首页 > 文章中心 > 化工废水处理

化工废水处理范文精选

化工废水处理

化工废水处理范文第1篇

[论文摘要]焦化废水是一种典型的难降解有机废水。介绍了预处理技术,二级处理技术的物化法、生物法、化学法和循环利用法的应用和研究进展及优缺点。

焦炭是高耗水产业,每年全国焦化废水的排放量约为2.85亿t。焦化废水是煤在高温干馏过程中以及煤气净化、化学产品精制过程中形成的废水,水质随原煤组成和炼焦工艺而变化,是一种典型的难降解有机废水。其成分复杂,毒性大,它的超标排放对人类、水产、农作物都可构成很大的危害。总之,焦化废水污染,是工业废水排放中一个突出的环境问题,也是摆在人们面前的一个急需解决的课题。

目前焦化废水一般按常规方法先进行预处理,然后再进行生物脱酚二次处理。但往往经上述处理后,外排废水中COD、氰化物及氨氮等指标仍然很难达标。针对这种状况,近年来国内外出现了许多比较有效的焦化废水治理技术。这些方法大致分为物化法、生物法、化学法和循环利用等4类。

一、焦化废水的预处理技术

焦化废水中部分有机物不易生物降解,需要采用适当的预处理技术。

常用的预处理方法是厌氧酸化法。这是一种介于厌氧和好氧之间的工艺,其作用机理是通过厌氧微生物水解和酸化作用使难降解有机物的化学结构发生变化,生成易降解物质。焦化废水经厌氧酸化预处理后,可以提高难降解有机物的好氧生物降解性能,为后续的好氧生物处理创造良好条件。

二、焦化废水的二级处理技术

(一)物理化学法

(1)吸附法

吸附法处理废水,就是利用多孔性吸附剂吸附废水中的一种或几种溶质,使废水得到净化。常用吸附剂有活性炭、磺化煤、矿渣、硅藻土等。这种方法处理成本高,吸附剂再生困难,不利于处理高浓度的废水。

(2)利用烟道气处理焦化废水

由冶金工业部建筑研究总院和北京国纬达环保公司合作研制开发的“烟道气处理焦化剩余氨水或全部焦化废水的方法”已获得国家专利。该技术将焦化剩余氨水去除焦油和SS后,输入烟道废气中进行充分的物理化学反应,烟道气的热量使剩余氨水中的水分全部汽化,氨气与烟道气中的SO2反应生成硫铵。

该方法投资省,占地少,以废治废,运行费用低,处理效果好,环境效益十分显著,是一项十分值得推广的方法。但是此法要求焦化的氨量必须与烟道气所需氨量保持平衡,这就在一定程度上限制了方法的应用范围。

(二)生物处理法

生物处理法是利用微生物氧化分解废水中有机物的方法。目前,活性污泥法是一种应用最广泛的焦化废水好氧生物处理技术。这种方法是让生物絮凝体及活性污泥与废水中的有机物充分接触;溶解性的有机物被细胞所吸收和吸附,并最终氧化为最终产物(主要是CO2)。非溶解性有机物先被转化为溶解性有机物,然后被代谢和利用。

生物法具有废水处理量大、处理范围广、运行费用相对较低等优点,但是生物降解法的稀释水用量大,处理设施规模大,停留时间长,投资费用较高,对废水的水质条件要求严格,这也就对操作管理提出了较高要求。

(三)化学处理法

(1)焚烧法

焚烧法治理废水始于20世纪50年代。该法是将废水呈雾状喷入高温燃烧炉中,使水雾完全汽化,让废水中的有机物在炉内氧化,分解成为完全燃烧产物CO2和H2O及少许无机物灰分。

焚烧处理工艺对于处理焦化厂高浓度废水是一种切实可行的处理方法。然而,尽管焚烧法处理效率高,不造成二次污染,但是处理费用昂贵使得多数企业望而却步,在我国应用较少。

(2)催化湿式氧化技术

催化湿式氧化技术是在高温、高压条件下,在催化剂作用下,用空气中的氧将溶于水或在水中悬浮的有机物氧化,最终转化为无害物质N2和CO2排放。湿式催化氧化法具有适用范围广、氧化速度快、处理效率高、二次污染低、可回收能量和有用物料等优点。但是,由于其催化剂价格昂贵,处理成本高,且在高温高压条件下运行,对工艺设备要求严格,投资费用高,国内很少将该法用于废水处理。

(3)化学混凝和絮凝

化学混凝和絮凝是用来处理废水中自然沉淀法难以沉淀去除的细小悬浮物及胶体微粒,以降低废水的浊度和色度,但对可溶性有机物无效,常用于焦化废水的深度处理。该法处理费用低,既可以间歇使用也可以连续使用。

