首页 > 文章中心 > 航空测控技术

航空测控技术

航空测控技术

航空测控技术范文第1篇

关键词:CORS 像控测量 误差 质量保证

中图分类号:P228 文献标识码:A 文章编号:1672-3791(2015)06(b)-0078-02

随着社会经济的迅速发展,城市面貌日新月异,土地利用现状也随之快速变化,各种城市发展决策、规划管理需要依靠影像图来提供更多、更直观的城市空间信息。目前由于相片的采集成本越来越小,所以影像更新的速度也就越来越快;相应的导致对相片的处理速度、精度和处理的面积的技术要求越来越高。某区通过获取2008 年10月以后最新的高精度卫星遥感影像,经过正射纠正、匀色、配准、裁剪等处理手段完成1:2000DOM数据库,而该文主要论述正射纠正作业过程中影像图的控制测量(以下简称“像控测量”)任务。

该区位于某省河网地带,测区内包括建成区、村庄、河流、湖泊、林地、岛屿等多种地形特征,在市区内建筑物较多,周围则以河流、树林、山地为主,交通不便、地形复杂、通视条件较差,常规的分级控制测量方法基本难以在既定的工期内完成任务。

1 CORS 应用于像控测量的工作原理

像控测量是指根据相片在内业设计布点方案并选定能在实地观测的地物特征点,在实地根据划定影像的灰度和形状确定像控点的位置,外业实测求解该点三维坐标的过程,该项目则是引入CORS中网络RTK测量方法,实时获得像控点的三维坐标,从而提高作业质量和效率。

CORS用于像控测量的动态模式为网络RTK模式,该模式可直接获得观测点的坐标,方便快捷,精度可靠。目前主要适用于低等级控制网和精度要求不高的测量应用,比如四等以下的控制测量、图根测量、海岸线测量、像控测量等。

2 作业流程

2.1 前期数据准备

为了实现GPS网与地面网的联合平差与高程转换,GPS网中必须有一定数量的已知三维地方坐标和GPS坐标控制点,其实际数量一般不低于3~4个(本项目采用了7个控制点),且要求分布均匀。如果控制点没有高程,可从附近高精度水准点引测。此外,为了更进一步的验证平差结果,还要求有一定数量的已知点作为验证点。根据测区交通和地理环境信息,精心安排同步观测计划,既要保证设计的线路能够顺利在实地标出,又要考虑所选像控点在实地无法观测等情况,做好在附近找点的准备,更要考虑如何省时高效地完成观测任务。

2.2 像控点测量

根据获取的影像图,该区覆盖了3个条带的QuickBird影像,共9景数据需要做正射纠正,而正射纠正采用的像控点必须满足2个基本条件:一是像控点必须分布均匀,二是每景像控点个数必须满足微分多项式,根据该区的地形地貌特点本方案初步设计对于山区地段采用4次多项式、平原地区采用2次多项式来做正射纠正,4次多项式需要的控制点个数为15个以上,二次多项式需要的控制点个数为10个,为满足不同条带接边限差,故不同条带接边处必须共用相同的控制点数据(和相邻景接边处一般为3-4个),因此该项目测区均匀分布共约 80个点作为正射纠正的基础控制点。

2.2.1 像控点的目标选择

像控点的目标选择是GPS像控测量中一个关键问题,内业选点必须要考虑几个方面:(1)像控点具有容易识别的特征,能在实地、影像图上均都能明确辨认;(2)像控点应该具有相对永久固定的特征,不容易随着城市建设频繁变化;(3)像控点较理想的目标是近于直角而且又近于水平的线状地物的交点和地物拐角上,如道路交叉点、拐角点、围墙或平台的拐角点等;(4)像控点应尽量避免选择高电区、高建筑物区等带有信号干扰、信号盲区的地方;(5)像控点附近交通应较为理想。

2.2.2 像控点的位置标定

相片由于像控点坐标误差的影响使相片边缘产生的像点位移和影像变形比中心部分要严重。为了提高外业判读刺点和内业点位的测量精度,相片所选像控点的位置距相片边缘要大于1~1.5cm。像控点选定之后,相片上要准确标示出它的位置。最常用的方法是用细针在像控点的影像上刺一小孔,小孔中心表示该点在相片的精确位置,刺孔不得超过0.1mm。刺点时要将相片影像与地物形状仔细对照辨认,点位刺出后,要实地检查核对并做点之记。该点之记与控制点的点之记不同,主要是为了便于内业人员判点。记录中要包括点号、刺点位置文字说明,文字字头朝北,可充分利用代码记录更多信息。在内业工作中可以将这些现场的草图描绘用AutoCAD进行整饰与保存。

2.2.3 像控点的位置测量

(1)设备准备与设置,采用网络RTK作业,在该项目只需要准备2.2中所描述的用户设备,即RTK接收机、接收天线、电源、手簿、通讯模块(GPRS接入设备)即可,连接好设备后通过GPRS方式拨号接入系统,用CORS账号登录CORS系统,并进行简单的网络、解算方式等设置,即可接入CORS系统。(2)野外点校正,像控测量中网络RTK实测的坐标为WGS-84大地坐标系坐标,而该项目需要的是城建坐标系及西安80坐标系成果。因此,必须通过观测已知点进行联测来求解转换参数。(3)观测与记录,在该项目中,像控点一般取100个历元观测值的平均值作为观测结果,每个像控点观测3次,并取平均值作为该点的观测结果。每个像控点的观测均要按照《实时定位观测记录表》记录,并在点位上做好标记,用数据相机拍照正面、远、近景等3张照片。

观测时有几点要求:

