显提高.

对不同砂灰比的砂浆抗压强度也作了试验。由表8可见,随着用砂量的增加,掺SG—1型外加剂的砂浆抗压强度逐渐下降。

我们对掺外加剂砂浆的抗压强度与混合砂浆的抗压强度也作了比较,可见,在相同砂灰比时,掺外加剂砂浆的抗压强度比混合砂浆有较大提高。

3.4.2对抗剪强度的影响

砌筑砂浆的粘接性能好坏比其抗压强度更为重要,因此砂浆的抗剪强度更能反映砌筑特性的要求。

水泥砂浆中掺加SG系列外加剂后,抗剪强度大大高于同配比的基准砂浆及混合砂浆,可提高l~2倍.

从试验结果看,用掺SG系列外加剂砂浆粘结的红缸砖试件的抗剪强度比基准砂浆的抗剪强度高3~4倍。在砂浆砖砌体抗剪强度试验中发现:掺SG系列外加剂砂浆与砖表面的粘结很牢固,试件在试验中均破坏在砂浆层内,而基准砂浆试件的破坏均发生在砂浆面与砖表面之间;混合砂浆试件破坏时,砂浆呈粉碎性破坏,而砖面上基本没有粘上砂浆。

3.4,3对砂浆的后期抗压强度的影响

在砂浆中掺加SG—l型外加剂后,其后期抗压强度有进一步增加.从这点看,SG系列外加剂完全不同于砂浆微沫剂。SG系列外加剂的掺入不仅改善了砂浆的和易性,使施工易于操作,而且能激发水泥颗粒的水化,提高水泥砂浆的强度及砖砌体之间的粘结性。

4应用

SG系列外加剂呈均匀细粉状,易溶于水,运输及使用十分方便,并已在多项建筑工程上进行试用,效果较理想。例如浙江中天集团承建的杭州市公安局工地,建筑面积3万多m2,原设计采用混合砂浆作砌筑砂浆,后因石灰质量不好,改用掺加SG—1型外加剂水泥砂浆,完全不用石灰,质量配比为水泥:砂:SG—l=1:7:(0,002~0.003),砂浆不泌水,粘结性好,强度高;抹灰采水泥:砂:SG—2=1:5:0.004,拌制的砂浆和易性好,放置2h也不泌水,易施工,不起壳,强度高,减轻了劳动强度,改善了施工条件,降低了施工成本,受到欢迎。又如由余杭二建公司承建的浙江省教委电化中心勾庄工地,建筑面积2050m2,刚开始时,采用混合砂浆,也因石灰质量差,砂浆强度很低,后改用掺加SG—1型外加剂砂浆作砌筑,配合比为水泥:砂:SG—1=1:9:0.002,砂浆强度超过设计M5.0的要求,内外墙粉刷抹灰采用配合比水泥:砂:SG—2=1:(4~6):0.006,墙面粉刷施工已完成,经检查,粉刷层不起壳,不开裂,粘结性很好,顶棚粉刷后,下大雨也未发生渗水现象,该工程节约不少水泥和石灰,经济效益不错。

5结论

(1)SG系列外加剂能明显改善建筑砂浆拌合物的和易性和保水性,使砂浆松软,不分层,不泌水,便于施工操作;明显提高砂浆的抗压强度,R28可提高10%~30%,随着龄期的增长,砂浆的抗压强度继续增高;同样,它对砂浆的抗剪强度及砂浆砖砌体抗剪强度均有较大提高,可达l~2倍。

