首页 > 文章中心 > 人工神经网络法

人工神经网络法

人工神经网络法

人工神经网络法范文第1篇

关键词:人工神经网络;BP算法;程序

中图分类号:TP183文献标识码:A文章编号:1009-3044(2008)05-00ppp-0c

1 引言

人工神经网络是一种信息处理系统,它有很多种模型。其中有一种用误差传播学习算法(Error Back-Propagation,即BP算法)进行训练的多层前馈神经网络,简称为BP网络。它是目前人工神经网络中应用最为广泛的网络,在文字识别、模式分类、文字到声音的转换、图像压缩、决策支持等方面都有广泛的应用。本文对BP算法进行简单的介绍,并给出其在VC++6.0中的实现方法。

2 BP算法的原理

2.1 BP网络的结构

BP网络是由一组相互连接的运算单元组成,其中每一个连接都有相对应的权值。网络结构如图1(以三层网络为例)所示,它包括输入层节点、输出层节点,一层或多层隐含层节点。在BP网络中,层与层之间采用全互连方式,同一层的节点之间不存在相互连接。

2.2 BP算法的原理

BP算法简单的来说,是把训练样本从输入层输入,通过每个节点对应的阈值、函数以及节点之间连接权值的运算,经过输入层、隐含层,传播到输出层得到计算输出,该输出和其对应的期望输出比较,得出误差。如果误差不符合要求,将误差沿输入相反的方向进行传播并沿误差降低方向调节权值和函数的阈值。用多个训练样本对网络进行反复的训练,直至误差符合要求。

2.3 算法中主要的数据结构和用到的公式

为方便说明,对算法中的主要数据结构做如下约定。网络为三层,P[m]为单个样本输入数据, m为输入向量维数,也等于输入层节点数;T[n]为单个样本期望输出数据,n为输出向量维数,也等于输出层节点数;W[h][m]为输入层至隐层权值,其中h为隐层节点数;V[n][h]为隐层至输出层权值;X[h]为隐层的输入;O[h]为隐层的输出;U[n]为输出层的输入;Y[n]为输出层的计算输出;YZH[h]为隐层的阈值;YZO[n]为输出层的阈值;DeltaO[n]为输出层一般化误差;DeltaH[h]为隐层一般化误差;E为预先设定的总体误差;η为学习速率参数;设隐含层和输出层的激活函数采用S型函数,即lxg02.tif。

算法中主要公式如下:

隐层第 个单元的输入:lxg03.tif(1)

隐层第 个单元的输出:lxg04.tif (2)

输出层第 个单元的输入: lxg05.tif (3)

输出层第 个单元的输出: lxg06.tif (4)

输出层单元 的一般化误差:DeltaO[i]=(T[i]-Y[i])?Y[i]?(1-Y[i]) (5)

隐含层单元 的一般化误差:lxg07.tif(6)

输出层至隐含层的权值调整:V[i][j]=η?DeltaO[i]?O[j] (7)

输出层阈值调整:YZO[i]=η?DeltaO[i] (8)

隐含层至输入层的权值调整:W[i][j]= η?DeltaH[i] ?P[j] (9)

隐含层阈值调整:YZH[i]=η?DeltaH[i] (10)

2.4 算法的描述

算法可描述如下:

(1)初始化:在小随机值上初始化连接权值和阈值;给出各层节点数、η、预定误差。

(2)输入训练样本集中一个样本。

(3)依据式1、2、3、4计算该样本的实际输出,和教师信号做比较,依据公式5和6分别求输出层单元和隐含层单元一般化误差。

(4)依据误差根据公式7、8、9、10分别调整输出层和隐含层的连接权和阈值。

(5)对训练样本集中所有样本重复2到4。

(6)训练次数加1。

(7)如果总误差小于预定值则执行8,否则对训练样本集返回2重复训练。

(8)记下权值和阈值,结束本次训练。

3 BP算法关键步骤在VC++6.0中实现

首先按照2.3所述定义数据结构,再定义一个放学习样本的结构:

struct {

double input[m];

double teach[n];

}Study_Data[N];

以下是实现算法公式的各个子程序:

/*初始化权、阈值子程序*/

initial()