(1)每点均须使用三脚架架设仪器且量取仪器高两次,两次读数差不大于3mm,取中数输入GPS接收机中。(2)观测员在作业期间不得擅自离开测站,并应防止仪器受震动和被移动,防止人为和其他物体靠近天线,遮挡卫星信号。(3)两次初始化成果须野外对比结果,比值为两次初始化采集的最后一个历元的空间坐标,较差必须小于2;不符合时,加测一次。取较差满足精度要求的两次作为观测成果,如果三次较差均超出精度指标,则在其他时间段重新观测。(4)遇到无信号情况处理,网络RTK虽然比常规RTK作业信号要好,但是同样也存在接收卫星不理想的情况。在这种情况下,可以适当在附近临时调整像控点选点目标,但是新选择与原选择的距离最好不要超过100m,避免导致像控点分布不均匀。

2.3 内业处理

网络RTK的另一个提高效率的表现在于内外业一体化,相对于在外业过程中把内业部分的计算(即数据后处理)工作已经完成,因此,该项目的内业工作主要有以下几个内容。

(1)观测记录的整理,观测记录的整理包括了观测记录的计算整理、像控点位置示意图详绘等,涉及到坐标转换后处理工作的需要将观测原始坐标文件按照固定的格式进行简单的编辑。(2)像控点平均值计算,如2.2.3所述,每个点观测3次,所有单次初始化平均值求取平均值作为该点观测成果。(3)坐标系统的转换,坐标转换主要的两种方式:一种在手簿软件中录入转换参数实时转换,另一种是外业观测数据全部采用WGS84坐标系,内业后处理,采用计算机计算模式得出用户所需的转换参数以及对应的坐标系成果,两种坐标转换方式的原理都是一致的,只是转换程序的载体不同而已。(4)高程解算,高程解算主要是通过CORS与省似大地水准面结合应用进行的,即CORS一般采用省似大地水准面成果作为高程求取方法。在进行WGS84坐标系下的约束平差之后得到控制点的大地坐标,将此大地坐标值内插到似大地水准面模型中解算控制点的正常高程。(5)已知点检测精度统计表。测区内已有验证点与对应的CORS测量值比较结果。

其中平面坐标较差的最大值为3.3cm,高程较差的最大值为4.0cm,可以看出 CORS测量精度成果具有较高精度,完全满足像控测量中0.05~1.0m的精度要求。

2.4 像控测量的误差来源

根据像控测量的作业流程,像控测量的误差来源主要有三个方面。

(1)选点误差,主要来自于内业人员对影像图的判读、图上标绘、刺点等所引起的误差;(2)观测误差,主要有仪器对中误差,观测方法(观测时长、观测历元数)引起的误差;(3)CORS本身存在误差,包括:与卫星有关、信号传播有关、仪器设备有关的误差。

2.5 像控测量的质量保证措施

像控测量是一项大面积的测绘工作,质量控制应贯穿全过程作业中,以下是针对应用CORS作业模式下测量精度的检验措施。

(1)已知点的检测,在测区内找到已有的控制点,我们可以用CORS对其进行观测及转换参数的修正;(2)像控点距离较远的可采用网络RTK进行点位重复测量精度检查;(3)对于较近的像控点可以用常规仪器(全站仪、水准仪)进行相对精度的检查,包括两点之间高差检查、边长检查等。

网络RTK相对于其他测量方法的优势通过该项目的实施,结合CORS建设理论知识,可以得到CORS在像控测量中对比常规导线测量、静态GPS测量、常规RTK测量都有着很大的差异,这种差异主要表现在以下几个方面。

(1)具有跨行业特征,可面向不同类型的用户,不再局限于测绘领域及设站单位;(2)可同时满足不同需求的用户在实时性方面的差异,能同时提供RTK、DGPS、静态或动态后处理、及现场高精度准实时定位的数据服务;(3)参考站网的建立可部分取代常规测量布控;(4)能兼顾不同的用户对定位精度指标要求,提供覆盖m级、dm级、cm级的数据;(5)覆盖范围广、作业效率高,一次投资长期受益的特点。

3 结语

通过该项目的实施,与传统像控测量相比,主要总结了使用CORS以下几点优势:(1)精度高,使用CORS不仅能达到像控点测量的精度要求,而且误差分布均匀,测图精度高,不存在误差的积累;(2)单机作业,完全可以满足大比例尺航测成图的要求。无需重复架设基准站,不受基站与流动站距离影响,做到真正的单机作业;(3)内外业一体化,可以根据测区的实际情况选择合适的坐标转换参数求解方法。参与坐标转换只需要对测区内均匀分布的3个或3个以上的控制点进行复测即可求解转换参数,计算可以由手簿自动完成;(4)外业工作强度减低,在满足精度要求的情况下,尽可能的减少外业的工作强度。通过实际测量结果来看,CORS应用于像控测量,操作简便,灵活方便,不但可以大幅度提高测量速度,而且能够大大减小作业人员的劳动强度,这在像控测量中尤为显著;(5)效益好,主要体现在经济效益和社会效益两个方面。

参考文献

[1] 匡翠林,范冲.GPS技术在像控测量中的应用.测绘与空间地理信息,2006(4):25-27.

