首页 > 文章中心 > 故障处理论文

故障处理论文

故障处理论文

故障处理论文范文第1篇

通过实际调查分析归纳出矿山液压机械系统常见故障如下:

1.1温度过高。主要原因有:油粘度过高、内泄严重、冷却器堵塞、泵修理后性能差及油位低、压力调定过大、摩擦损失大。液压系统的零件因过热而膨胀,破坏了相对运动零件原来正常的配合间隙,导致摩擦阻力增加、液压阀容易卡死,同时,使油膜变薄、机械磨损增加,结果造成泵、阀、马达等的精密配合面因过早磨损而使其失效或报废。

1.2因为不良、摩擦阻力变化、空气进入、压力脉冲较大或系统压力过低、阀出现故障、泄漏增大、别劲、烧结造成的执行机构运动速度不够或完全不动。

1.3因为泵不供油、油箱油位过低吸油困难、油液粘度过高、泵转向不对、泵堵塞或损坏、.接头或密封泄漏、主泵或马达泄漏过大、油温过高、溢流阀调定值低或失效、泵补油不足、阀工作失效造成的系统无压力或压力不足。

1.4因为泵工作原理及加工装配误差引起、控制阀阀芯振动、换向时油液惯性造成的压力或流量的波动。

1.5因为油温过高、油粘度过大及油液自身发泡、泵自吸性能低、吸油阻力大、油箱液面低、密封失效或接头松动、件结构及加工质量造成的气穴与气蚀。

2故障诊断技术及应用

2.1主观诊断技术:指维修人员利用简单的诊断仪器凭借个人的实践经验分析判断故障产生的原因和部位。方便快捷,可靠性较低,属于较简单定性分析。包括直觉经验法、参数测量法、逻辑分析法、堵截法、故障树分析法等。

直觉经验法指维修人员凭感官和经验,通过看、听、摸、闻、问等方法判断故障原因:看执行元件是否爬行、无力、速度异常,液位高度、油液变质及外泄漏,测压点工作压力是否稳定,各连接处有无泄漏及泄漏量;听泵和马达有无异常声响、溢流阀尖叫声、软管及弯管振动声等。摸系统元件的油温和冲击、振动的大小、闻油液是否变质、轴承烧坏、油泵烧结等。询问设备操作者,了解液压系统平时工况、元件有无异常、设备维护保养及出现过的故障和排除方法。

参数测量法指通过测得系统回路中所需点处工作参数,将其与系统工作正常值比较,即可判断出参数是否正常、是否有故障及故障所在部位,适于在线监测、定量预报和诊断潜在故障。

逻辑分析法指根据元件、系统、设备三者逻辑关系和故障现象,通过研究液压原理图和元件结构,进行逻辑分析,找出故障发生部位。

堵截法指根据液压系统的组成及故障现象选择堵截点,堵截法观察压力和流量的变化,从而找出故障的方法。堵截法快速准确,但使用较麻烦,拆装量大,需要整套的堵截工具和元件。

故障树分析法指对系统做出故障树逻辑结构图,系统故障画在故障树的顶端为顶事件,根据各元件部位的故障率数据,最终确定系统故障。适合较大型、较复杂系统故障的判定和预测。

2.2仪器诊断技术:根据液压系统的压力、流量、温度、噪声、震动、油的污染、泄露、执行部件的速度、力矩等,通过仪器显示或计算机运算得出判断结果。诊断仪器有通用型、专用型、综合型、其发展方向是非接触式、便携式、多功能和智能化。包括铁谱记录法、震动诊断法、声学诊断法、热力学诊断法等。如铁谱记录法,通过分析铁粉图谱,根据铁粉记录图片上的磨损粉末、大小和颜色等信息,准确得到液压系统的磨损与腐蚀的程度和部位,并可对液压油进行定量污染分析和评价,做到在线检测和故障预防。