{

srand( (unsigned)time( NULL ) );

for(int i=0;i

{

for(int j=0;j

W[i][j]= (double)((rand()/32767.0)*2-1);

}

for(int ii=0;ii

{for(int jj=0;jj

V[ii][jj]= (double)((rand()/32767.0)*2-1);

}

for(int k=0;k

{YZH[k=(double)((rand()/32767.0)*2-1);

}

for(int kk=0;kk

{YZO[kk]=(double)((rand()/32767.0)*2-1);

}

return 1;

}

/*第m个学习样本输入子程序*/

input_P(int m)

{

for (int i=0;i

P[i]=Study_Data[m].input[i];

return 1;

}

/*第m个样本教师信号子程序*/

input_T(int m)

{

for (int k=0;k

T[k]=Study_Data[m].teach[k];

return 1;

}

/*隐层各单元输入、输出值子程序*/

H_I_O(){

double sigma;

int i,j;

for (j=0;j

sigma=0.0;

for (i=0;i

sigma+=W[j][i]*P[i];

X[j]=sigma - YZH[j];

H[j]=1.0/(1.0+exp(-X[j]));

}

return 1;

}

/*输出层各单元输入、输出值子程序*/

O_I_O()

{

double sigma;

for (int k=0;k

sigma=0.0;

for (int j=0;j

sigma+=V[k][j]*H[j];

}

Y[k]=sigma-YZO[k];

O[k]=1.0/(1.0+exp(-Y[k]));

}

return 1;

}

/*输出层至隐层的一般化误差子程序*/

double d_err[n];

Err_O_H(int m)

{

double abs_err[n];

double sqr_err=0;

for (int k=0;k

abs_err[k]=T[k]-O[k];

sqr_err+=(abs_err[k])*(abs_err[k]);

d_err[k]=abs_err[k]*O[k]*(1.0-O[k]);

}

err_m[m]=sqr_err/2;

return 1;

}

/*隐层至输入层的一般化误差子程序*/

double e_err[h];

Err_H_I(){

double sigma;

for (int j=0;j

sigma=0.0;

for (int k=0;k

sigma+=d_err[k]*V[k][j];

}

e_err[j]=sigma*H[j]*(1.0-H[j]);

}

return 1;

}

/*输出层至隐层的权值调整、输出层阈值调整计算子程序*/

Delta_O_H(int m)

{

for (int k=0;k

for (int j=0;j

{V[k][j]+=a*d_err[k]*H[j];

YZO[k]+=a*d_err[k];

}

return 1;

}

/*隐层至输入层的权值调整、隐层阈值调整计算子程序*/

Delta_H_I(int m)

{

for (int j=0;j

for (int i=0;i

{W[j][i]+=b*e_err[j]*P[i];

}

YZH[j]+=b*e_err[j];

}

return 1;

}

/*N个样本的全局均方误差计算子程序*/

double Err_Sum()

{

double total_err=0;

for (int m=0;m

total_err+=err_m[m];

}

return total_err;

}

参考文献:

[1]徐勇,等,译.神经网络模式识别及实现[M].电子工业出版社,1999.

[2]戴葵,等,译.神经网络设计[M].机械工业出版社,2002.

[3]Berthold M,D J Hand,et al.Intelligent Data Analysis-An Introduction[M].Springer Berlin,1999.

收稿日期:2007-12-20

人工神经网络法范文第2篇

关键词:人工神经网络;分层递阶;可持续发展;评价模型

中图分类号:F062.4 文献标识码:A文章编号:1007-9599 (2011) 19-0000-01

Based on Artificial Neural Network Hierarchical Algorithm For Building A Sustainable Model of Evaluation

Deng Xiaozhen1,Zeng Yandan1,Guo Xianglan2

(1.Health School of Ganzhou in Jiangxi Province,Ganzhou341000,China;2.First Affiliated Hospital of Gannan Medical College,Ganzhou341000,China)

Abstract:The evaluation of regional sustainable development is a multi-factor,non-linear complex problems,the application of many ways.Artificial neural network(ANN)can approximate any complex nonlinear system with a better pattern recognition,adaptive learning and memory association capabilities.Neural network approach for the evaluation of sustainable development to solve complex nonlinear problems has provided a powerful tool.