航空测控技术范文第2篇

关键字:航空摄影测量;影像定向;全球定位系统

中图分类号:P231文献标识码: A 文章编号:

随着时代的进步,科学技术不断的发展。当前的空间定位技术、计算机信息技术和传感技术的飞速发展,使得航空摄影测量几何定位方法实现了超前的进展,并且即将实现脱离地面控制的高水准。下面笔者就和大家一起探讨一下航空摄影测量影像定向技术。

一、航空摄影测量影像定向技术的发展

在当今这个数字摄影测量时代,人们是以3S技术为主要手段、以4D产品(DEM、DOM、DLG、DRG)生产为终极目标的。如何充分发挥当代航空摄影测量技术的优势进行4D产品的大规模生产并对相应数据库实施快速更新需要我们不断的努力探索

二、我国航空摄影测量影像定向技术的现状

目前,航空摄影测量主要有常规航空摄影测量、GPS航空摄影测量、DGPS/IMU航空摄影测量3种模式。航空影像的获取和影像定向方法的不同是这三种测量技术最主要的区别。航空摄影测量影像定向技术是借助大量地面控制点加密技术获取模型定向点来实现的。通过GDPS/IMU来直接测定传感器的六个外方位元素,能够让客户认为价格是合适的。直接地面参考技术即GDPS/IMU能够将传感器数据或目标数据直接转化到一个本地或者全球的坐标系统,从而能够进行下一步的处理。将GDPS/IMU数据作为辅助信息用于对比小、没有明显特征的地区的空中三角测量的作业是很有用处的,但是直接用校正过的定向参数而不进行整体的空中三角测量,所能达到的地面精度,主要依赖行高度。对于几何模型考虑的比较简单,导致即使区域网结构十分完美且检校场及GDPS/IMU数据联合处理准确无误,直接地面参考所能达到的精度仍然难以满足大比例尺测图的需要。而基于DEM和DOM的航空摄影测量直接解具有地学编码、信息翔实等优点,并且能够轻易实现快速更新和实现变化检测的自动化与半自动化。基于已知定向参数影像的航空摄影侧量直接解则需要满足一些要求。首先,必须能够从数据库中能够得到原有影像及它们的定向参数值;其次,影像的重叠度和约束点的分布必须满足稳定的几何构造,以保证达到较高的精度;并且新旧影像在内容上必须有相关性,这样我们才能提取同名点。

三、航空摄影测量影像定向作业的要求及实验

现代的航空摄影测量在作业上一般在航空摄影、地面控制和内业测绘上有一定的要求。在采用GPS航空摄影测量时一般会将动态GPS接收机与航摄仪固联以提高影像获取的质量。一般在采用DGPS/IMU航空摄影测量时,都会在航摄仪上安装POS系统。根据不同的情况要选择不同的地面控制方案,以获得最佳的加密点坐标和像片外方位元素。内业测绘采用影像匹配技术识别同名像点,以完成地形和地物的自动测绘现行的4D产品生产中,一般按照单片内定向y像对相对定向y单模型绝对定向y立体模型测绘的流程进行作业,仅仅是在DGPS/IMU航空摄影测量之直接对地目标定位方法中探讨如何利用POS系统获取的影像定向参数进行模型恢复的有关理论和方法。航空摄影测量几何定位有摄影测量加密和直接对地目标定位两种方式。其中,摄影测量加密是将所获取影像坐标与地面控制点和/或影像的外方位元素作为带权观测值进行整体光束法区域网平差,以解求影像的定向参数和目标点的空间坐标,主要是为立体模型测图提供定向控制点和进行高精度的对地目标定位。现行航空摄影测量内业规范对不同比例尺、不同类别地形的摄影测量加密规定了具体的加密方法、地面控制方案,并对加密点精度给出了定量指标,已作为一种成熟技术被广泛使用。直接对地目标定位是在获得高精度影像外方位元素的前提下,利用立体像对上同名像点的像平面坐标按照空间前方交会理论计算出相应地面点的物方空间坐标,以直接确定物点的空间位置,从而实现4D产品的生产。现行的4D产品生产都是利用摄影测量区域网平差所获得的加密点作为模型定向点用的,不会直接使用影像外方位元素来恢复立体模型。所以,现行规范中并没有规定影像外方位元素的精度。一般说来,只要加密时在单个模型上量测了足够多的加密点,且加密点精度符合限差要求,据其进行单个模型的绝对定向就能建立可量测的几何模型,进而可提取符合要求的三维空间信息。利用现行摄影测量加密方法获取的影像外方位元素进行直接对地目标定位完全可以满足测绘地形碎部点的精度要求。

四、总结

对于同一地区利用己知定向参数的影像进行新影像的定向的理论和方法,通过模拟和实际试验证实了方法可行性,纯粹利用两期影像进行联合光束法区域网平差所确定地面点的精度可满足规范要求,可真正实现无需地面控制点的航空摄影测量作业,这对于减少摄影测量外业控制测量、地形图修测、地理信息数据库快速更新、多时相遥感影像的自动变化检测等具有十分重要的意义。符合规范精度要求的摄影测量加密方法获取的影像外方位元素可以直接用于影像的定向以构建立体模型进行4D产品的生产,而由POS系统提供的影像外方位元素带有较大的误差,目前还难以直接用于摄影测量中提取三维空间信息。当前数字摄影测量时代可以让 3种摄影测量模式共同存在,航摄影像的定向手段也变得丰富多彩,从而使得摄影测量作业也越来越轻松。通过本文的研究,我们可以得到这样的结论:常规摄影测量加密技术比较成熟,应用的也比较广泛,GPS辅助空中三角测量则比较经济实惠,POS直接传感器定向技术也越来越成熟。就基础地理信息的获取而言,我们应当根据不同的情况采取不同的技术方案,才能够减少消耗以获得最大的利润。常规摄影测量方法在交通便利、地势平坦地区的大比例尺地形测图中应该要重点的进行使用。而无地面控制GPS航空摄影测量技术则可以在困难地区、无图区或者人员不能通达地区普及使用以获得基础地理信息。POS航空摄影测量方法则可以在正射影像图制作、小范围的4D产品更新等应用中进行使用,而且在城市大比例尺测图和一些具有比较高水平的科研项目上,POS系统的应用前景是相当的可观的。为了能够经济、快速的获取地球空间信息,我们应尽快完善POS系统与其他传感器的集成技术,不断的进行探索研究,从而达成理想的目标。