高效能建筑范文第3篇

关键词:高层建筑,给水工程,节能施工

中图分类号:TU208文献标识码: A

1.某高层建筑给水工程概况

某高层建筑,总层数32层,除了1-4层为商场铺面,其余均为住宅。为保证整栋建筑的正常用水,工程计划满足每人每天280L的用水量。(其中在建筑的顶层塔楼上部,分别布置了2个体积为8m3的生活水箱,水箱应用22KW的2台生活水泵,其中4-15层的低区和16-30层的高区,均由生活水箱供水,其中水泵每天运行的极限时间为11小时,总耗电量为24kwm。另外工程采用恒压变频给水方式,除了水泵-水箱供水,4-28层的高区和低区,均设置了不同型号规格的生活水泵,其中高区设置3台11kw的生活水泵和1台4kw的生活小水泵,而低区设置了3台7.5kw的生活水泵和1台3kw小水泵。工程计划由工频泵和变频泵配合控制用水量,高峰期时,高区由11kw的1#工频泵和11kw的1#变频泵,以持续4小时的时间分配用水量,低区由7.5kw的3#工频泵和7.5kw的3#变频泵,以持续4小时的时间分配用水量;中峰期时,高区由11kw的1#变频泵,以持续10小时的时间分配用水量,低区由7.5kw的3#变频泵,以持续10小时的时间分配用水量;低峰期时,高区由4kw的2#变频泵,以持续10小时的时间分配用水量,低区由3kw的4#变频泵,以持续10小时的时间分配用水量。

2.案例工程给水工程施工节能效果的提升建议

2.1给水方式的选择

确定给水分区原则的基础上,需要选择成本费用低、技术效益高和安全系数可靠的给水方式工程需要合理设置水表,在不违背相关规范要求的基础上,选择在使用年限、准确度等都较好的水表,同时安装匹配型的过滤器,譬如当前高层建筑常用的IC卡水表和远传水表。其中远传水表能够有效连接普通机械水表信号线和数据采集机信号线,并将数据信息传递至智能管理微机,减少人工抄表的次数,并且所提供的数据更为准确;而IC卡智能水表实现管理系统和智能水表间双向数据传递,具有明显智能化管理特征,用水时该表可以实时监测到水流信号,对这些水表的放置,可选择于楼梯空旷位置,并在平台位置设置给水立管。与此同时,节水器具也是建筑节水不可或缺的手段,但具体节水器具的选择,必须综合考虑器具的节水性能,譬如节水型水龙头,据相关推广报告称,陶瓷阀芯水龙头等,相比于普通类型的水龙头,可以节约25%的水量;再如供水系统,可引入自备水源的给水管网,由引水管、给水附件、给水管道和相关设施等搭配而成,助力于整个给水系统的节能推广。

2.2热水系统无效冷水量的减少

首先是热水循环系统,当前商住高层建筑的热水循环方式,有干管、立管和支管三种形式,循环系统对于控制无效冷水量,其中立管循环节水效果最好,在经济方面具有明显的优势,因此建议案例工程采用立管的热水循环方式;其次是限期改造现有但尚未应用循环热水的供应系统,笔者建议定时检查案例工程的热水供应系统,一旦发现存在无效冷水量超出规定标准的情况,则需要增设热水回水管;再次是管道的保温,工程的局部热水供应,基本没有设置回水管,加快了热水管内部水流散热,针对这种情况,在建筑设计期间,在考虑建筑功能布局的同时,还需要尽量缩短热水管线的长度,另外是按照相关标准规范,加强热水管的保温功能,譬如回水装置的应用;最后是提高温控装置的灵敏度,并采用双阀门调节的方式,降低启动配水装置后的调节频率,便于用户在最短时间内得到符合温度需求的热水。

2.3超压出流问题的解决

结合案例工程的施工,超压出流问题的解决必须考虑以下几方面的技术:首先是合理分区,以竖向的方式划分案例工程的生活给水系统,并综合考虑给水系统设备的性能、建筑层数、水泵性能等,控制好给水系统配水点的静水压;其次是采用水箱供水的方式,由于案例工程南北两条市政道路的市政管网,仅能满足1-4层的用户供水,因此4层以上的用户,可考虑采用水箱供水的方式,这种方式的供水,不仅可靠,而且稳定,能够控制配水点的压力波动,起到良好的节水效果;再次是减压装置的安装,譬如在每层进户管道的位置,将节流塞等减压装置安装在水表之前,用于调节超压出流量,另外根据配水点的静压和水量,合理确定给水的压力范围,通过管路剩余水头的减少,促使供水处于均衡分配状态,从而达到节约用水和降低漏失率的目的。