2.3智能诊断技术:指模拟人脑机能,有效获取、传递、处理、再生和利用故障信息,运用大量独特的专家经验和诊断策略,识别和预测诊断对象包括模糊诊断法、灰色系统诊断法、专家系统诊断法、神经网络系统诊断法等。目前研究最活跃的是专家系统和神经网络,使故障诊断智能化,具有广阔发展应用前景。基于人工智能的专家诊断系统,是计算机模仿在某一领域内有经验的专家解决问题的方法,将故障现象输入计算机,计算机根据输入现象及知识库中知识按推理集中存放的推理方法,推算出故障原因,并提出维修或预防措施。人工神经网络是模仿人的大脑神经元结构特性,利用神经网络的容错、学习、联想记忆、分布式并行信息处理等功能,把专家经验输入网络,通过对故障实例和诊断经验的训练学习依据一定的训练算法,得到最佳接近的理想输出。

3结论

维修的目的在于保证机械设备运转的可靠性和经济性,维修方式的选择应从故障发生的安全性、经济性考虑。机械设备的维修方式是对机械维修时机和维修深度的控制模式。采用合理的维修方式可以有效地延长工程机械的使用寿命,提高机械设备的工作效率。

由于矿山设备工作状态的多样性及液压系统的愈加复杂,在生产实践中还应该积极研究与应用多种现代先进诊断技术。随着诊断技术智能化,高精度化,不解体化并与先进通讯技术,网络技术,智能传感器技术等现代信息技术的融合,矿山液压机械系统故障诊断的准确性,快捷性和便利性必将大大提高,

参考文献:

[1]朱真才,韩振铎主编.采掘机械与液压传动[M].徐州:中国矿业大学出版社.2005.

[2]谢锑纯,李晓豁主编.矿山机械与设备[M].徐州:中国矿业大学出版社.2000.

故障处理论文范文第2篇

【关键词】锅炉缺水满水

蒸汽锅炉具有工作压力大,介质温度高,运行工况复杂等特点,其事故种类呈现出多种多样形式。本文主要就缺水与满水事故进行分析,由于锅炉种类多样,本文针对的主要是蒸汽锅炉。

一、锅炉缺水事故

在锅炉运行中,锅炉水位低于最低安全水位而危及锅炉安全运行的现象,称为缺水事故。缺水事故可分为轻微缺水和严重缺水两种。如水位在最低安全水位线以下,但还能看见,或虽然已看不见水位,但对允许采用“叫水法”的锅炉进行“叫水”后水位很快出现时,属于轻微缺水。如水位已看不见,用“叫水法”也不能出现时,属于严重缺水。锅炉缺水事故,如果处理不当,会造成设备严重损坏,如果在锅炉严重缺水的情况下进水,就会导致锅炉爆炸。这是因为锅炉缺水后,一方面钢板烧而过热,甚至烧红,使强度大为下降,另一方面由于过热后的钢板温度与给水的温度相差极为悬殊,钢板先接触水的部位因遇冷急剧收缩而龟裂,在蒸汽压力的作用下,龟裂处随即撕成大的破口,汽水从破口喷射出来,即造成爆炸事故。

1.锅炉缺水的现象:

(1)水位低于最低安全水位线,或看不见水位,水位表玻璃管(板)上呈白色;(2)双色水位计呈全部气相指示颜色;(3)高低水位警报器发生低水位警报信号;(4)低水位联锁装置使送风机、引风机、炉排减速器电机停止运行;(5)过热器汽温急剧上升,高于正常出口汽温;(6)锅炉排烟温度升高;(7)给水流量小于蒸汽流量,如若因炉管或省煤器管破裂造成缺水时,则出现相反现象;(8)缺水严重时,可嗅到焦味;(9)缺水严重时,从炉门可见到烧红的水冷壁管;(10)缺水严重时,炉管可能破裂,这时可昕到有爆破声,蒸汽和烟气将从炉门、看火门处喷出。