参考文献:

【1】易映辉;肖远焕;;基于航测实例的IMU/DGPS辅助航空摄影测量技术探讨[J];科技创新导报;2010年11期

航空测控技术范文第3篇

关键词:现代测控技术;测控;发展;应用

现代测控技术已在工业、农业、国防、航空等领域得到了广泛应用,现代测控技术被应用到多种实践技术中,与现代科学技术一体化发展息息相关,目前现代测控技术的地位不断提升,可以预见测控技术将会为改进现代科学技术水平和解放生产力做出巨大的贡献。

1 现代测控技术的发展

1.1现代测控技术的现状

随着现代社会经济发展的提速和社会科学技术进步的加快,现代测控技术己经在很多领域得到了深层次的应用。我国的现代测控技术相比发达国家起步较晚,因此为了减小这种差距,我国必须借鉴和引进国外的先进技术、设施和模式,缩小我国与国际先进水平的差距。

1.2现代测控技术的未来趋势及前景

现代测控技术一直不断适应社会的发展,紧跟时代的步伐,不断适应社会的发展,并带动世界科学技术的进步。为了顺应社会发展,现代测控技术的标准化、开放化必将是其未来的发展趋势。从市场角度、技术角度来看,我国测控技术的标准化、开放化趋势给了国内测控行业良好的机遇,由于当今我国正处于产业结构转变升级的阶段,所以标准化、开放化有着非常重要作用。随着如今社会科学的快速进步,现代测控技术正处于加速发展的状态。

1.3现代测控技术的发展意义

现代测控技术是现代工业技术中的重要支柱,现代测控技术在工业行业的发展中起到了解放生产力、增强产品市场竞争力的作用。现代测控技术促进了社会科学技术的快速发展,因此社会科学技术整体有了日新月异的变化。

2 现代测控技术的应用

2.1现代测控技术在民用及空间科技领域的应用

2.1.1现代测控技术在航空领域的应用

现代测控技术在航天领域的应用旨在获取航天器的运动参数和各方面物理数据以及宇航员生理状态信息。航空指挥中心把测控技术反馈的相关数据进行总结与研究,包括跟踪测量航天器运行轨迹来为航天中心指挥部提供分析数据信息,对航空器及宇航员的实际情况进行合理的分析,进一步提高我国航空发展的科学合理性。

2.1.2现代测控技术在农业领域的应用

我国是一个农业大国,现代测控技术在我国粮食存储方面有着独当一面的作用。为了防止粮食损毁,给我国经济发展带来不利影响,利用现代测控技术对粮食存储温度进行严格控制就显得尤为重要。例如,将现代测控技术应用到粮仓通风机上,当粮仓温度超过预置温度,警报器就会发出警报,接通通风机控制电路,对粮仓进行通风,从而控制粮仓的温度。

2.2现代测控技术在传感器设计与生产中的应用

相比于现有的电子传感技术与计算机传感技术,新型传感器技术更加的快捷,实用和稳定,设计结构也更加符合人们工作生活的需求。新型的传感器包括:

一、智能化传感器:应用于监测火车的机车状况、心内压监控等领域;二、微型化气体传感器:应用于交通、医学、化工、国防等领域;三、数字化传感器:应用于环境温度测量,银行监控等领域;四、集成化传感器:应用于温度、湿度、速度、压力以及视觉的测量领域;五:网络化传感器:应用于农业、工业、军事、国防等领域。

2.3现代测控技术在异地操控中的应用

现代的测控技术解决了异地的技术难题,得益于其可进行远程测控。专线远程测控技术、无线通信技术、网络电话技术综合应用组成了现有的远程测控技术。远程测控技术可分为工程远程测控以及民用远程测控两大类。目前在航空雷达监控、工业机器报警检测、机器人远程监控等领域都有远程测控技术的运用。

3 结束语

科学高新技术蓬勃发展的今天,人们更加注重前沿科技的实际应用与未来的发展展望,而作为一种基础式的高新科技,现代测控技术的应用与发展必然更加受到关注。现代测控技术是社会、科学的指南针,随着其不断的完善,现代测控技术将会延伸至社会、科学领域的各个方面。

参考文献:

[1]刘志刚,现代测控技术的发展及其应用探析[J].机电信息,2012(12).

[2]李卫平,现代测控技术的发展及应用[J].商品与质量?建筑与发展,2014(10).