(4)臭氧氧化法

臭氧的强氧化性可将废水中的污染物快速、有效地除去,而且臭氧在水中很快分解为氧,不会造成二次污染,操作管理简单方便。但是,这种方法也存在投资高、电耗大、处理成本高的缺点。同时若操作不当,臭氧会对周围生物造成危害。因此,目前臭氧氧化法还主要应用于废水的深度处理。在美国已开始应用臭氧氧化法处理焦化废水。

(5)光催化氧化法

目前,这种方法还仅停留在理论研究阶段。这种水处理方法能有效地去除废水中的污染物且能耗低,有着很大的发展潜力。但是有时也会产生一些有害的光化学产物,造成二次污染。由于光催化降解是基于体系对光能的吸收,因此,要求体系具有良好的透光性。所以,该方法适用于低浊度、透光性好的体系,可用于焦化废水的深度处理。

(6)电化学氧化技术

电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或利用电极表面产生的强氧化性活性物质使污染物发生氧化还原转变。目前的研究表明,电化学氧化法氧化能力强、工艺简单、不产生二次污染,是一种前景比较广阔的废水处理技术。

(四)废水循环使用

高浓度的焦化废水经过脱酚,净化除去固体沉淀和轻质焦油后,送往熄焦池以供熄焦,实现酚水的闭路循环。从而减少了排污,降低了运行等费用。但是此时的污染物转移问题也值得考虑和进一步研究。

三、结语

总之,我们应根据焦化废水的特点,深入研究先进的处理技术,寻求既高效又经济的处理方法,降低运行费用,提高达标率,改善环境质量,减轻焦化废水对各地水体的污染,实现水资源的循环利用。这既是当前经济建设需要解决的现实问题,也是未来技术攻关所需要面对的的重点。

参考文献:

化工废水处理范文第2篇

[关键词]精细化工废水;物化预处理工艺;可生化性

1引言

近年来随着我国农业和工业的迅速发展,人民的生活中涉及到精细化工用品的使用也愈发频繁。随着社会需求的不断提高,精细化工企业近年来也不断发展,而我国新兴的精细化工企业在“十二五”的推动下快速涌现,现有企业也逐步推进产业结构优化升级改造,实现了产品精细化率稳步提升和产业集中度提高。精细化工产品在不断改善群众生活,但伴随而来的是精细化工企业生产过程中造成的环境污染日益严重,尤其是生产过程中排放的废水对生态环境造成极其严重的影响[1]。由于精细化工生产过程中产品的多样性和精细性,其生产废水具有成分复杂、色度大、毒性较强、盐分较高以及成分不易鉴别等因素,从而导致其可生化性较低,直接进入生化系统容易导致生化系统崩溃[2]。因此,在精细化工废水预处理阶段,不仅要有效的去除废水中的污染物,还要进一步提高废水的可生化性,以便后续废水的生化降解。近年来,精细化工废水的处理技术在不断的摸索与创新中前行,在众多精细化工废水处理研究中多采用物化处理工艺对高浓度有机废水预处理后,再进行后续的生化处理。

2单一物化预处理工艺

2.1电催化氧化法。电催化氧化作为工业废水处理领域的一种有效的方法,能够通过自动化的方法有效降解和氧化机化合物。电催化氧化的优点是使用了清洁的试剂-电子,处理过程中不需要添加化学物质,因此不产生二次污染。HongWang[3]等采用TiO2/碳电催化膜为阳极,不锈钢网为阴极的电催化膜反应器处理含酚废水。以苯酚和浓度为15g/L的电解质(Na2SO4)混合制备合成苯酚废水为原料。采用FESEM、XPS、循环伏安法(CV)和高效液相色谱(HPLC)对电催化膜、苯酚浓度和降解中间体进行了表征和分析。结果表明,反应器处理2.0mM含酚废水2h后,苯酚的去除率约为99.4%,TOC的去除率约为86.3%。YonghaoZhang[4]采用新型多孔管电极电催化反应器对含5-氟-2-甲氧基嘧啶的实际抗癌药物废水进行处理。通过单因素实验研究运行参数对反应器性能的影响,研究结果表明,最优条件是流量的0.31L/min,pH值5.0,电流密度5mAcm-2。此时废水中COD和5-氟-2-甲氧基嘧啶去除率分别为84.1%和100%。同时废水的BOD5/COD值和EC50,48h分别从0.14和16.4%提高到0.53和51.2%,可生化性明显提高。综上,采用电催化氧化法对精细化工废水处理,不仅能有效去除废水中的特征污染物,同时也可以提高废水的可生化性。