Keywords:Artificial neural network;Hierarchical;Sustainable development;Evaluation model

一、人工神经网络的概述

人工神经网络(Artificial Neural Network,简称为ANN)是模仿生物脑结构和功能的一种信息处理系统,是一个高度复杂的非线性动力学系统[1]。网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。

二、对区域可持续发展评价的人工神经网络模型

(一)分层递阶的提出和优点

依据评价指标体系,分层分别建立区域可持续发展的人工神经网络评价模型,增加反馈次数,一方面可提高评价的可靠性,另一方面有利于分析子系统的发展情况。通过网络训练、泛化结果分析,表明用人工神经网络来分层递阶评价区域可持续发展是非常可行的。

(二)分层递阶评价BP神经网络模型

根据区域可持续发展评价体系可知,区域可持续发展系统含有四个子系统(社会保障系统、经济发展系统、资源系统和生态系统)、n(此文以23个为例)个指标因素。因此为便于认识区域系统及其子系统的可持续发展能力,分层梯阶建立人工神经网络。第一层是23个指标作为输入变量,经过隐层到四个子系统的评价指数为输出的人工神经网络评价模型,称为ANN评价模型一。第二层以4个子系统的评价指数作为输入,经过隐层到区域综合评价指数为输出的区域可持续发展指数人工神经网络评价模型,称为ANN评价模型二。

三、区域可持续发展评价的算法流程

首先根据指标调查咨询表数据结果依据指标筛选方法进行指标筛选,然后得到23个较优指标X1,X2…X23;然后再根据权重调查表按照指标权重方法处理得到权重数据;根据指标X1,X2…X23采集某区域历年的原始数据,再根据发展类计算公式和制约类指标计算公式进行归一化;利用归一化后的数据和23个指标权重经过加权平均公式得到子系统和综合评价指数;然后利用第一层和第二层ANN模型分别进行训练和仿真,此为分层递阶;最后对结果进行分析。为了直观了解评价算法具体过程,现拟出算法流程图如图1所示。

四、结论

对区域可持续发展评价模型的研究很多,其中人工神经网络(ANN)可以逼近任意复杂的非线性系统,具有较好的模式识别、自适应学习和记忆联想等能力。ANN以并行方式处理信息,运行速度快;以分布方式存储信息,容错性好。神经网络的方法为解决可持续发展评价等具有复杂非线性问题提供了有力的工具。本文不仅采用人工神经网络方法建立评价模型,而且另辟蹊径提出分层梯阶的方法分别建立两个基于人工神经网络区域可持续发展的评价模型。它以增加反馈次数不仅提高了评价的可靠性,而且有利于了解子系统的发展情况,这也是本文的一种创新的方法。

参考文献:

[1]张茂元,卢正鼎.基于李雅普诺夫函数的BP神经网络算法的收敛性分析[J].小型微机计算机系统,2004,25(1):93-95

人工神经网络法范文第3篇

【关键词】自组织神经网络;智能建筑管理;BP神经网络

1 基于自组织神经网络技术原理

基于大规模自组织神经网络技术[1]是在自组织神经网络技术和专家系统的基础原理运用多层数据融合弥补了单循环数据在智能建筑工程管理分析数据处理的不足和逻辑的缺陷学科.多跳自组织神经网络是智能传感器采集数据训练样本仿真学习模型即自动增速各个自组织神经元连接权阀值与感知识别隐式分布在整个网络结构体系中实现自组织神经网络模式记忆与信息处理应用.

2 基于大规模自组织神经网络在智能建筑管理中研究

2.1 基于多跳自组织神经网络在造价预测研究

基于大规模自组织BP神经模型应用40个高层智能建筑工程样本训练并用工程实例进行验证高精确性;而用大规模自组织神经网络模拟与输入层和隐含层加入了偏置自组织神经元来促进学习训练样本数据中有噪声、干扰等会造成过度学习现象,同时采用遗传优化算法进行建筑结构优化.基于BP神经在智能建筑工程估价中的应用“特征提取器”的运算大量过去的工程资料中自动提取工程特征与预算资料的规律关系数据.