航空测控技术范文第4篇

[关键词]航空模型;航拍技术;景观评价系统

[中图分类号]TU986 [文献标志码]A [DOI]10.3969/j.issn.1009-3729.2014.01.019

国内对景观评价的研究主要在美学、生态学和地理学领域展开,其研究大致可分为3种类型,即基于艺术欣赏和批评视野的美学评价、基于生态学的景观生态评价与基于地理学的景观空间评价。无论哪种类型的景观评价,其结果的效度都与被评价对象资料的搜集程度有关。对一般景观项目的设计、管理、资源评价与影响评价来说,鸟瞰是获取评价对象全局性信息的最有效手段和形式。就鸟瞰图的研究和实际应用来看,获取这种全局信息的方式有3种。一是卫星的遥感监测。在一般景观项目的评价中,人们最熟知的卫星遥感形式为Google Maps技术。随着其精度的提高和地图资料的丰富,它越来越成为景观评价中一种获得鸟瞰性全局资料的低成本方式。但是,因受地面GPS控制网的设置精度和地面卫星数据处理的时间限制,有些区域缺少必要的地形资料或者地形资料精度不够,从而影响了该技术的实际应用。二是人在低空飞行的飞机上航拍、航摄和航测。这种传统评价方式的优点在于可以对对象进行自主选择和实时观测,技术成熟。但运营成本高,着陆点要求高,不宜用于面积相对较小或日常性的景观项目评价。三是地面评价与测量数据的3D虚拟呈现。对地面评测数据的三维建模和场景模拟,可以用来对景观对象进行动态演示或全局评价与预测。随着计算机辅助设计水平的提高,这种依托计算机图形图像应用软体的评价方法,已经成为景观评价的主流方式之一。其不足之处在于,地形评价和测绘费时费力,不能对景观对象进行实时观测和评价,对附着于地形之上的景观元素形态和演化缺少有效的表述。而近十多年,随着民用无人机技术、数字摄影测量技术及数字微波通讯技术的飞速发展,以无人机为平台对景观项目进行评价已成为一种新的研究和应用领域,其优点在于:具有快速而机动的响应能力,高分辨率和高精度的数据定位能力,低廉的运营成本。[1]但是,由于我国《通用航空飞行管制条例》(2003 年5月1 日起施行)规定,将无人机用于民用业务飞行时,须按照通用航空飞行管理,这样就限制了无人机在景观评价中的实际应用。航空模型在搭载能力、滞空能力、长航时都有了很大改善,为景观评价技术革新提供了一种新策略,从而带来了景观评价系统的新变化。本文拟构建一种基于航模航拍技术的景观评价系统,以期丰富景观评价的方式方法。

一、航拍技术对景观评价的作用机理

1.景观评价的函数模型

景观评价是人们对景观对象做出的合乎特定目的或标准的复杂性知觉判断。其内涵包含2个层面:一是对景观对象的判断过程;二是综合观察、计算、咨询和评估方法的复杂分析过程。我们知道,景观评价结果会随着评价主体、评价客体、评价方式或技术方法的不同而发生动态变化,是一个变量集合。因此,若设定景观评价结果这一变量为f(ER)、景观评价主体这一变量为f(LE)、评价标准这一变量为f(ES)、评价技术与方法这一变量为f(MT)、评价客体这一变量为f(ET),则景观评价的函数模型就可表述为:f(ER)=∑(f(LE),f(ES),f(MT),f(ET))。自1960年代以来,景观评价逐渐形成4大学派,即专家学派、心理物理学派、认知学派和经验学派。基于4个学派的景观评价呈现出3种类型。(1)侧重对景观对象,即评价客体变量f(ET)的详细描述,强调景观美存在于客观景观之中,认为评价结果依赖于专家对景观对象描述的程度。(2)侧重对景观评价主体变量f(LE)的研究,强调评价主体心理偏好对景观评价结果的作用。(3)将景观评价主体和客体这2个变量结合起来,将公众平均审美度的测量结果与景观对象的景观构成分析结果对应起来,建立两组变量之间的对应关系,并将这种对应关系作为景观评价的标准。[2]然而,对于微观层面上的任意一个具体景观评价实践来说,这就意味着已经建立起了相对固定的景观评价主体和客体的函数关系,依托于主客体的评价标准也已固定下来。这样一来,景观评价结果就取决于评价技术与方法这一变量。也就是说,获得评价对象的信息越是全面、准确,评价结果的效度也就越高。

2.航拍技术的作用机理

正是基于上述结论,人们在对景观做出评价的时候总是努力进行评价技术的革新,也正是由于这个原因,当航空器的发明改变了人们的观赏视角以后,空中观测和空中拍摄就成为一种广泛采用的景观资源评价技术。虽然空中飞行载体由飞机发展到无人机、航模飞机,传统航空拍摄技术也发展到了数码航空摄影,但是,航空拍摄技术对景观评价过程的作用原理还是一致的。航空拍摄技术给人们的观察方法带来了3个方面的变化:一是俯视观察的角度,易于全局性观测,能提供景观对象的整体性评价;二是借用机载平台进行空中动态观察,易于人们对景观对象的四维空间整体评价;三是能够实现实时观测,更加灵敏地把握景观评价的时机。随着图形图像传递技术的发展,即时性的景观俯视观测成为可能。上述这些观察方法的变化直接带来了新的景观评价结果,进而将景观俯视观测作为景观评价的一项标准,进一步作用于景观评价过程(其机理如图1所示)。

二、基于航模航拍技术的景观评价系统构建

一般来说,对景观对象的评价遵照如下程序来进行:景观评价对象的确定景观评价样本的抽取与数据获取景观数据的处理数据参数的评价分析。而将航空模型作为平台,采用航拍技术来进行景观评价时,这一程序就可以描述为:地面固定参照系统图形图像采集系统图形图像传输系统图形图像数据处理系统评价参数指标分析与构建系统。由机模型采用遥控飞行,模型飞机的飞行姿态和照相机、摄像机的控制水平直接决定了获取景观评价对象数据的效度,因此,控制系统是上述评价程序得以顺利实施的关键和保证。上述程序和系统的工作原理如图2所示。

1.地面固定参照系统

照相机的成像原理告诉我们,要想获得高精度的航拍影像或照片,在硬件条件相对固定的条件下,最有效的方法就是降低飞行高度。但是,这样一来景观图像的幅度势必会缩小,要获得景观对象有价值的全景资料就需要将N幅影像或照片进行拼接。而需要强调的是,航拍的图片或影像与顶视图虽然