2.4叠压给水技术应用

叠压给水方式,其原理是应用无负压变频恒压供水设备,一端连接于市政管网上,借助市政管网的余压,以减少供水压力的损耗,同时可有效规避水质二次污染问题的出现。案例工程选择叠压给水方式,所应用的无负压变频恒压供水设备,直接往调节罐引入水管网的水,同步排除调节罐内部的空气,在水充满整个调节罐后,就会自动关闭真空消除器,通过止回阀直接向给水管网供水。这种给水方式,不仅能够消除自来水管网的负压,而且还能够提高用水高峰期的系统适应性。在应用叠压给水供应系统之前,笔者建议根据稳流补偿器的容积、每天高峰期每户最高用水量、每天用水高峰期自来水来水量、最大用水高峰期的持续时间等,估算出供水保证率,以求这种供水方式应用的实效性。

三、结束语

综上所述,商住高层建筑给水,长期以来受到节能技术瓶颈的限制,存在严重的给水资源浪费问题,要求在该工程施工期间应用节能技术,以完善整个给水工程的节能系统。文章通过研究,基本明确了商住高层建筑给水节能技术应用的方法,但由于不同建筑的给水施工情况和条件具有差异性,因此还需要结合具体工程,对相关技术进行因地制宜的利用。

参考文献:

[1]孙友进.高层建筑给水系统能耗构成和节能措施分析[J].江苏商报・建筑界,2013,(18):199.

高效能建筑范文第4篇

关键词:建筑业 低碳 经济效益

中图分类号:F205 文献标识码:A

文章编号:1004-4914(2010)08-056-02

一、建筑业的支柱产业地位

我国建筑业改革开放后,经过“六五”至“十一五”30年的快速发展,建筑业产值得到了惊人的增长。与1980年相比,在“七五”、“八五”、“九五”、“十五”及“十一五”后期,建筑业总产值分别是1980年的2.35倍、20.19倍、43.56倍、120.42倍,264.4倍。2009年,建筑业总产值达75864亿元。建筑业在我国国民经济中的支柱产业地位得到了广泛的认同。1988年以来,除了在治理整顿时期和受2008年全球经济危机的影响,我国建筑业增加值占GDP的比重始终维持5.5%左右,大部分省市建筑业增加值占GDP的比重在5%~8%,部分地区超过了10%。建筑业在相当多地区成为本地财政的支柱性财源,税收贡献突出。2009年,由于4万亿元投资对建筑业的初次拉动作用最大,建筑业增加值占GDP比重达到6.7%,创历史新高。建筑业与国民经济基本保持同步增长,为经济的健康、快速发展作出了应有的贡献。

二、建筑业的高投入与低增值性

建筑业本身是一个庞大的产业系统, 其生产也需要其他部门投入大量的资源。从直接消耗系数来看,建筑业在生产中投入建筑材料及其他非金属矿物制品业的产品最多;其次,是投入金属产品制造业产品;第三,是对劳动者的需要。这三者是建筑业的主要直接消耗资源,这三个部门产品的投入量约占到中间投入总量的50%。

建筑业与国民经济系统中众多的部门相关联。建筑业为全社会各个物质与非物质生产部门提供重要物质技术基础,消耗钢材、木材、水泥、玻璃、五金等多个行业、2000多个品种、30000多种规格的产品,联系着整个社会的方方面面。通过对比建筑业与其他行业部门的投入率和增加值率,能够反映建筑业的增值能力水平。根据近年来中国统计年鉴国民经济核算中的投入产出数据,增加值率最高的行业是金融保险业,2002年为0.639385,2005年为0.6153393。其次,是农业,同期分别为0.581917和0.5864551。相比之下,增加值率最低的是炼焦、煤气及石油加工业,同期仅为0.173766和0.826234。