2.2铁碳微电解法。铁碳微电解,又称内电解、零价铁法,是一种有效的难降解有机污染物预处理技术。其基本原理是利用铁屑内部含有的铁和炭形成微原电池,从而将难降解有机物还原成易降解有机物[5]。HefaCheng[6]等对铁碳微电解法处理三嗪浓缩废水的参数选择问题进行了研究。研究结果表明,采用铁屑和颗粒活性炭进行内部微电解,当含铁量/含气量/废水体积比为3︰2︰490,喷雾比(空气流量与废水体积之比)为2︰490min-1时,废水中的COD去除率高达60.5%,同时废水的可生化性也较大幅度提高,为后续的生化系统的运行提供了保证。2.3芬顿氧化法芬顿氧化法是一种高级氧化技术,在处理难降解和外源有机化合物的废水中得到了广泛的研究。连续运行的芬顿氧化过程中废水中的有机物发生的反应如下所示[7]。H2O2+Fe2+→Fe3t+OH-+OH•k=70M-1s-1(1)OH•+RH→CO2+H2Ok=109-1010M-1s-1(2)R•+Fe3+→R++Fe2+(3)H2O2+Fe(OH)3→H2O+O•+Fe(OH)3(4)S.Karthikeyan[8]等研究尝试用均相和非均相Fenton系统降解纺织废水中的有机污染物。在间歇和连续操作条件下进行单因素实验。考察了时间、pH、H2O2浓度、FeSO4.7H2O浓度和介孔活性炭质量等因素对废水中有机物降解的影响。测定了废水中有机物氧化的动力学常数和热力学参数。研究了废水中COD、BOD和TOC的定量去除效果。通过FT-IR、紫外-可见光谱和循环伏安法证实了对纺织废水中大分子有机物的降解,降低废水的毒性,从而使得废水的可生化性得到提高。综上所述,采用物化预处理工艺可以明显提高废水的可生化性,降低废水的毒性,避免浓度过高或者毒性过强的废水进入生化系统,从而导致生化系统不正常运行及出水指标过高等问题。

3组合物化预处理工艺

随着国家对废水排放标准提高,单一的废水预处理技术已经逐渐满足不了精细化工企业的生产要求。针对水质复杂、有机负荷高、难降解物质多的精细化工废水,现阶段一般采用组合工艺对该类进行物化预处理。从而削弱废水中有毒有机物对微生物的抑制能力,提高废水的可生化性,节省废水处理成本。

3.1铁炭微电解法和芬顿氧化组合工艺铁炭微电解具有应用范围广、操作成分低等优点,但同时微电解的出水中往往含有Fe2+离子容易造成二次污染[9],此时,在微电解的出水中加入H2O2,发生芬顿反应产生羟基自由基,能够达到降解有机废水的目的。因此可以将微电解和芬顿氧化串联使用,不仅可以在很大程度上减少废水中的污染物,还能降低处理的成本。

3.2铁炭微电解和电催化氧化组合工艺。单一铁炭微电解处理高浓精细化工废水时,铁屑的表面经过长时间浸泡容易产生一层氧化膜,从而使得铁炭微电解处理效果不佳,此时可以引入电催化氧化,进一步去除废水中的COD并提高废水的可生化性[10]。程鹏[11]通过单因素和正交实验对铁炭微电解和电催化氧化的组合工艺进行工艺条件的筛选,研究表明当铁炭量为80g/L、槽间电压为20V、反应时间为60min、电解质用量为1g/L以及pH=2时,化工清洗废液COD去除率达58%左右。因此,采用铁炭微电解和电催化氧化组合工艺可以明显改善水质,将高浓度的有机废水处理成为低浓废水,使其能在生化系统进一步处理,从而达到达标排放的目的。综上所述,采用组合物化预处理可以避免部分单一预处理所来来的二次污染以及长时间运行处理效率不佳等问题,并且能够进一步去除废水中大分子有机污染物,提高废水的可生化性,使得物化出水满足生化系统运行要求。

4现状与展望

化工废水处理范文第3篇

本文作者:董晓静1赵红宁2曹偲佳3作者单位:1上海市青浦区徐泾水务管理所2上海市青浦区环境监测站3上海市青浦区白鹤水务管理所

混合化工废水处理常规的生物处理方法有A/O工艺[27-28]、A2O工艺及CASS工艺,这些工艺的选用与化工废水的性质息息相关。但随着综合化工园区废水处理技术的发展,也出现了一些高效、运行管理简单和占地面积小的工艺。如生物膜法、固定化细胞技术和引入高效微生物的方法等。

膜生物反应器综合了生物处理和膜分离技术的优势,具有工艺简单、出水水质好、运行稳定和节省占地等优点。方焘育[29]等利用平板膜生物反应器对江苏某化工园区的废水进行小试,以探索一种可以缓解该园区由于企业增多、废水产生量日益增大同时土地面积越来越紧张等问题的处理方案。结果表明,平板膜生物反应器在出水水质、处理效率、抗冲击负荷、占地面积等方面具有很大优势,但受膜制造技术的限制,该方法投资及运行成本较高,目前仅适用于对出水水质和占地面积有严格要求的中小规模污水厂。

固定化细胞技术是在固定化酶技术的基础上发展而来的,是指通过化学或物理手段,将筛选分离出的适宜于降解特定废水的高效菌株,或通过基因工程技术克隆的特异性菌株进行固定化,使其保持活性并反复利用。具有微生物浓度高、反应速度快等优点。目前,研究者在固定化细胞的载体、固定化细胞技术处理氨氮废水和难降解的化工废水等方面取得了进展。

