首页 > 文章中心 > 网络工程的发展

网络工程的发展

网络工程的发展

网络工程的发展范文第1篇

关键词 网络工程 发展 就业

中图分类号:TP393 文献标识码:A

经济的发展正在带动各行各业的发展,而网络工程的发展更是不容忽视。它已成为了时代产业的佼佼者。在成为信息化时代的重要行业的同时,网络工程的发展步伐从未停止,就业前景也随之广阔。但是,对于网络工程的发展及就业前景,我们不能一味着眼于现在,应持长远的眼光和辩证的态度。

1网络工程的产生

21世纪,硬件和软件成本不断下降,对于大型信息技术系统的开发和实施,企业和政府部门更多地让给了系统集成商外包,因为外包成本花费较少,此为最经济策略。而计算机及网络技术日新月异地向前发展,新技术不断涌现,新产品相继面世,技术和产品的选择给用户提出了很大的挑战,如何在众多技术和无数的产品中选择合适的技术、产品与应用模式来满足生产、管理、业务的需要是用户最大的难题。另外,用户本身有着不同的应用现状,比如原有的计算机设备、网络模式、应用平台、操作系统、数据库系统等,如何进行平滑升级,无缝集成也是用户要考虑的重要问题。还有用户对新技术、新产品不理解和缺乏实际应用经验,也制约用户自己进行系统设计和实施。同时,企业网络规模越来越大,内部环节越来越多,功能要求越来越多复杂。

2网络工程的诠释

互联网的发展产生了许多新兴产业,其中网络工程,通信工程,软件工程等等专业也成为各高校开设的专业项目,为国家培养信息化时代人才。其中网络工程成为竞争之下的佼佼者,它的发展为社会提供了许多就业岗位。网络工程专业主要学习计算机、通信以及网络方面的基础理论和设计原理,掌握计算机通信和网络技术,接受网络工程实践的基本训练,具备从事计算机网络设备,系统的研究、设计、开发、工程应用和管理维护的基本能力。是了解计算机及网络通信领域的一些最新进展与发展动态,了解信息产业、计算机网络建设及安全的基本方针、政策和法规,掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力的人才。

网络工程发展进程中它的就业问题也备受关注,因此,有必要讨论网络工程的就业前景。

3网络工程的发展

3.1计算机网络的起源

1946年2月14日,世界上第一台电脑ENIAC在美国宾夕法尼亚大学诞生,从此拉开计算机网络的发展。当代,网络并不新鲜。在计算机时代早期,众所周知的巨型机时代,计算机世界被称为分时系统的大系统所统治。分时系统允许你只通过显示器和键盘的哑终端来使用主机,哑终端很像PC,但没有它自己的CPU,内存和硬盘。

在七十年代,大的分时系统被更小的微机系统所取代,微机系统在小规模上采用了分时系统。所以说,并不是直到七十年代PC发明后,才想出了今天的网络。

3.2计算机网络起步

在远程终端计算机系统基础上,人们开始把计算机与计算机通过PSTN等已有的通信系统互联起来。为了使计算机之间的通信连接可靠,建立了分层通信体系和相应的网络通信协议,于是诞生了以资源共享为主要目的的计算机网络。由于网络中计算机之间具有数据交换的能力,提供了在更大范围内计算机之间的协同工作,实现分步处理甚至并行处理的能力,联网用户之间通过计算机网络进行信息交换的通信能力也大大增加。

3.3计算机网络的兴起

1962年12月Internet的前身——美国的ARPA网投入运行,它标志着我们常称的计算机网络的兴起。这个计算机互联的网络系统是一种分组交换网。分组交换技术使计算机网络的概念、结构和网络设计方面都发生了根本性的变化,它为后来的计算机网络打下了基础。

计算机网络是非常复杂的系统,计算机之间相互通信涉及到许多复杂的技术问题,为实现计算机网络通信,计算机网络采用的是分层解决网络技术问题的方法。但是,由于存在不同的分层网络系统体系结构,它们的产品之间很难实现互联。为此,国际标准化组织ISO在1984年正式颁布了“开放系统互连基本参考模型”OSI国际标准,使计算机网络体系结构实现了标准化。

3.4计算机网络的前景

进入上世纪九十年代,计算机技术,通信技术以及建立在计算机和网络基础上的计算机网络技术得到了迅猛的发展。特别是1993年美国宣布建立的国家信息基础设施NII后,全世界许多国家纷纷制定和建立本国的NII,从而极大地推动了计算机网络技术的发展,是计算机网络进入了一个崭新的阶段。随之带来网络工程的迅猛发展,网络工程方面的人才需求不断上升,这也为人们提供了施展才华以及就业的机会。

4网络工程专业的就业方向

本专业是专门为网络领域人才市场提供不应求得迫切需要而设置的专业。该专业学生毕业后可以从事各级各类企事业单位的企业办公自动化处理,计算机安装与维护,网页制作,计算机网络和专业服务器的维护管理和开发工作,动态商务网站开发与管理,软件测试与开发及计算机相关设备的商品贸易等方面的有关工作。网络工程就业前景一片光明,是许多人可以选择的就业方向。

参考文献

[1] 毕学军.网络工程案例集锦.2002.12.