2.锅炉缺水的原因

(1)司炉人员疏忽大意,对水位监视不够;(2)司炉人员或维修人员冲洗水位表或维修水位表时,误将汽、水旋塞关闭,造成假水位;(3)司炉人员冲洗水位表不及时,造成假水位;(4)给水设备发生故障,给水自动调节器失灵或水源中断,停止供水;(5)给水管路设计不合理;(6)给水管道被污垢堵塞或破裂;给水系统的阀门关闭或损坏;(7)排污阀泄漏或忘记关闭;(8)炉管或过热器管、省煤器管破裂;(9)高低水位报警器失灵,不发出铃声和光信号。

3.锅炉缺水的处理

当锅炉水位表见不到水位时,首先用冲洗水位表的方法判断缺水还是满水。如果判断为缺水,对于水位表的水连管低于最高火界的锅炉,应立即紧急停炉,降低炉膛温度,关闭主汽阀和给水阀。对于水容量较大,并且水连管高于锅炉最高火界的锅炉,可用“叫水”法判断缺水严重程度,以便采取相应措施。

通过“叫水”判断缺水不严重时,可以继续向锅炉给水,恢复正常水位后,可启动燃烧设备逐渐升温、升压投入运行。

通过“叫水”判为严重缺水时,必须紧急停炉,严禁盲目向锅炉给水。决不允许有侥幸心理,企图掩盖造成锅炉缺水的责任而盲目给水。这种错误的做法往往酿成大祸,扩大事故,甚至造成锅炉爆炸而炉毁人亡。

“叫水”的方法是:(1)开启水位表的放水旋塞。(2)关闭汽旋塞。(3)关闭水旋塞。(4)再关闭放水旋塞。(5)然后开启水旋塞,看是否有水从水连管冲出。如有水冲出,则是轻微缺水;如无水位出现,证明是严重缺水。“叫水”过程可反复几次但不得拖延太久,以免扩大事故。

二、锅炉满水事故

在锅炉运行中,锅炉水位高于最高安全水位而危及锅炉安全运行的现象,称为满水事故。满水事故可分为轻微满水和严重满水两种。如水位超过最高许可水位线,但低于水位表的上部可见边缘,或水位虽超过水位表的上部可见边缘,但在开启水位表的放水旋塞后,能很快见到水位下降时,均属于轻微满水。如水位超过水位表的上部可见边缘,当打开放水旋塞后,在水位表内看不到水位下降时,属于严重满水。

发生满水与缺水事故时,在水位表内几乎都看不见水位,但满水事故可从水位表放水管放出炉水,而缺水事故不能从水位表放水管放出炉水。锅炉满水事故的危害,主要是造成蒸汽大量带水,从而可能使蒸汽管道发生水锤现象,降低蒸汽品质,影响正常供汽,严重时会使过热器管积垢,损坏用汽设备。

1.锅炉满水的现象

(1)水位高于最高许可线,或看不见水位,水位表玻璃管(板)内颜色发暗;(2)双色水位计呈全部水相指示颜色;(3)高低水位警报器发生高水位警报信号;(4)过热蒸汽温度明显下降;(5)给水流量不正常地大于蒸汽流量;(6)分汽缸大量存水,疏水器剧烈动作;(7)严重时蒸汽大量带水,含盐量增加,蒸汽管道内发生水锤声,连接法兰处向外冒汽滴水。

2.锅炉满水的原因

(1)司炉人员疏忽大意,对水位监视不够,判断与操作错误,或违反岗位责任制,擅离职守;(2)水位表安装位置不合理;(3)汽水连管堵塞,形成假水位;(4)水位表的放水旋塞漏水,造成水位表中水位显示低于实际水位,形成假水位;(5)水位表的照明不良,看不清水位表。双色水位计失灵,颜色显示错误;(6)给水自动调节器失灵,司炉人员不注意监视水位,而依赖自动调节器;(7)高低水位报警珞朱灵,不发出铃声和光信号;(8)给水压力突然增加,进水速度加快,司炉人员疏忽未发现。