目前也有研究者将高效微生物引入传统的生物处理工艺来处理综合化工废水。如冯平等[31]将专利HSBEMBM高效微生物(用于处理焦化废水的高效微生物制剂)应用于传统A/O工艺生物脱氮单元,用来处理湖北农化集团的化工综合废水(COD为1000mg/L;BOD5为350mg/L;SS含量250mg/L;NH3-N含量160mg/L)。废水成分复杂,与焦化废水成分类似,含有高浓度氨氮、有机物、石油类和少量酚、氰等有害物质。系统运行下来,废水处理成本为2.318元/m3,低于同类行业的处理成本,出水水质可达到污水综合排放标准(GB8978-1996)的一级标准,出水氨氮保持在15mg/L以下,在线监测出水氨氮含量平均为0.4mg/L;COD可降至100mg/L以下,在线监测COD平均为35mg/L。系统运行稳定,产生的污泥沉降性能好,剩余污泥量少。

化工废水处理范文第4篇

关键词:技术状况定量分析对策剖析

废水处理是防治水环境污染的重要技术措施之一,废水处理技术水平的高低将直接影响一个地区的水环境质量。本文以我国城市污水处理情况为基础,试从排污系统建设、废水治理设施以及废水处理效果等诸方面,对其作一技术剖析评价,以便对国内外废水处理技术状况有一量化概念,为提高我国的废水处理技术水平,促进经济与环境的协调发展提供技术参考。

1.排污系统建设

1.1排污管道总长度

排污系统是城市基础设施建设的一个组成部分,也是废水集中处理的前提。近十年来,随着我国经济的快速增长和城市规模的扩大,排污系统建设已初具规模。全国现有的大小城市均建有一定规模的排污系统,排污管道总长度(含污水管和雨水管,下同)已从1989年的5.45万公里上升为1998年的12.59万公里,增长了1.31倍(见图1),是1980年的5.49倍,是建国初期的12.47倍(有关数据不包括香港、澳门、台湾,下同)。

1.2排污管网密度

以城市市区面积计,1998年我国城市排污管网密度为0.075km/km2。按国家统计局的划分方法计,我国东部城市排污管网密度为0.170km/km2,中部城市为0.053km/km2,西部城市仅为0.026km/km2;其中,城市排污管网密度最高的是上海,为1.775km/km2,北京次之为0.869km/km2,分别是全国平均水平的23.7倍和11.6倍。

1.3人均排污管道长度

按国家统计局的统计口径,以城市非农人口计,我国城市人均排污管道长度为0.63米,是1980年的2.6倍,是建国初期的4.5倍。人均排污管道长度历年变化情况见图3。

1.4比较

与发达国家相比,我国城市排污管网的建设尚处在很低的水平上,无论是排污管道总长度、排污管网密度,还是人均排污管道长度,均存在着较大差距。

以联邦德国为例,尽管其国土面积只是我国的1/27,但1995年其排污管道总长度已达39.50万公里,是我国的3.14倍;以辖区内全部面积计算,排污管网密度已从1979年的0.74km/km2上升到1995年的1.11km/km2;人均排污管道长度达到4.84米,其中,1992年至1995年间,每新接纳一个居民的废水,平均需新建排污管13.37米;居民接管率从1979年的84.5%上升到1995年的92.2%,即占全国人口总数92.2%的居民的生活废水已纳入排污管网,其中10万人以上的大城市居民接管率超过98%,小于2000人的村庄居民接管率也已达70%。

2.废水处理设施

2.1废水排放量

从总体上看,近十年来全国废水排放总量没有多大变化,一直维持在350亿吨左右,但生活污水所占的比例上升很快,已从1989年的28.6%提高到1998年的53.2%,超过了工业废水排放量。其中,东部、中部和西部城市生活污水排放量分别占全国生活污水排放总量的55.7%、31.2%和13.1%。

2.2废水处理规模

兴建废水治理设施是削减污染负荷,防治水环境污染的关键。为解决严重的水环境问题,近年来,我国加快了废水治理设施的建设,在工业废水处理率不断提高的同时,城市污水处理能力增长速度也较快。1998年,我国城市污水处理能力已经达到1583.3万吨/日,是1985年的10.3倍,平均每年递增19.6%。其中,东部、中部和西部城市污水处理能力分别占69.6%、19.0%和11.4%。但目前仍有江西、西藏、青海和宁夏四个地区尚无城市污水处理能力。全国城市污水处理能力历年变化情况见图6。

2.3废水处理工艺

目前,我国共有266个城市污水处理厂投入正常运行。其中,绝大多数城市污水处理厂都采用运行稳定、操作简便、处理费用低廉的生化处理工艺,包括普通活性污泥法、接触氧化法、氧化沟法、ab法以及sbr法等,只有少数城市污水处理厂因其实际情况而选用物理或物化的方法处理废水。按废水处理能力划分,目前采用各种生化处理工艺处理的城市污水约占其处理总量的92%。