2.2 基于大规模自组织神经网络在工程管理绩效评价中的应用

运用大规模自组织BP神经模型对工程管理绩效评价问题进行研究建立综合考虑工期、质量、费用、安全四大控制指标的工程管理绩效评价模型[2].实践证明,基于BP神经网络在运算工程管理绩效评估模型有利于多跳自组织神经网络预测工程工期、质量、成本、安全与绩效之间复杂的非线性关系来提高管理绩效的评价数据.

2.3 基于遗传算法模型在建设工程评标结构优化应用

基于多层神经网络的工作原理是先将输入信号传输到下一层节点运算函数处理后再将该节点的输出信息向下一层节点传输到信号传输到输出层节点为止.同时运用遗传算法模型构造及算法设计进行方案优劣排序、换位矩阵以及能量函数构造、大规模自组织神经元之间连接和输出,并用实例说明了该方法的优越性和实用性与非线性.

2.4 基于BP神经网络模型在建设工程招投标管理应用研究

基于BP神经网络多层数据融合多跳自组织神经网络技术原理分析自动预测工程招投标的招标价格和风险因素分析以及竞标单位资格审查等方面的应用指出多跳自组织神经网络具有的高度并行处理和可完成复杂输入输出的非线性映射组合结构,不仅可以保证高的中标率,且可避免招标过程中不确定性因素的影响.运用大规模自组织神经网络的工程承包招投标报价的研究,提出了一个多因素确定高层智能建筑投标报价的大规模自组织模型影响报高率的诸多因素,并确定了其权值即确定了用BP神经网络实施黑箱操作的样本输入值和目标值再通过训练样本自主调整修正输入节点和输出节点间的联系得出符合各种情况要求的权值矩阵算法.

2.5 基于智能建筑算法模型研究

基于BP神经网络是以训练样本算法即误差反向传播算法即BP神经算法的学习过程分为信息的正向传播和误差的反向传播[1],其通过训练样本前一次迭代的权值和阈值来应用神经网络技术的第一层向后计算各层大规模自组织神经元的输出和最后层向前计算各层权值和阈值对总误差的梯度进而对前面各层的权值和阈值进行修改运算反复直到神经网络样本收敛 BP神经网络输入向量为

X=( )T;隐含层输出向量为Y=( )T;输出层的输出向量为O= )T;期望输出向量为 ;输入层到隐含层之间的权值矩阵 ,其中列向量 为隐含层第j个大规模自组织神经元对应的权向量;隐含层到输入层之间的权值矩阵 ,其中列向量 为输出层第k个大规模自组织神经元对应的权向量.各层信号之间的算法结构为:

以上式中的 均为S类型函数, 的导数方程为: (5)

神经网络输出与期望输出的均方误差为: (6)

则训练样本输出层和隐含层的权值调整量分别为:

式中: 为比例系数,在模型训练中代表学习速率.如果BP自组织神经网络有 个隐含层,各隐含层节点分别记为 ,各隐含层输出分别记为 ,则各层权值调整计算公式分别如下:

输出层

综合上述预测分析在BP神经学习算法运用各层权值调整公式均由学习速率、本层输出的误差信号和本层输入数字离散信号决定在训练样本学习的过程受决策环境复杂程度和训练样本的收敛性即需要增大样本量来提高网络技术所学知识的代表性应注意在收集某个问题领域的样本时,注意样本的全面性、代表性以及提高样本的精确性,增大抗干扰噪声,还可以采用其他方法收集多层训练样本数据.

3 结束语

自组织神经网络技术应用在智能建筑管理领域是在多层智能传感器等多种信息技术飞速发展的多学科交叉研究领域得到广泛应用.

参考文献:

[1]周小佳.电力系统可靠性神经网络模型及实现研究[D].博士学位论文,1997.

[2]胡保清等.神经网络在土木工程领域的应用[J].低温智能建筑,2004(2).