3.锅炉满水的处理

(1)冲洗水位表,检查是否有假水位,确定是轻微满水还是严重满水。

(2)如果是轻微满水,应减弱燃烧,将给水自动调节器改为手动,部分或全部关闭给水阀门,减少或停止给水,打开省煤器再循环管阀门或旁通烟道。必要时可开启排污阀,放出少量锅水,同时开启蒸汽管道和过热器上的疏水阀门,加速疏水,待水位降到正常水位线后,再恢复正常运行。

故障处理论文范文第3篇

关键词:继电保护,维护,故障处理

 

0 引言

随着我国电力工业和电力系统的快速发展,对发电厂、变电站的安全、经济运行要求越来越高。另外,因电子、计算机和通信系统的快速发展,也使得发电厂、变电站监控系统的自动化水平不断提高。微机继电保护和安全自动装置也成为了电网安全稳定运行和可靠供电的重要保障。

1 继电保护发展现状

上世纪60年代到80年代是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了500kV线路保护完全依靠从国外进口的时代。在20世纪70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产和应用仍处于主导地位,这是集成电路保护时代。免费论文,维护。我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。从90年代开始我国继电保护技术已进入了微机保护的时代。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

2继电保护的维护管理

2.1 微机保护装置要采取电磁干扰防护措施

变电站改造中,电磁型保护更换成微机型保护时,必须采取防电磁干扰的技术措施,即严格执行微机保护装置的安装条件,安装带有屏蔽层的电缆,而且两端的屏蔽层必须接地。防止由于线路较长,一端接地时,另一端会由于电磁干扰产生电压、电流,造成微机保护的拒动或误动。为减少保护装置故障和错误出现的几率,微机保护装置必须优化设计、合理制造工艺以及元、器件的高质量。同时还要采用屏蔽和隔离等技术来保证装置的可靠性,从而提高抗干扰的能力。

2.2 微机保护装置的接地要严格按规定执行

微机保护装置内部是电子电路,容易受到强电场、强磁场的十扰,外壳的接地屏蔽有利于改善微机保护装置的运行环境;微机保护提高可靠性,应以抑制干扰源、阻塞耦合通道、提高敏感回路抗干扰能力入手,并运用自动检测技术及容错设计来保证微机保护装置的可靠性;容错即容忍错误,即使出现局部错误也不会导致保护装置的误动或拒动。免费论文,维护。容错设计则是利用冗余的设备在线运行,以保证保护装置的不间断运行。采用容错技术设计是为了换取常规设计所不能得到的高可靠性,确保微机保护装置的可靠运行。

2.3 防误措施

微机保护的一些定值设定以及重要参数修改在硬件设计上设置操作锁,操作时必须正确输入操作员的密码和监护人的密码时,方可进行正常操作,并将操作人和监护人的姓名等信息予以记录和保存。

2.4 继电保护装置的日常维护

(1)当班运行人员定时对继电保护装里进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注惫与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次。

(5)每月对微机保护的打印机进行检查并打印。免费论文,维护。

3 继电保护故障处理要点

继电保护工作是一项技术性很强的工作。如果只想学会对设备的调试并不难,只要经过一段时间的培训,按照调试大纲依次进行就可实现。而一旦出现异常现象,想处理它并非易事。它要求工作人员有扎实的理论基础,更要有解决处理故障的有效方法。一个合适的方法,在工作中能帮你少走弯路,提高效率。可以说继电保护技术性很大程度上体现在故障处理的能力上。因此,如何用最快最有效的方法去处理故障,体现技术水平,成为广大继电保护工作者所共同要探讨的课题。下面是常用的几种故障处理方法。

3.1 直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10KV开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

3.2 掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。免费论文,维护。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其它地方查故障。

如一条110 kV旁路L FP-941A微机保护运行指示灯忽闪忽灭,并不打印任何故障报告,很难判断为何故障。正好附近有备用间隔,取各插件相应对换,查出故障在CPU插件上。用此项方法,要特别注意插件内的跳线、程序及定值芯片是否一样,确认无误方可掉换,并根据情况模拟传动。

3.3 逐项拆除法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。免费论文,维护。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。免费论文,维护。

4 结语

继电保护是电力系统安全正常运行的重要保障,目前已经得到了广泛的应用,随着科学技术的不断进步,继电保护技术日益呈现出向微机化,网络化,智能化,保护、控制、测量和数据通信一体化发展的趋势。

参考文献:

[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.