建筑业属于增加值率较低的行业,同期仅为0.234396和0.2556999,而中间投入率则高达0.765604和0.7443001,是典型的高投入、低效益的行业。由于当前建筑业的增值能力不强,未来的发展必将受到严重的影响,如何提高本行业盈利能力将是未来必须解决的问题,否则建筑业的发展是非常有限的。

三、建筑业能耗规模

1.建筑业新建规模及能耗。建筑业作为能源消耗的主要行业之一,在节约能源减少污染排放的工作中占有重要位置。以住宅为例,“十一五”以来,我国年均房屋建筑施工面积474226万立米,年均房屋建筑竣工面积202419万立米。据初步测算,我国住宅使用能耗占全国总能耗的20%~27%;从建筑的全寿命周期来看,建筑能耗占了全球总能耗的50%以上,随着人类生活水平的不断提高,建筑能耗还有上升的趋势。

2.行业能耗预测。本文选取第三产业产值占GDP比重、城镇居民家庭人均可支配收入、施工房屋面积、房地产开发投资额占全社会固定资产投资总额比例、城市人均住宅使用面积、人均公园绿地面积、城镇新建住宅面积、水电风电核电占能源消耗总量的比例,共8个初始指标。

结合统计年鉴中的数据,运用因子分析理论对与建筑能耗有关的指标进行分析处理,根据BP神经网络原理,建立了新的建筑能耗预测模型。

选用方差最大正交旋转法并计算因子得分,建立公因子F为因变量、原始变量X为自变量的因子得分模型:

Fj=βj1X1+βj2X2+…βjpXp j=1,2…,m

最终得到的因子得分系数矩阵如表1所示。

本文将1980~2007年的建筑能耗及其影响因素指标共28组数据作为样本进行分析,其中选取1989年,1998年及2007年的三年的数据作为模型的测试样本,其余25组数据作为训练样本。采用Levenberg-Marquadt反传算法对网络进行训练,其中目标误差goal=1e-010;最大循环次数epochs=1000;学习速率LP.lr=0.1;显示间隔次数=25。为得到输出结果,通过Y=Sim(net,p_test)进行仿真,网络输出结果为:T-test=(0.1704 0.3936 0.8429),建筑能耗的实际结果为:Y=(0.2256 0.3263 1.0000),可以看出最大的误差仅为0.1571,在合理的范围内。

利用该模型,对2009年统计年鉴中缺失的2008建筑能耗数据进行预测。根据各指标数据预测得到2008建筑能耗约为45571万吨标煤,参考政府间气候变化专门委员会提出的排放因子,按一吨标准煤完全燃烧排放CO2量为2.66吨,排放NOx量为10.50kg,可知2008年预计由于建筑能耗而产生的CO2量为121218.86万吨,NOx排放量为478.49万吨。按照我国建筑业的未来发展规模,预计“十二五”建筑业的行业能耗将达到年均61101.47万吨标煤。

四、“十二五”建筑业低碳经济的规模效益预测

在全面深入贯彻落实科学发展观的指引下,“建设资源节约型社会,应对低碳经济挑战”是“十二五”时期建筑业发展基本战略之一。随着社会各界对建设项目建造水平的要求不断提高,建筑业节能减排的外部约束加大,产业素质提高成为今后行业发展中亟需解决的问题。在满足社会发展和民生工程需求的前提下,建筑业必须淘汰落后技术工艺及材料。对此,建筑业企业必须制定建筑低碳经济应对战略,在行业主管部门和协会的指引下,尽早全面贯彻落实建筑节能政策,并引导和促进企业技术进步机制形成。