图1航拍技术对景观评价的作用机理

图2基于景观评价程序的航拍技术系统工作原理

非常接近,但是图幅会呈现出不同的透视变形,这就为图像拼接带来了较大的难度。如果不对地面的起飞点和控制点进行合理的编码,势必给图像后期处理带来很大麻烦。

正是基于上述原因,笔者提出建立地面固定参照系统来解决这一问题,其基本步骤是:首先在地面或者地下预先设定一些参照点,凭借直升机模型的垂直起飞特性来获得相对固定的景观图像;其次,在同一时间同一参照点上进行多次拍摄和测量,获取同一区域或点的N幅图像和数据;最后,分析图像的偏移和误差,采用数学平均的方法获得相对精确的图形或数据。将不同时间同一参照点的拍摄图像进行比对,可以很好地进行景观对象的监测,适宜于景观对象的动态评价。为此,笔者将这一系统分为地面固定参照物系统和参照点坐标与编码系统。前者是由地面人为设置或自然具有的代表性参照物组成,后者是由每个参照物的坐标和标高数据及各参照点的序号编码组成。依据对景观资料精度的要求不同,上述固定参照系统又表现为2种不同形式:地面主要标志点参照和地面网格定点参照,如图3所示。

前者适宜获得相对自由的图像资料,可满足人们对景观对象的直观审美评价;后者适合获得高精度的航拍数据资料,用于景观对象的理性分析评价。

2.图形图像采集系统

简单来说,图形图像采集就是将摄影或摄像设备装载于空中飞行平台上,对地面进行空中观测或拍摄。这一系统由航空模型系统、摄影与摄像设备系统和云台设备系统构成。采集数据的精度依赖于航空模型系统和摄影与摄像装备系统的性能。航空模型的飞行稳定性、平衡性、易操控性、搭载能力和滞空时间越好,数据的精度也就越高;摄影与摄像器材的设备重量、有效像素、传感器、水平解析度等参数越好,数据的精度也就越高。航模航拍实践表明,获得稳定且高质量的图形图像资料的关键,在于航模处于动态飞行过程时摄影摄像器材性能的发挥程度,也就是说这两者的匹配与协调程度。

从采集数据的最终应用来看:一是用来对景观对象进行直观、动态观测与分析;二是用来做景观设计与规划的成果表现内容或素材。前者的基本原理是:航模在飞行过程中,不断对景观对象进行拍摄,并实时传输到地面显示设备上,以供评价者使用。只要将摄影设备有效固定在航空模型上,通过操控

图3地面固定参照系统示意图

飞机模型的飞行姿态来获得资料即可,资料精度主要依赖于图像设备的拍摄性能。后者的基本原理则是:从景观规划和设计的要求出发,通过航空模型的悬停和摄影摄像器材的固定,来获得更为稳定的拍摄姿态,通过GPS定位、地面参照系统定位、高度气压计定位、红外线测距等,来确定飞行坐标和高程,然后将采集数据进行处理,以作为景观分析或地形绘制与设计的依据。就笔者和课题组进行的航模航拍试验来说,比较有效的方法是:利用直升机模型(特别是四旋翼直升机模型)的悬停性能,将装载有高度气压计、红外测距仪、数码相机等的云台设备固定在航模上,利用设备获得不同地面坐标点的同一高度的图形图像数据,然后将数据进行技术处理后作为景观分析或测量的依据。

3.图形图像传输系统

受航空模型的承载力限制,图形图像传输设备系统要具备性能好、重量轻、体积小、模块化的特点。图像和数字等信号的传输被认为是无人机航空作业的关键技术之一。[3]图形图像传输系统由图像发射、图像接收、计算机和传输指令系统4个部分组成,旨在同步接收摄像头所拍摄的景观对象顶视图,满足人们对景观场地的测绘或评价需要。在这个系统中,地面人员可以借助遥控系统控制航模的飞行姿态,来及时调整拍摄角度,确保获得优质的场地鸟瞰图,然后将有价值的图形图像储存起来,或者采用计算机的无线网络传输给其他用户。

目前,无线影音传输系统技术成熟,产品种类繁多。笔者和课题组的航模航拍试验中采用的是FPV 5.8G 2000mW 航拍无线图传系统。该系统由8频道2000MW发射机和8频道接收机组成,作为一款专业FPV航拍无线图传设备,系统工作频率为5645~5954MHz ISM频段,体积小、功耗低、重量轻,以无线、同步传输图像信号和音频信号,所获得的图像实时、连续、无失真,其空旷传输距离达到8公里以上。实验证明,该系统能较好地满足景观评价的航拍需要。

4.航模航拍控制系统

航模航拍控制包括模型飞机的飞行控制、航拍器材的拍摄控制和航空拍摄数据的传输控制。按控制指令发出主体的不同,航拍控制又可以分为地面遥控控制和航模自动控制2种类型。受航空模型飞机体积小、承载力小的限制,无人机航拍控制系统通常由控制设备系统和控制软件系统组成。控制设备由地面控制设备和机载控制设备组成,机载控制设备又由飞行控制设备和拍摄控制设备构成。无人机应用的控制设备具有小型化、集成化、重量轻、性能好的特点。比如,恩施州宏图勘测规划设计有限公司生产的NCG―1型无人机飞行控制系统包含了机载飞控、地面站、通讯设备,使用简单方便,控制精度高。[4]美国AP40自动驾驶仪集成了所有传感器和GPS接收机,主板尺寸75 mm×40 mm×25 mm,总重30 g。控制软件系统是实现人与机、机与机之间控制指令发出和接受的接口,通常分为嵌入式控制软件系统和地面站系统软件系统。前者实现飞行航线监测与控制、飞行姿态解算与稳定、航迹偏差校正、数码相机控制、飞行数据记录、数据接口测控、模块状态检测、意外情况处理等功能;而后者主要实现飞行前的航拍任务与航路规划,实时显示飞行区域航拍数据、飞行参数、航迹与航向等参数,航拍与飞行任务调整与控制等功能。需要特别指出的是,运用航模航拍的技术手段对景观对象进行评价时,上述控制系统的实现主要靠功能强大的控制系统套件完成,只要按照任务要求操控好控制软体即可。