[2]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006,(4):80-83.

故障处理论文范文第4篇

【关键词】高低压配电设备 问题故障 解决方法 电路原理

高低压设备出现故障会严重影响企业的正常运作,对工作进度产生影响,还可能造成严重的财产损失,影响国家经济的长足发展和进步。因此,在日常的生产经营中要注意对高低压配电设备的安全保障,在设计安装高低压配电设备时注意设备的质量和安全性能,保障供电畅通和运作正常。

1 高低压配电设备电路故障原因

1.1 预警监管问题

高低压配电设备大多经由人力进行安装检测,因而缺乏有效的预警监管措施是设备故障的重要原因之一。由于相关工作人员处理故障的措施不当,对高低压配电设备造成不必要的破坏和损耗,容易造成设备故障,影响企业生产运作的供电,造成经济损失。在日常的维修检测工作中,检测人员由于预警监管缺乏有效的措施,检查维护工作流于形式,起不到预警保障的作用。

1.2 变电设备自身出现故障或损耗

配电设备的质量和实用价值也是设备出现故障的重要原因,设备自身的原因常涉及电器元件的合理装配、电路的正确分析设计以及电路原理的设计使用。其中,高压配电设备主要采用真空高压断路器,真空断路器由许多电器原件构成,每一部分的故障都会影响断路器的正常使用。因环境变化造成分合闸的弹跳性不同,影响了分合闸对电路开断的控制,造成电路的供电故障。真空泡中的真空环境不纯,出现与外界环境的联通,会造成潜在的安全威胁。真空断路器的分闸出现故障,会造成故障时的电路保护机制无法正常运作,导致潜在的用电危险。在事故发生时而低压设备主要采用两路供电的方式供电,用电高峰时,两台变压器同时运行,容易造成电路故障,影响供电工作的正常开展。

1.3 故障相关的资料文件缺乏

对高低压配电设备的妥善处理或处理失误案例都能为日后的工作提供一定的借鉴和帮助,因此每次故障情况的相关资料和文件是配电工作人员应当妥善保管和研究的重要资料。主要的资料包括接线图、电路图和设备故障说明书。对相关的资料加以分析研究,能有效提高工作人员分析故障原因、处理故障问题的能力。但在实际的高低压配电设备故障分析处理工作中,大多数工作人员都没有对故障原因和维护措施进行总结讨论,总结后的资料也没有进行妥善保管,因此造成了面对问题时无所适从,无法对相关的故障原因进行统筹分析和处理。

2 高低压配电设备故障的解决方法

2.1 明确电路元件的配置

高低压配电的相关工作人员要掌握与配电器相关的知识技能,对各种类型的配电器具备分辨的能力,并了解配电器设备的相关使用特点,并对电路图进行解读和分析,明确电路元件的配置和电路连接的先后顺序,防止电路安装中出现问题。高低压配电器设备的相关工作者在工作中自觉进行学习和知识体系的更新,对配电器维修检查中出现的问题进行总结分析,并定期组织疑难案例的分析讨论,增强对配电器故障的分析处理能力。工作人员在借鉴成功案例的同时,进行分析思考,观察设备的运行规律,找到更加通用的处理方式,并在企业或行业内部进行推广。