2.4废水处理率

以城市污水处理厂实际处理的生活污水量与生活污水排放总量之比,作为城市生活污水集中处理率来进行评价。1998年我国城市生活污水集中处理率仅为10.3%(见图7);其中,北京生活污水集中处理率最高,为40.3%,天津、云南次之,分别为37.2%和34.3%。从统计结果看,西部城市生活污水集中处理率高于全国平均水平,这与云南生活污水集中处理率较高以及西部城市生活污水排放量较低有很大关系。

2.5比较

从总体上看,我国城市污水处理尚处在起步阶段,城市污水处理率还很低。

联邦德国1898年便开始建设城镇污水处理设施,现有规模大小不等的城镇污水处理厂10390个,废水处理能力达1.506亿居民当量,相当于日处理废水3000万吨,是其全部居民生活污水排放量的1.92倍。其中,大中型污水处理厂虽仅占总数的13.1%,但其废水处理能力却达到1.24亿居民当量,占全部废水处理能力的82.1%。1995年联邦德国居民生活污水处理率已达89.0%,其中,原东、西德地区分别为70.0%和93.5%,即占全国人口总数89.0%的7269万居民的生活污水已在各类污水处理厂得到净化处理。

现在,世界各国都很重视水环境污染防治,并投入大量财力建设城镇污水处理厂,从而提高了生活污水处理率,减轻了对水体的污染。有关国家生活污水处理情况对比见图8,其中,中国为城市生活污水处理率。

3.污水处理效果

3.1排水水质状况

1998年,全国266个城市污水处理厂共处理污水29.27亿吨,其中工业废水9.28亿吨。由于目前城市污水处理厂主要集中在中等以上城市,且具有一定的规模,从总体上看,运行比较稳定,处理效果较好。全年平均进水cod浓度为336.4mg/l,出水cod浓度为83.3mg/l,去除率达75.2%,削减cod74.07万吨。全国城市污水处理厂的运行成本平均为0.367元/吨污水,去除每公斤cod花费1.451元。

3.2废水深度处理

几年前,我国城市污水处理厂的设计主要考虑的还是去除碳类有机污染物,但随着环境标准和水环境保护要求的提高,目前正逐步开展城市污水的脱氮脱磷等深度处理。所采用的方法也主要是生物脱氮和化学脱磷,但进行脱氮脱磷处理的生活污水占城市污水的比例还很低。

3.3剩余污泥处置

剩余污泥的处理也是城市污水处理中的一个重要环节,目前我国处置剩余污泥的主要途径是填埋,且大多数是与城市垃圾一并进行填埋处置,只有一小部分是焚烧处理。需要指出的是,约一半以上的剩余污泥未经稳定、消化处理,这不仅使其在农林方面的利用受到限制,也增加了污泥处置的费用。

3.4比较

从总体上看,我国现有城市污水处理厂废水处理效果较好,但脱氮脱磷处理的比例低,剩余污泥的处置不够安全。

1995年,联邦德国城镇污水处理厂所排放的废水中,cod浓度小于50mg/l的占废水总量的80.1%,bod浓度小于10mg/l的占87.5%;处理后废水平均浓度为cod41mg/l、bod7mg/l,耗氧等级为1.9;营养物质浓度也很低,总氮、总磷平均浓度分别为18mg/l和1mg/l,污水处理厂尾水的排放对水体的影响已很轻微。德国历年污水处理厂排水情况见图9。

近年来,由于严格控制大气污染物的排放和填埋技术的进一步发展,欧洲各国污泥处置情况发生了一些变化,目前以填埋和农用为主,焚烧处理的比例已大幅下降。

4.对策建议

从以上剖析可见,我国城市污水处理的技术状况与发达国家差距较大。而要真正解决我国的水环境污染问题,笔者认为,在城市污水处理技术方面,必须做好以下几点工作。

4.1设计规范化

目前,城市污水处理厂的设计往往以日处理污水量为主要依据,但由于污水浓度不同,同等规模的污水处理厂实际需处理的污染物量则可能相差数倍。这不仅增加了设计的工作量,不便于进行工程投资对比分析,也给污水处理能力的综合评价带来困难。因此,应以需处理的污染物量作为衡量污水处理厂规模的标准,并依此规范城市污水处理厂的设计。国家有关部门应组织力量,按处理不同的污染物量编制污水厂标准设计图集,如日处理cod5吨、10吨、25吨等不同等级的污水处理厂的标准设计,从而规范城市污水处理厂的设计,减轻具体工程的设计工作量,并为污水处理厂的运行管理创造良好条件(联邦德国在这方面有许多经验可供借鉴)。与此同时,还应注意开发适合中国国情的城市污水处理技术,即投资低、运行费用低、管理要求低的城市污水处理技术,并及时予以推广。