在此环境下,根据新建民用建筑全面执行建筑节能65%设计标准要求,“十二五”期间,依据改革开放30年的建筑业统计数字预测,年均新建城镇住宅规模将达到年均8.8亿平方米,可带来年均节能效益:节约标准煤39715.96万吨,减少CO2排放量105644.4万吨。

五、结束语

建筑业虽然是我国国民经济的支柱性产业,但建筑业的高能耗致使整个行业的增值能力很低,我们应当看到建筑业向低碳转型后的巨大经济效益及未来广阔的发展空间。因而,在可持续发展与低碳经济的要求下,建筑业必须拿出切实可性的对策,以利于其未来健康稳定快速的发展。

参考文献:

1.陈春园,张森森,徐旭忠.推广建筑节能的经济大账,2006

2.康艳兵.强化我国建筑节能工作的政策建议.能源政策研究,2006(4)

3.林涛,谢立辉,刘小平.建筑节能的社会经济效益分析及应对措施.建筑经济,2005(7)

4.李志辉,罗平.SPSS for Windows统计分析教程[M].北京:电子工业出版社,2005

5.葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2008

高效能建筑范文第5篇

【关键词】绿色建筑技术;发展现状;应用

随着全球能源危机的爆发,世界各国都在不断地发展节能减排技术,以缓解本国的能源紧张局面。建筑工程作为耗能大户,是各国重点研究的对象,在此形势下,绿色建筑技术应运而生。绿色建筑技术是一种以“环保、节能”为基本原则的技术,发展绿色技术对建筑工程事业的发展、能源利用效率的提高等方面都有促进作用。在此,笔者将结合多年的理论研究与实践经验,在大量国内外实例的调查与分析中,总结绿色建筑技术的发展情况与应用策略,以供我国建筑工程工作人员参考。

一、建筑工程中应用绿色建筑技术的必要性

近几年来,我国建筑工程事业工作人员对绿色建筑技术的认识不断提高,并结合国内外绿色建筑技术理论研究与实践经验,为绿色建筑技术制定以下定义:在保证建筑工程基本功能的基础上,最大化地节约建筑工程材料、使建筑工程与周围环境相互协调共生,为人类提供更为舒适、环保、节能、降耗的居住、办公建筑,达到以上目的的技术,即被称为绿色建筑技术。由此可知,在建筑工程中应用绿色建筑技术是极其必要的。

具体来说,(1)当前,我国正受到石油、土地、林业等资源不足的影响,而建筑工程的建设则需要消耗大量以上资源,所以,对建筑工程实施节能降耗技术是极其必要的。由此,建筑工程技术人员将绿色建筑技术应用到建州工程中,将有利于降低建筑工程建设对以上资源的消耗,从而达到节能、缓解能源紧张的目的;(2)我国正处于社会主义发展初级阶段,发展是第一要务,在此形势下,建筑工程的发展成为我国发展的重要工作。因此,为了促进建筑工程事业的可持续发展,创新技术、发展绿色建筑建筑则是极其必要的;(3)建筑工程在建设施工中,不仅会消耗大量能源,同时也会排放大量的、不同形态的污染物。所以,为了在节能的同时,降低排放量并保护环境,必须发展新型建筑技术,以提高建筑工程建设施工的安全性、可靠性、环保性、经济性。而应用绿色建筑技术则可以很好地达到以上目标,推动绿色建筑工程事业的发展。

二、我国建筑工程绿色建筑技术的发展现状

现阶段,我国建筑工程事业飞速发展,相关技术人员对绿色建筑技术的研究逐渐深入,其应用效果越来越明显。一些房地产开发项目将绿色建筑技术作为重要的建筑建设技术对待,以期通过有效运用绿色建筑技术,来促进建筑工程效益的提升。但是,在我国建筑工程事业中应用绿色建筑技术,依然存在着一些问题,制约着绿色建筑技术的发展与推广。