2.2 定期进行高低压配电设备进行检测

高低压配电设备可能因为自身的问题产生故障,因此,日常的检修工作是处理高低压配电器故障的重要环节。电路老化会影响电气设备的使用,因此在日常工作中需要定期组织工作人员对使用时间较长、使用频率较高的配电设备进行检修处理,并对老化电路的处理做出合理预测和分析,对电路故障进行早期预防工作。并在高低压配电器安装前后对电路图进行仔细的分析和研究,确保电路的畅通和合理,防止出现电路故障影响高低压配电器的使用,造成资源的浪费。对电路检修中出现的问题及时进行报备处理,并将问题出现的原因和时间以及处理措施进行详细的记录,减少此类问题出现和发生的可能性。维修人员要掌握具体的问题处理的方法和技巧,并对相关元件的使用期限和使用特点有具体的针对化的了解,在检修过程中多思考、多借鉴,及时发现潜在的问题。

2.3 妥善处理配电器维修的相关资料和记录

高低压配电器的维护和维修记录是高低压配电器工作者开展工作的借鉴和参考,能够为工作者的实际工作提供有效的帮助。因此,相关工作者需要妥善处理配电器故障分析与处理的相关资料,进行定期研究和保管检查。在维修工作完成后,组织维修者进行维修工作的分析讨论,并对维修工作的实际操作过程进行记录,以便日后遇到相关的问题时进行参考借鉴。在记录时注意留取书面记录,进行长期妥善保存。对设计配电器安装阶段的电路图、接线图进行妥善保管,如果保管出现问题,电路出现问题时,便失去了查找问题原因的依据,加大了问题分析的难度,拖慢了高低压配电设备维修的工作进度。此外,工作人员在值班时,应多阅读维修记录,并对项目图纸有具体的了解,时常与其他维修人员进行讨论研究,为配电器维修工作提出新的可操作方法。

3 总结

高低压配电设备在日常的生产经营活动中应用比较广泛,一旦出现故障很可能造成严重的经济损失。所以,相关的工作人员要掌握一定的高低压配电设备故障处理技术和故障原因分析能力。本文主要针对高低压配电设备常见故障的原因及故障的处理措施展开讨论,希望能对高低压配电设备的相关工作提供参考和借鉴。

参考文献

[1]酒庆.高低压配电设备运行故障处理分析[J].城市建设理论研究(电子版),2015,5(28):2557.

[2]尹i,王文魁.高低压配电设备运行故障处理分析[J].山东工业技术,2015(14):126.

[3]杜正祥.高低压配电设备常见故障与处理分析[J].商品与质量,2015(44):217-217.

故障处理论文范文第5篇

关键词:人工神经网络;故障诊断;水泵

中图分类号:TU

文献标识码:A

文章编号:1672-3198(2010)04-0295-02

1 人工神经网络理论应用于水泵故障诊断研究的理论意义

采用人工神经网络(ANN)技术解决机械故障诊断问题的主要着眼点在于:

(1)ANN的大规模分布式并行处理能力,适于解决复杂的诊断问题。

(2)ANN具有较强的非线性处理能力,适宜于解决故障诊断中复杂的非线性模式识别问题。

(3)ANN具有任意复杂映射的强有力的逼近能力,适宜于解决故障领域中的预测与控制问题。

水泵工作故障往往表现为工作平稳性恶化、振动加剧以及噪声增大,这往往又是衡量机器制造质量和工作性能的重要指标。本文以某型号离心泵为对象,通过测取故障振动信号来进行故障诊断。

水泵转子由于制造误差、装配不当或在不适当的条件(载荷、等)下使用,常会发生以下故障:①转子不平衡;②不对中;③油膜涡动。而这些故障将会使轴承的旋转精度降低,产生振动、噪声,增加轴承旋转的阻力,最终将使轴承受到阻滞或卡死,造成整个工业系统的失效。振动中不平衡、不对中以及油膜涡动占整个故障发生率的80%。因此对上述故障进行诊断具有非常重要的意义。