4.2产品标准化

产品的标准化对于推动一个行业的发展有着十分积极的意义。正是由于城市污水处理厂的设计往往厂厂而异,因而不少城市污水处理厂的好多设备都是非标设备。这既增加了工程建设投资,延误了工期,也不便于设备的维修保养和更换,还在一定程度上制约了环保产业的发展。因此,必须切实抓好城市污水处理厂设备的标准化工作,并着力解决城市污水处理厂主要设备的国产化问题。大到充氧、提升、搅拌、过滤等设备,小到格栅、阀门等产品都应形成系列标准,以便不同处理规模的污水处理厂挑选使用。

4.3投资多元化

我国现有的城市污水处理厂几乎都是由当地政府投资兴建的,要在较短时间内大规模地新建、扩建城市污水处理厂,从而控制和改善水环境质量,单靠地方财政的力量显然是很不够的。因此,在保证地方财政一定投入、继续做好利用外资工作的同时,应制定相关的政策,鼓励各类企业乃至个人对城市污水处理厂这个社会公益性的事业进行投资。如利用工厂企业的废水处理设施同时处理城市污水,企业投资建设所在社区的污水处理厂,房地产开发时一并完成排污管网的建设等等。

4.4运营专业化

城市污水处理厂运营管理的水平高低将直接关系到其排水水质的好差。我国现有的城市污水处理厂所处理的污水只占设计能力的3/4,一些城市污水处理厂的排水水质波动较大,这某种程度上也反映出运营管理的问题。因此,应努力提高城市污水处理厂运营管理的专业化水平。要加强对污水厂运营管理人员尤其是负责人的技术培训,提高其业务能力,要组织开展城市污水处理技术的交流和研讨,加速推广先进和成熟的技术,从而提高运营管理的总体水平。

总体而言,我国的城市污水处理起步较晚,也还存在着不少问题。但由于国家高度重视环境保护工作,只要我们认清形势,积极采取切实有效的措施,我国的城市污水处理就一定会得到长足的进步,从而逐步控制和改善水环境质量,促进国民经济的持续发展。

参考文献

1.国家环境保护总局.环境统计年报1998,北京:1999,5

2.国家统计局.中国统计年鉴1999,北京:中国统计出版社,1999

3.国家统计局城市社会调查总队.中国城市统计年鉴1996,北京:中国统计出版社,1996

4.berndesch,sabinethaler:abwasserentsorgungindeutschland-statistik;korrespondenzabwasser,1998,45(5)

5.statistischsbundesamt:oeffentlichwasserversorgungundabwasser-beseitigung1995;vorlaeufigeergebniss;unveroeffentlicht;oktober1997

化工废水处理范文第5篇

1含油废水的处理

含油废水面广量大,钢铁工业的压延、金属切削、研磨,以及石油炼制及管道运输等都产生含油废水,处理含油废水的目的主要是除油同时去除COD及BOD.膜分离技术在含油废水处理中的研究与应用相当广泛,主要是采用不同材质的超滤膜和微滤膜来处理。

唐燕辉等利用自行设计、组装的膜处理装置,考察了多种制膜方法,实验表明用加压制膜法制备的超滤膜(A4膜),分离机械加工排放的含油污水时,可以使CODCr从728.64mg/L降至87.8mg/L,含油质量浓度从5000mg/L降至2.5mg/L,脱除率分别达到87.95%和99.95%,分离后排水已达到国家规定的排放标准〔3〕。B.E.Reed研究了用截留相对分子质量为120000、表面荷负电和截留相对分子质量为100000、表面不带电的管式聚亚乙烯氟超滤膜处理含质量分数为0.5%油脂的金属工业废水〔4〕。荷电膜由于高的截留相对分子质量和表面电荷,其平均渗透通量远大于不带电膜。当油脂质量浓度小于50mg/L、总悬浮固体质量浓度小于25mg/L时,荷电膜油脂的平均去除率为97%,而不带电膜为98%.两种膜对总悬浮固体的去除率均接近97%.张国胜采用0.2μm氧化锆膜处理钢铁厂冷轧乳化液废水,通过对膜的选择、操作参数的考察、过程的优化,获得了满意的结果,膜通量100L/(m2.h)时,含油质量浓度从5000mg/L降至10mg/L以下,截留率大于99%,透过液中油质量分数小于0.001%,并且该技术已实现了工业化应用〔5〕。张裕嫒用相转化法制备聚砜-Al2O3复合膜,将Al2O3微粒填充到聚砜中,并用该复合膜对华北油田北大站外排水砂滤后水样进行了超滤处理,原水的油质量浓度为640mg/L,处理后的油质量浓度小于0.5mg/L,完全符合回注水的要求〔6〕。

2染料废水的处理

目前在染料的工业生产过程中,产生大量的高盐度(质量分数大于5%)、高色度(数万至十几万)、高CODCr(数万至十几万)的废水。由于该类废水的BOD5与CODCr的比值小于0.4,生物降解性差;同时废水中所含的盐将进一步降低废水的生物降解性,所以生化处理前必需对其进行预处理〔7〕。