5.图形图像数据处理系统

对景观场地的景观评价通常有3个用途:一是用于景观资源评价,即对景观对象进行的景观元素分析和美景度测量;二是用于景观对象的日常监控与管理;三是用于景观规划设计中的景观分析和地形设计评价。在景观评价和景观设计过程中,需要将航拍搜集的资料转化为3种形式,即影像、位图、矢量图。人们将景观资源评价、景观监控形式又分为直观观察和理性分析2种。当航拍的影像或者优质照片被用于直观评价时,数据的处理可以简化为符合地面参照系统的资料过滤;当航拍资料用于理性分析时,航拍数据的处理系统主要由位图拼接系统和矢量图构建系统组成。

(1)位图拼接处理

获得高分辨率景观图像的途径:一个是提高摄像器材的精度,另一个是降低飞行高度,而降低飞行高度带来的一个必然结果就是图像尺幅变小。为了对景观对象进行全局观测与评价,就需要将这些单帧图像进行合理拼接。由于事先在地面上确立了地面固定参照系统,且运用直升机模型的悬停技术进行航拍,因此只要使飞行器在高度气压计的引导下按照相同的绝对高度进行拍摄,并使相邻图像之间产生重叠,然后运用Photoshop软件进行图像处理,就可以得到相对准确的全景图像。另外,也可以将这些图像打印出来后进行裁剪拼贴,然后蒙上硫酸纸对其进行拷贝,在绘制过程中确定好主要的特征点,并适度进行变换处理。运用这些简易的拼接方法完成的图像,能满足景观元素识别、景观植物长势分析、景观空间衍变、景观生态变化、景观边界数字化的基本要求。但是,要想获得较为精确的航拍全景图像,就不得不用到图像配准技术。其基本原理就是将同一场景在不同拍摄条件下的两幅有重叠区域的图像进行处理,从几何上校准参考图像和待配准图像,用数学描述将一个图像像素的坐标系X映射到一个新坐标系Y中,并对其像素重新采样配准。[5]将这种图像配准算法应用到图像处理软件和程序中后,人们便可获得较为精确的全景图像。比如,在PhotoshopCS2.0以后的版本加入图片自动拼接的模块,输入“文件(File)自动(Automate)照片合并(Photomerge)”的命令,就可以轻松实现图片的拼接功能了。像Canon PhotoStitch 3.1、Autostitch 2.185等都是功能强大的照片拼接程序。

(2)数据矢量化处理

矢量图构建系统又分为景观场地平面矢量图构建系统和三维场地矢量图构建系统2种类型。前者的基本步骤是:首先,将航拍所获得的优质顶面图进行剪切后保存为位图文件,并将其导入AutoCAD软件当中,建立好单位和衬底图层;然后,选择画面上典型参照点间的距离进行测量,并和实际场地上对应参照点间测量距离相对比,求出比例;最后,运用参照缩放命令,对光栅图像进行1GA6FA1缩放,随后进行线条描绘,从而获得平面化的矢量图。[6]这种矢量图的最大不足就是缺少景观地形的竖向参数,但是为一般的景观平面分析和设计提供了便利。后者的基本步骤是:首先,将高度气压计、激光测距仪借用云台设备固定在直升机模型上,选择地面固定的参照点,用高度气压计获得该点的绝对高度,激光测距仪获得该点的相对高度,将绝对高度减去相对高度求出该点的地形标高;其次,将地面固定参照点的X、Y和地形标高数据Z输入Surfer软件之中,运用软件的等高线命令创建一个基于地面固定参考点系统的等高线图;最后,建构三维空间的矢量图形。

6.评价参数指标分析与构建系统

景观评价作为人们对景观对象的一种知觉判断,其结果往往会受到景观评价参数的制约。也就是说,评价参数指标系统构建得越完善、越科学,人们所获得的景观评价结果也就越正确。为此,景观评价指标系统的构建至少应考虑以下3个方面:一是景观评价主体对景观对象的偏好参数指标。也就是说哪些景观元素能引起评价主体的审美判断,以及什么样的审美判断。二是景观对象的元素组成、景观空间形态、组织类型、景观结构等参数指标。三是景观对象的客观参数指标和景观评价主体的偏好参数指标结合后形成的选择性评价参数指标。参数指标系统通常由参数系统和标准判断系统组成。前者是影响评价结果的主要指标,参数内容要具有代表性、典型性、全面性和客观性;后者则是将这些参数内容进行量化,以确定不同参数数值对应的评价结果,便于人们依据指标系统进行景观对象的定性评价。一旦在航拍技术的基础上编制完成特定景观项目的评价参数指标系统,接下来要做的就是将不同时间拍摄的影像资料进行对比分析,把结果填入参数指标系统,以获得对象的景观评价。这种比对方法用在景观对象的管理维护和监控中非常有效。而对于不同的景观对象来说,由于人们对景观对象的判断标准体系具有相对稳定性的特点,所以该指标体系的价值主要在于参考作用。如果将这种指标系统和逻辑判断编制成特定的应用程序,就可以简便而高效地完成景观评价参数的自动比对与判定。

三、结语

航空模型(尤其是直升机模型)具有以下突出特点:可以垂直起飞,易于景观场地的定位;体积小、飞行灵活,一定的承载力能满足日益小型化的照相、摄像器材和发射器的要求;起飞不受场地地形限制,便于地面人员的操控和地形匹配;价格低、可重复使用,大大降低飞行与测控成本。正是基于上述原因,1980年代以来,航空模型由航空模型比赛的竞技领域拓展到了景观规划、城市规划、文物保护、资源评价、生态监控等领域。在景观对象的评价中,特别是对景观资源的监控性评价来说,将航空模型和航空摄影技术结合起来进行景观鸟瞰数据的获取,借用图形与图像软件技术,可以获得更全面、准确的分析结果,更容易获得正确的景观评价。特别是随着数码摄影与照相技术、大容量数据存储技术、遥感控制技术、模型飞机动力技术、无线数据传输技术的发展,航空模型在景观评价中一定会发挥更大的作用。

[参考文献]

[1]

马瑞升,孙涵,林宗桂,等.微型无人机遥感影像的纠偏与定位[J].南京气象学报,2005(5):632.