神经网络之所以适合于故障诊断,是因为神经网络具有以下优越性:自组织和自学习能力可以根据对象的正常历史数据训练神经网络,然后将此信息与当前测量数据进行比较,以确定故障;联想记忆神经网络具有滤出噪声及在有噪声情况下得出正确结论的能力,可以训练神经网络来识别故障信息,使其能在噪声环境中有效地工作,这种滤除噪声的能力使得神经网络适合在线故障检测和诊断;非线性映射能力神经网络对于高维空间模式识别和非线性模式识别问题的分类精度高,具有分辨故障原因及类型的能力,这为实现故障诊断奠定了基础。因此,神经网络理论在故障诊断领域显示出了极大的应用潜力。本文将新兴的神经网络理论应用于水泵的故障诊断和状态检测,以某型号水泵的实测数据为例,对神经网络模型进行训练分析,取得了令人满意的结果,具有实际应用价值。

2 人工神经网络应用于水泵故障诊断技术的实现

2.1 样本数据的获取

实验采用便携式Dasylab测试系统进行测试,在现场对三种故障进行模拟,将数据信号存储在磁盘中,得到水泵三种故障:(1)转子不平衡;(2)转子不对中; (3)油膜涡动的时域曲线和频域曲线。对各个故障的频域曲线,提取了五个不同频率的幅值作为描述水泵故障的特征值,并把这组特征值作为输入量。

2.2 特征提取

要从样本中提取对诊断故障贡献大的有用信息,这一工作就是特征提取。特征提取就是利用已有特征参数构造一个较低维数的特征空间,将原始特征中蕴含的有用信息映射到少数几个特征上,忽略多余的不相干的信息,从数学意义上讲,就是对一个n维向量X=[x1.x2,…,xn]T进行降维变换成低维向量Y=[y1,y2,…,yn]T,m

由于水泵设备总是运行在噪声、电磁干扰等环境中,在振动信号分析与处理方法中,常用快速傅立叶(FFT)变换对振动信号进行频谱分析。

2.3 样本数据的预处理

原始样本数据不宜直接作为神经网络输入,那会使网络连接权值相差极大,使网络输出性能变得不稳定。因此在输入网络前通常需要将数据进行预处理。为了一开始就使各变量的重要性处于同等地位,神经网络学习和测试时要对提取的数据进行归一化处理,即:令

x′i=xi-xminxmax-xmin(1.1)

xi――不同频率下的幅值

xmin――最小幅值xmin=min(xi)

xmax――最大幅值xmax=max(xi)

这样,网络所有输入都在[0, 1]内。

2.4 水泵故障诊断神经网络模型结构

由于故障机理(故障征兆和故障原因之间的关系)往往隐含于故障实例之中,通过一些故障实例(称为故障样本)对神经网络进行训练学习,可以建立起系统的故障诊断模型,而故障诊断的推理规则隐含于神经网络的网络拓扑结构和网络权值之中。

多层前馈神经网络的输入和输出之间的关系,可以看成是一种映射关系,这种映射是一个高度非线性映射,如果输入节点数为L,输出节点数为N,网络是从L维欧氏空间到N维欧氏空间的映射。三层神经就已经能够逼近任意函数了,因此,水泵故障诊断神经网络采用三层结构即输入层、输出层和隐含(中间层)。通过有监督的训练方法训练网络权值。

(1)输入层设计。

特征参数组成特征向量,特征向量作为网络输入。所以,特征参数选取的正确与否直接影响到网络的性能。

通常,选取的方法应该通过理论分析、专家经验、试验找出对水泵性能影响较大,同时对各种故障都有较明显反应的变量作为特征参数,然后将这些特征参数组成特征向量,经过数据的预处理,作为BP网络的输入。第二章通过水泵故障机理的分析可以发现5个参数在故障情况下变动明显。因此,本文选取以上5个参数作为BP网络的输入参数。

输入层中神经元节点的个数对应着上述状态特征描述参数矢量或数组。通过对水泵故障的分析,提取了频域曲线中五个不同频率的幅值作为描述水泵故障的特征值,并把这组特征值作为输入量,所以水泵故障诊断神经网络的输入单元为5个。

(2)输出层设计。

网络输出向量,通常是具体问题的目标结果。本文的目的是判断某一状态下处于何种故障,输出层中神经元节点的个数对应于神经网络要识别的故障模式矢量或矩阵。本故障诊断神经网络需要对不平衡、不对中和油膜涡动三种故障进行识别。因此水泵故障诊断神经网络的输出为3个单元。