杨刚等采用CA卷式纳滤膜进行了二苯乙烯双三嗪型荧光增白染料(NT)水溶液脱盐和浓缩过程的研究。在1.8MPa压力下经纳滤膜处理后,NT染料水溶液中的NaCl浓度从1.05mol/L降到0.049mol/L以下,NT浓度从0.14mol/L浓缩到0.25mol/L以上,NT成分的平均截留率达99.8%〔8〕。GuohuaChen等采用ATF50型纳滤膜对香港的印染废水进行处理,两股原水的COD分别为14000mg/L和5430mg/L,经纳滤后,两股废水的COD截留率分别达到95%和80%~85%,出水达到了香港的排放标准〔9〕。刘宗义利用卷式反渗透膜处理腈纶丝洗涤废液,进膜废液中己内酰胺单体质量浓度在2000mg/L以上时,可以使单体含量浓缩10倍以上,截留率达到80%左右,透过液可作为工艺用水,可节约大量新鲜软水,具有显著的经济效益〔10〕。郭明远等自制了醋酸纤维素纳滤膜,研究了该纳滤膜对活性艳红、X-3B水溶液的分离性能,结果表明,CA纳滤膜可用于活性染料印染废水的处理和染料回收〔11〕。

3造纸废水处理

造纸废水一般含悬浮物(包括无机和有机的)较多,为避免废水污物堵塞薄膜,减少清洗难度和频率,不宜直接用一段膜分离法,最好在膜分离前进行絮凝和常规过滤等预处理。目前对造纸废水的膜分离法的研究已取得实质性进展,并已开始进入工业化阶段。除抄纸废水(白水)用气浮法即可处理外,膜分离法几乎适用于处理所有的制浆造纸废水(如机械浆废水、硫酸盐浆漂白碱性废水、涂布废水、亚硫酸盐废液等),特别对漂白废水的毒性、色度和悬浮物的去除有明显效果。

薛建军等研究用MAE(membrane-assistedelectrolysis)单阳膜技术控制造纸黑液的污染。研究表明,MAE单阳膜技术不但能回收有用的化学品,还可将黑液的CODCr从112000mg/L降到2000mg/L左右,具有明显的控制效果〔12〕。F.Zhang进行了草浆CEH漂白废水的超滤处理研究,选用透过相对分子质量分别为3000(A)、10000(B)、30000(C)、60000(D)4种平板PS膜(单膜有效面积0.33cm2,操作压力0.3MPa)进行对比研究,结果表明,A、C膜具有较显著的分离效果和膜通量〔13〕。分别以C、A膜为一、二级联合处理CEH漂白废水,膜通量为16.6L/(m2.h),BOD5去除率为66.0%,CODCr去除率为85.1%,TOC去除率为71.6%.黄水前等提出,采用pH范围为1~14的高耐酸碱无机膜处理碱性造纸黑液,不需调整控制pH〔14〕。利用不同孔径的高耐碱无机分离膜可回收纤维素、胶体SiO2、木质素(相对分子质量为1000~12000,分子大小为2.4~4.0nm)和还原糖(相对分子质量约为200~400,分子大小为1~2nm)等,最终透过液主要含氢氧化钠,质量分数调整到10%~12%即可回收用于蒸煮制浆,实现造纸工业废水的闭路循环。

4、重金属的废水处理

在工业废水中重金属废水占有相当大的比例,如电镀、冶金、化工、电子、矿山等许多工业过程中都会产生含镍、铬、铜、铅、镉等金属离子的废水,利用膜技术不仅可以使得废水达标排放,而且可以回收有用物质。

许振良等利用3种单皮层聚醚酰亚胺(PEI)中空纤维超滤膜,对水溶液中重金属离子(镉和铅,质量浓度均为100mg/L)的脱除进行了胶束强化超滤研究〔15〕。在胶束强化超滤(MEUF)过程中,测定了流速、操作压力、表面活性剂(十二烷基硫酸钠和十二烷基苯磺酸钠)与浓度对超滤膜分离重金属离子性能的影响,结果表明,镉和铅的截留率可达99.0%以上,渗透通量可达1.83×10-10m3/(m2.s.Pa)同时,对聚电解质(羧甲基纤维素钠和聚丙烯酸钠)在MEUF中的应用也进行了研究。R.J.Lahiere等报道了采用陶瓷膜处理废水中的重金属离子,方法是用碱中和使之形成氢氧化物沉淀,通过0.8μm和1.4μm两种孔径膜的两级过滤,使重金属氢氧化物质量分数从0.012%下降到0.0002%以下,并把悬浮液浓缩至15%~20%〔16〕。X.Chai采用RO膜对含铜废水进行研究,当进水铜质量浓度340mg/L时,透过液中铜质量浓度小于4mg/L,去除率接近99%〔17〕。