[2]陈宇.景观评价方法研究 [J].室内设计与装修,2005(3):12.

[3]晏磊,吕书强,赵红颖,等.无人机航空遥感系统关键技术研究[J].武汉大学学报:工学版,2004(6):67.

[4]恩施州宏图勘测规划设计有限公司.无人机航测遥感系统技术集成方略[EB/OL].(2013-09-24)[2013-12-20].http:///index.php?_m=frontpage&_a=index.

航空测控技术范文第5篇

关键词 电力工程;无人机;航空摄影

中图分类号P231 文献标识码A 文章编号 1674-6708(2013)91-0189-02

0引言

随着我国社会科技的快速发展,社会经济的不断提高,电力工程的建设力度也在不断的加强。除特高压或跨区域电网等大型工程外,一般的火力发电厂的建设工程规模都不会太大,因此其具有路径较短、工期要求紧的特点。传统技术下为了能够对火力发电厂有所了解,拍摄的手续比较繁杂,且在进行拍摄的时候,还存在着风险大、成本高的问题。一般火力发电厂的建设投入很难满足这些要求,无人机航空摄影测量技术应运而生。

1电力工程中无人机航空摄影测量的概念

无人机航空空摄影测量是摄影测量中的一种特殊的方式,该种测量技术一般是在低空状态下进行拍摄,从而获取高清晰的数码影像。之后将拍摄到的影像采用数字摄影测量网格进行影像处理,再制成数字地图。该种方法具有方便、快捷以及准确等特点,解决了传统工程测量技术中地图成图比例不精确和测量时间长的缺点[1]。

2电力工程中无人机遥感摄影测量系统的组成

对于火电厂上空进行的航空摄影,本文主要探讨采用无人机遥感摄影测量系统的测量技术。该种遥感摄影测量系统主要由两部分组成,分别是遥感平台和传感器,即无人机和数码摄影相机。

2.1无人机

工程采用的无人机由中国航空工业集团与西北工业大学无人机研究所等多家单位联合研制。一般无人机的体型都较小,在空中的运作主要依靠计算机操控。无人机在天空飞行时,其工作参数如下:巡航空速达到每小时98km;在空中最大的飞行高度是海拔3600m;最大的承载力是在3.5G;在空中进行飞行的时间一般是在一个小时左右;在天空飞行时,其抗风能力是13m/s;起飞滑跑的距离不受到阻拦是在60m;在降落时不受到阻拦的滑跑距离是在150m;在地面进行通讯的距离如果没有受到电磁波干扰,一般是在15km[2]。

2.2数码摄影相机

目前在无人机上使用的数码相机主要是佳能EOS450D MarkⅡ(36*24mm),其畸变参数为k1=1.856600e-005,k2=-2.777889-006。无人机上摄影摄像机的相片参数是宽度为4272mm,长度为2848mm。图1是无人机低空摄影测量的系统的基本组成。

3测量区的摄影计划以及规划设计

利用无人机在对火力发电厂进行测量时,首先要将测量的范围以及测量时无人机在地面起降飞行的位置进行设计,这样才能够获得真实准确的的摄影图像和测量数值。

3.1测量区范围

在对火力发电厂利用无人机进行测量时,首先就要划分好火力发电厂的测量区域。一般在进行测量时,其测量范围从上空看时呈一个矩形状态,其四个角的坐标差距都不能够很大[3],便于无人机的飞行操控。在对淮南平圩电厂进行测量时,选择的四个点分别是3号点、4号点、17号点以及18号点。

3.2航带规划设计

无人机在空中进行飞行的时间一般是在一个小时左右,因此特别是在较大面积航摄时,航带规划显得尤其重要。这种情况下可以在无人机起降的位置设计两个飞行架次,在测量区域内规划好适当的飞行航带。当一架无人机完成了坐标上的前一部分航带飞行后,返回进行补给;另一架再将剩下的飞行航带完成,这样就可以获得整个火电厂的影像数据。两个架次的飞行时间一般在1.5h内完成。

4测量区控制网的建立以及调控

4.1测量区控制网的建立

当无人机在空中飞行时,需要在测量区内建立控制网。控制网建立时根据测量区域大小,布设适当密度的GPS控制点,点位分布均匀,根据实际需求采用适当的坐标系;在各控制点上获取准确的坐标位置,用于后期像控处理。

4.2测量区外控点的现场调控

在电力工程中采用无人机航空摄影测量技术进行拍摄时,其拍摄出来的影像数据和测量精度都是必须具有可靠性,拍摄时一般采用野外布置像控点的方式。对于控制点的选择,必须是要使得影像清晰,能够比较容易判断的立体测量方位。且在进行布置外控点时,要注意均匀性,这样才能够保证拍摄到的影像各处畸变均较小且没有瑕疵。

5结论

综上所述,采用无人机航空摄影测量技术进行电力工程测量,可以减少大量的人力物力,拍摄出来的影像真实、客观、准确。且采用无人机航空摄影测量,还具有速度快、成本低的技术优势,获取的影像数据可以应用到多项领域中去。实践表明,在电力工程中采用无人机航空摄影测量技术是值得推广和应用的。

参考文献

[1]赵晓光.基于视觉的小型无人直升机跟踪地面目标方法研究[A].第二届中国科学院博士后学术年会暨高新技术前沿与发展学术会议程序册[C],2010(1).