如以上所述,BP神经网络的输入神经元有5个,输出神经元有3个。隐层神经元数目是由训练样本数目决定的。

(3)中间层设计。

中间层数及其神经元节点的个数与输入的技术特征参数的复杂程度及所需识别的故障模式种类有关。当输入模式和输出模式相当不同时,就需要增加中间层,形成输入信号的中间转换。处理信号的能力随层数的增加而增加,如果有足够的中间层单元,输入模式也总能转换为适当的输出模式。一般来说,还没有任何理论根据采用两层以上的中间层。对大多数的实际问题来说,一层中间层即三层网络己经足够了。根据经验,采用两层以上的中间层几乎没有任何益处。采用越多的中间层,训练时间就会急剧增加,这是因为中间层越多,误差向后传播的过程计算就越复杂,使训练时间急剧增加。另外中间层增加后,局部最小误差也会增加,网络在训练过程中,往往容易陷入局部最小误差而无法摆脱,网络的权重难以调整到最小误差处。

根据试验的需要和具体的分析,本研究所建立的网络为一层中间层,确定中间层以后的一个重要问题是选择适当的中间层处理单元。可以说,选用中间层单元数往往是网络成败的关键,因为中间层处理单元数选用太小,则网络所能获取的用以解决问题的信息太少,难以处理复杂的问题;但若中间层处理单元数过多,不仅使网络的训练时间急剧增加,难以在人们所能接受的时间内完成训练,更重要的是过多的中间层处理单元还可能出现所谓“过度吻合”问题。也就是说,如果网络具有过多的信息处理能力,甚至把训练集中一些无关紧要的非本质的东西,也学的惟妙惟肖时,则网络就难以分辨数据中真正的模式。

一般来说,中间层单元数可根据下式确定,

n1=n+m+α

式中n1――中间层单元数 m――输出层单元数 n――输入层单元数

α――1-10之间的整数

本文中,m取3,n取5,根据上面公式中间层单元数n1取5。从而该水泵故障诊断神经网络结构如图所示。

图1

2.5 神经网络关键程序实现

(1)创建网络。

使用newff()函数创建网络,网络参数设置如下:

隐藏层神经元设置为5,输出层神经元个数为3,根据神经网络的要求和所要达到的网络输出目的,选择输入层到隐藏层间的传递函数为tansig,即S型的正切函数,隐藏层到输出层间的传递函数为logsig型函数,即为S型的对数函数。

使用训练函数trainlm来训练网络。

(2)设置训练次数。

将训练次数设置为1000次。

(3)设置学习效率。

学习速率决定每一次循环训练中所产生的权值变化量,用η表示。η较大时,权值的变化量就较大,学习速率比较快,但有时会导致振荡。η较小时,学习速率慢,然而学习过程平稳。这样,在实际的学习过程中,可以将η值取为一个与学习过程有关的变量,并且在学习刚开始时η值相对大,然后随着学习的深入,η值逐渐减小。在一些简单的问题中,η可取为一个常数,满足0

(4)网络训练。

使用学习样本和目标向量训练网络,P和T分别设为训练样本向量和目标向量。

(5)诊断测试。

利用待诊断数据样本P_test,使用sim()函数实现测试。

3 结束语

本文采用Dasylab测试软件采集故障信号,以信号频谱中各阶倍频和分频作为智能诊断的特征因子,提取故障样本,进行BP网络的训练。利用MATLAB建立了水泵故障诊断神经网络学习和诊断程序,实现了基于人工神经网络理论的某型号水泵故障诊断模型。结果表明,本神经网络故障诊断模型不仅克服了传统诊断方法的弊端,而且大大提高了水泵故障诊断的准确率和诊断效率。

参考文献

[1]廖伯瑜.机械故障诊断基础[M].北京:冶金工业出版社,2003:1-36.

[2]田景文.工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006:70-90.

[3]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006:50-85.