5高浓度有机废水的处理

在高浓度有机废水处理中,膜技术发挥着越来越重要的作用,已在制药废水、制糖废水、含酚废水、乳化液废水、啤酒废水、味精废水等领域得到了应用。1976年,日本就通过管式反渗透处理系统实现了水产品(主要是鱼、蟹、贝类等)加工有机废水的回收利用,通过气浮、反渗透的二级处理,COD由600~1000mg/L降至30~70mg/L〔18〕。陆晓千等利用自制小型超滤设备对上海拖拉机内燃机公司油嘴油泵厂的切削液废水进行了实验室研究,并将所得参数应用于生产设备的设计和运行〔19〕。切削液乳化液废水经超滤法处理后可以回用,取得了良好的经济效益和社会效益。蔡肖邦用试制的5种聚酰胺型纳滤膜,对药厂生产的螺旋霉素(SPM)发酵液进行了分离操作条件和浓缩效果的研究,渗透通量为25L/(m2.h),渗透液的SPM效价始终为零〔20〕。王连军等采用无机膜-生物反应器(IMBR)处理啤酒废水,在水力停留时间为3.5~5h,COD负荷为3.54~6.225kg/(m3.d)条件下,IMBR对废水的COD、NH3-N、SS、浊度的去除率分别达到96%、99%、90%和100%,膜出水水质好且稳定〔21,22〕。

6、结语

由于膜过滤技术具有分离效率高、节能、设备简单、操作方便等优点,使其在废水处理领域有很大的发展潜力。但由于工业废水往往含有酸、碱、油等物质,处理条件比较苛刻,因此,处理废水使用的膜必须具有较好的材料性能,从而在苛刻的条件下保持良好的分离性能和较长的使用寿命。从这方面来看,开发抗污染等性能优良的过滤膜具有重要的战略意义。由于工业废水的复杂性,任何单一技术的处理往往达不到理想的效果,必须重视膜分离技术与其他水处理技术的集成工艺研究,发挥各种技术的优势,形成废水深度处理的新工艺。

参考文献

[1]解利昕,阮国岭,张耀江。反渗透海水淡化技术现状与展望[J].中国给水排水,2000,16(3):24-27.

[2]黄加乐,董声雄。我国膜技术的应用现状与前景[J].福建化工,2000,34(3):3-6.

[3]唐燕辉,梁伟,柴章民。含油污水膜技术处理[J].精细石油化工,1998,15(2):37-39.

[4]ReedBrimE.Treatmentofanoil/greasewastewaterusingultrafiltration:pilot-scaleresults[J].Sep.Sci.Technol.,1997,32(9):

1490-1511.

[5]张国胜,谷和平。无机陶瓷膜处理冷轧乳化液废水[J].高校化学工程学报,1998,12(3):288-292.

[6]张裕嫒,张裕卿。用于含油废水处理的复合膜研制[J].中国给水排水,2000,16(4):58-60.

[7]刘梅红,姜坪。膜法染料废水处理试验研究[J].膜科学与技术,2001,21(3):50-52.

[8]杨刚,邢卫红,徐南平。应用膜技术精制水溶性染料[J].膜科学与技术,2002,22(2):24-28.

[9]ChenGuohua,ChaiXijun,YuePo-Lock,etal.Treatmentoftextiledesizingwastewaterbypilotscalenanofiltrationmembraneseparation[J].J.MembraneScience,1997,127(1):93-99.

[10]刘宗义。利用卷式反渗透膜处理锦纶丝洗涤废液[J].工业水处理,1992,12(1):26-28.

[11]郭明远,杨牛珍。纳滤膜分离活性染料溶液的研究[J].水处理技术,1996,22(2):97-99.

[12]薛建军,何娉婷,狄挺。膜技术在处理造纸黑液污染中的应用[J].膜科学与技术,2005,25(8):74-78.

[13]ZhangFang.Ultrafiltrationofbleacheryeffluent[C].3rdInternationalNonwoodFiberPulpingandPapermakingConferenceatBeijing,Beijing,1996:637.

[14]黄水前,郑昌琼。无机分离膜与环境保护[J].环境工程,1998,16(2):27-29.

[15]许振良,徐惠敏,翟晓东。胶束强化超滤处理含镉和铅离子废水的研究[J].膜科学与技术,2002,22(3):15-20.

[16]LahiereRJ,GoodiboyKP.Ceramicmembranetreatmentofpetrochemicalwastewater[J].Environmentalprogress,1993,12(2):86-95.

[17]ChaiX.Pilotscalemembraneseparationofelectroplatingwastewaterbyreverseosmosis[J].JournalofMembraneScience,1997,123(2):235-242.

[18]高以烜,叶凌碧。膜分离技术在食品工业中的应用[J].食品与发酵工业,1989,15(4):68-74.

[19]陆晓千,余志荣,陆斌。超滤法处理切削乳化液废水的研究与应用[J].工业水处理,1999,19(5):28-29.

[20]蔡肖邦。纳滤膜技术在螺旋霉素生产中应用初探[J].膜科学与技术,1999,19(5):55-57.