网络工程的发展范文第2篇

关键词:网络信息时代;软件工程;发展

随着网络信息时代的到来,人们的生活中越来越离不开手机、电脑等电子产品。他们可以通过软件购买商品、点餐、预约车等服务。软件为人们的生活提供了便利,提供了更加优质的服务。软件工程技术在网络信息时展的越来越快,软件工程技术的应用也越来越广泛,受益用户也越来越多。

一、网络信息时代下软件工程发展现状

网络信息时代是一个大数据时代。软件工程的发展是为了更好的处理数据,为用户带来更加便捷的体验和更加优质的服务。当下软件工程的发展方向很明确,让用户在有限的时间内得到完美的体验。但是,现在的软件数量庞大,功能越来越多,很多重复的功能软件相互竞争。现在的很多软件也在不断的植入广告,这使得用户对软件存在一定的质疑。现在的软件还没有消除体验隐患就早早投入市场,导致用户在使用时会有卡顿或者直接被退出的情况发生,用户体验较差。

二、软件工程的发展趋势

网络信息时代下,用户对软件工程的需求就是软件工程要发展的方向。软件工程开发的目的就是为了为用户提供更加的服务。所以,软件工程的发展趋势就是提高用户的体验。未来的软件工程势必是人工智能技术。人工智能技术可以将用户体验收集并做分类总结,将用户使用哪种软件使用时间最长,使用哪种那个软件时间最短,或者哪种软件几个月都未使用,将这些统计并反馈给用户,同时,将这些信息反馈给软件科研人员,让他们积极改进软件,升级换代,更好的服务大众。未来的软件安装会更加便捷,服务质量高,同时在用户体验中,保证流畅性和安全性,软件占内存更小,而功能越来越多。

三、网络信息时代下软件工程发展存在的问题和对策

网络工程的发展范文第3篇

      现阶段,有很多的复杂网络,诸如,万维网、互联网以及生物通信网络等,在这些复杂网络中具有很多典型特征,本篇软件工程论文介绍其中主要表现在以下几个方面;第一,网络结构的复杂性,表现在大量的网络节点和网络结构的多样性。第二,网络的进化性,主要是表现在网络节点的产生性。第三,网络连接的多样性,主要表现在网络节点间的连接权重存在明显的差异性,并且,很有可能存在方向性,这些都是当前复杂网络的重要特征。 

1 复杂动力网络的意义分析 

诸多的软件工程专家都表示,复杂动力网络的研究具有划时代的意义,例如,复杂动力网络在解决如何提升大规模网络的传输效率,不断增加网络的可信度和稳定性,以及避免恶意袭击和随机错误给人们所带来的经济损失等方面,都有着非常重要的作用。而且 ,这些问题的解决必须要依据复杂网络的理论知识和技术上的发展。 

2 复杂动力网络的特征分析 

2.1 复杂动力网络的同步效应 

网络上的同步这是社会中广泛存在的一种非常重要的非线性现象。并且 在现实生活中,有着非常复杂网络在弱耦合情况喜爱可以在很大程度上展示同步的倾向性,而且,在对于全连接的网络中,无论是耦合强度大小,只要是网络进行充分连接,对于一个全局耦合的网络就一定要能够进行相应的同步,对于最近的邻居耦合网络,若一个局部耦合网络也不一定能够进行同步,在更为宽泛的意义上看,网络上的同步要分情况来看,有时是有优势,但是有的时候也会有害处。有益的网络同步可以更好地运用在软件工程中去,例如,可以更好地运用在保密通信和语言涌现和组织管理的协调上进行高效运行,如果是有害的同步,则很有可能会造成传输控制协议的增加,或者是出现网络信息堵塞的情况,从目前的情况来看,网络上的同步在核磁共振和激光设备中运用更加广泛和成熟。所以,对于有益的网络同步,我们一定要切实采取各种技术手段来保持网络系统上的同步性,但是,对于有害的网络同步,就必须要加以制止。 

2.2 复杂动力网络上的控制 

复杂动力网络由于具备大量的节点,以及相对复杂的拓扑结构,使得传统的控制手段已经不能完全地适应当前软件工程的运用。人们相继提出了自适应控制和线性反馈控制、切换控制以及牵制控制等方面。 

在当前复杂动力网络系统中,我们就不仅仅可以通过控制网络上的所有节点来实现一个既定的目标,而且,在大多数的情况下,就是希望能通过控制尽量少的节点来实现各种目标,这就是牵制控制。 