(1)在应用绿色建筑技术建设绿色建筑初期,需要投入大量的资金,以购置相应的绿色建筑装置,如通风装置、热泵装置、保温墙板等,这些设施材料的购置,将大大增加工程初期的成本,一旦建筑单位对此控制效果不高,则会影响绿色建筑整体的经济效益,进而影响绿色建筑技术的应用效率;(2)绿色建筑技术在我国应用的时间还不长,还有很多人对此技术的认识不足,一些房地产项目开发人员认为多栽树种草即是绿色建筑,这种观念是极其错误的,不仅无法达到节能降耗目的,同时也会影响房地产市场的健康发展以及绿色建筑的推广;(3)绿色建筑技术的有效应用也是制约绿色建筑发展的关键因素,很多建筑单位没有业的绿色建筑技术人员,对绿色建筑技术掌握与应用程度不高,应用起来也会出现种种问题,从而不仅为达到绿色施工的目的,反而影响了建筑建设的质量,导致绿色建筑技术应用的效率降低。

三、绿色建筑技术在建筑工程中应用的策略

自上个世纪90年代起,我国就开始将“建设节能环保建筑”作为国家发展的重要的工作之一,并随着科学技术的发展,不断创新建筑技术与环保技术,以期能够在保证建筑功能的基础上,最大限度的节省资源、保护环境、减少污染,为人类提供舒适、安全、和谐、可靠的建筑。

(1)节约土地资源,有效运用原有绿地资源。首先,为了在保证建筑总容积的基础上,应该采用建设多层或者高层建筑来降低对土地资源的使用,同时也可以增加建筑之间的距离,有利于降低建筑的密集率;其次,建筑土地节能设计,还应该遵循因地制宜、因形而势的原则,尽量在不改变土地资源的基础上,保证建筑的安全性与可靠性,同时充分利用土地上原有的其他资源,以提高绿色建筑技术应用的效果;最后,应用绿色建筑技术建设绿色建筑,绿地是必不可少的。设计人员必须重视建筑周边原有的绿地,并对其进行科学、合理的改建,尽量避免销毁原有绿地重建的情况发生,这样才能有效保护环境,提高绿色建筑技术的应用效率。

(2)选择经济性较高新型材料,提高建筑的可靠性。随着新型材料工业的不断发展,建筑市场中出现大量的节能材料,因此在应用绿色建筑技术过程中,可以选择经济性较高的新型材料,如节能保温材料、隔热材料等,这些材料不仅性能较高,同时,没有毒副作用,能够在保证建筑性能的基础上,最大限度地降低对环境的污染,提高工程材料的利用效率。如,建筑外墙的节能,可以采用聚苯板与铝板制成复合墙板以增强墙体的保温隔热性能,从而保证建筑整体功能的发挥,提高绿色建筑技术的应用效率。

(3)绿色建筑的发展,也包括对可再生资源的利用,尤其是自然能量,建筑工程技术人员可以针对不同类型的自然能量,设计不同的利用方案,如利用太阳能、风能发电、对地热能、污水能的热利用等,这样可以有效缓解国家石油、天然气等能源紧张的局面。

四、结语:

总而言之,在我国建筑工程事业中,发展绿色建筑技术是一项长期的、艰巨的任务,建筑工程技术人员必须提高认识,不断创新绿色建筑技术的应用策略,并在政府的参与、指导下,积极向全社会宣传绿色建筑技术应用的重要意义,从而引导全社会都参与到绿色建筑的建设与推广中,从而带动我国绿色建筑工程事业的发展,为缓解我国能源紧张局面提供有效助力。虽然现阶段,我国绿色建筑技术的应用依然存在一定的问题,但是相信,随着绿色建筑技术的发展以及政府在政策与经济上的扶持,未来,我国必将有效推广绿色建筑技术,从而促进绿色建筑工程事业的长足发展。

参考文献:

[1]胡敏. 浅议绿色建筑设计理念、方法及误区[J].长沙铁道学院学报(社会科学版), 2010,23(02):180-182 .