作者介绍:

人工神经网络法范文第4篇

【关键字】 网络安全 神经网络 鱼群算法 评价

目前应用较广泛的BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了解决上述问题,本文应用鱼群算法对BP神经网络进行了改进,结合网络安全评价实例进行了测试,并将测试数据与标准BP神经网络进行了比较与分析,取得了理想的结果。

一、基本BP神经网络算法

BP神经网络算法是一种采用误差反向传播的多层前馈感知器。其特点是具有分布式的信息存储方式,能进行大规模并行处理,并具有较强的自学习及自适应能力。BP网络由输入层(感知单元)、计算层(隐藏层)、输出层三部分组成。输入层神经元首先将输入信息向前传递至隐含层节点,经过激活函数预处理后,隐层节点再将输出信息传送至输出层得到结果输出。输入层与输出层节点的个数取决于输入、输出向量的维数,隐含层节点个数目前并没有统一的标准进行参考,需通过反复试错来确定。

二、人工鱼群算法

2.1基本原理

人工鱼群算法是指通过长期对鱼类觅食行为的观察,构造人工鱼来模拟鱼类的觅食、群聚、尾随以及随机行为,从而完成全局最优值的寻找。算法所包含的基本过程如下:觅食行为:鱼类会利用视觉或嗅觉来感知水中食物浓度的高低,以此来选择觅食的路线。聚群行为:鱼类一般会以群体形式进行觅食,以此来躲避天敌的伤害并以最大概率获得准确的觅食路线。尾随行为:当群体中的某条鱼或几条鱼寻找到食物后,其附近的其他同伴会立刻尾随而来,其他更远处的鱼也会相继游过来。随机行为:鱼在水中的活动是不受外界支配的,基本上处于随机状态,这种随机性有利于鱼类更大范围的寻找食物及同伴。

2.2鱼群算法优化BP神经网络的原理

BP神经网络在求解最优化问题时容易陷入局部极值,并且网络的收敛速度较慢。鱼群算法通过设定人工鱼个体,模拟鱼群在水中的觅食、尾随和群聚行为,通过个体的局部寻优,最终实现全局寻优。人工鱼在不断感知周围环境状况及同伴状态后,集结在几个局部最优点处,而值较大的最优点附近一般会汇集较多的人工鱼,这有助于判断并实现全局最优值的获取。因此用人工鱼群算法来优化BP神经网络是一种合理的尝试。

2.3具体工作步骤

①设定BP神经网络结构,确定隐层节点数目;②设定人工鱼参数,主要包括个体间距离、有效视线范围以及移动步长等;③人工鱼进行觅食、群聚及尾随行为来优化BP神经网络;④通过设定的状态参量,判断是否达到目标精度;⑤若达到精度要求则输出网络优化权值,并执行网络循环,否则继续改化参数进行优化;⑥输出最终优化参数并进行计算机网络安全评价。

三、实验与结果比较

将网络安全的17项评价指标的分值作为BP神经网络的输入,网络的期望输出只有一项,即安全综合评价分值。BP神经网络需要一定数量的已知样本来训练,然后才能用训练好的网络进行评价。目前用于网络安全综合评价的数据还很少,本文采用的是文献[3]里面的15组数据,其中将1~10项用作网络训练,11~15项用作仿真输出。

算法用Matlab语言实现。通过实验分析,本文将网络隐含层节点数设为5,权值调整参数α=0.1,阈值调整参数β=0.1,学习精度ε=0.0001。网络经过2000次训练,收敛于所要求的误差,然后对检验样本及专家评价样本进行仿真,结果如表1所示,可以看出,鱼群神经网络模型进行计算机网络安全评价中的平均误差较小,仅为2.13%,仿真值与标准输出值非常接近,说明鱼群神经网络对网络安全评价有很好的泛化和拟合性;而标准BP神经网络预测结果的平均误差为4.96%,预测值与实际值偏离较大,说明标准BP神经网络在网络安全评价中拟合性不好,测试效果不佳。

人工神经网络法范文第5篇

关键词人工神经网络;发展;应用

中图分类号:TP183 文献标识码:A 文章编号:1671-7597(2014)12-0003-01

随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。

1人工神经网络概述

关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。

2人工神经网络的发展历程

2.1 萌芽时期

在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。

2.2 低谷时期

在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。

2.3 复兴时期

美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。

2.4 稳步发展时期

随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。

随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。

3人工神经网络的应用

3.1 在信息领域中的应用

人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。

3.2 在医学领域的应用

人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。

3.3 在经济领域中的应用

经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。

3.4 在其他领域的应用

人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。

4总结

随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。

参考文献

[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.

[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.

[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.