复杂网络的牵制控制方面,基本上有两种不同的控制策略,主要是可以分为,随机控制策略和目的性选择策略。总的来说,就是随机选择一些节点来进行牵制控制,但是,目的性的控制策略,就是严格按照一定规则来选择有效地节点进行控制,实际上,牵制控制所涉及的领域非常广,其中就包括网络结构和节点动力学,以及相应的网络耦合强度等一些方面,为此,对于牵制控制来说,如何来选择网络耦合强度和牵制控制器的数目就是当前牵制控制两个最为基本的问题,从具体上看,就是可以给定复杂网络系统和牵制控制策略和网络耦合强度,必须要对多个牵制控制器才能更好地实现网络上的稳定性,所以,这些问题都是需要我们面临的问题。 

3 复杂动力网络在软件工程中的有效运用 

在过去的几年当中,有很多的专家和学者都将复杂网络的理论和方法有效地运用在软件工程中去,例如,可以有效地运用复杂网络的工具分析,并进一步分析了软件网络各种统计特征和网络可视化的软件研究,并得到广泛的运用和发展。 

在网络化的软件运用过程中,网络软件从某种意义上是一种多结构和全方位的动态演化软件,具有很强的适应性和自组织性以及开放性。从另外一个角度上看,这是相对于传统的网络软件来说,网络式软件的组成单位显得更加主动,并且耦合度也非常松散,在规模上可以适当地进行收缩和拓展,而且网络化的软件可以切实通过发现和挖掘网络资源,从而可以实现资源的有效利用,为客户提供可持续性和安全上的交互与协调服务,更好地满足用户的各种需求。 

同时,软件系统的运用过程中,这是一种人工上的比较复杂的系统,从而可以导致了统计意义上出现规律上的附和,这就必然会造成软件设计方法和开发过程汇总的某些原则之间存在的关联性。 

尤其是在200年以来,复杂动力网络阐述了面向对象软件网络的结构与传播代价之间的内在关系,可以说,网络评价传播代价和软件网络之间存在紧密的联系。并且两者的相关系数可以随着网络中的边数结构的增加而减少,这样就能够充分说明在节点一定的情况下,随着边数的增加,可以在网络中形成很大的中枢节点,进而可能导致了平均最短路径长度的减少,同时,平均传播代价也随着减少,平均传播代价和出入度之间的范围都存在负相关,这也在一定程度上会造成网络环境上的异质化更高,其中的平均传播代价就越低,这就是为什么能够出现真实的软件网络,而且网络传播代价显得相对较小,而且,规则网络却使得平均传播代价更大,为此,这就必须要对具体的情况做出详细的分析,才能更好地推动复杂动力网络在软件工程中的应用。 

网络工程的发展范文第4篇

网络技术是应用到电力信息通信建设的重要技术,对电力系统发展起到了独特的作用。区别于传统电力技术,网络技术具有以下特点涉及面较广,在发电、配电、输电、变电、用电等各方面都有应用;专业化水平较高,在自动化、通信、网络等技术上应用广泛,除此之外,还覆盖着电力系统的专业知识;地区特色明显,网络技术在电网上的应用,根据地区的不同,呈现出不同的经营管理特点,没有统一的标准化规定;国产化方向,受到国家政策的保护,国产化是其发展的方向。

2、电力信息通信工程中网络技术的应用

2.1电力信息通信系统中使用网络技术的优点

网络技术的应用能够有效的提高电网系统对信息控制的能力,促进信息网络技术在智能化电网中的使用,同时能够改善电力信息通信网络控制系统、能量传输管理系统的运行。网络技术的应用对于电网输电组织管理智能化发展有着巨大的推动作用,例如网络技术能够为其发展提供全新的运行模式,例如按照电力需求职能使用新能源推动电网运行,这种方式能够帮助电网系统职能部门实现高效协同,为电力信息组织管理和控制提供一体化的条件。其次能够推动电力企业出现新的发展模式,为电力企业以及电网建设提供更好的发展机遇,例如通过使用高性能的计算机网络技术能够实现对电力信息通信网络的高效运行和维护,不仅能够提高电网服务质量和安全性,同时还能够为电力行业培养高素质科技人才。

2.2电力信息业务中的应用

(1)MI管理信息系统。管理信息系统主要负责管理相关数据的查询和日常任务的分配,从而实现信息资源的共享。该系统在电力信息通信的过程中属于重中之重,其通过使各部门之间信息互联互通,达到部门信息资源的共享,从而大力提升信息通信的效率和传送质量。(2)继电保护信号。如果失去继电保护信号,信息传输的有效应就很难保证,因此继电保护信号是实现信息通信有效性、安全性的前提;其利用PCM平台访问SDH传输设备,确保视屏远程会议的实时稳定性;并且支持通信网络和通信监控信息等配套服务设施。因此,該继电保护信提供的服务可靠性高。(3)变电站的视频监控信息。变电站通常会安装监控,并且利用视频的有效性,减少出错率,保证电力信息通信的安全可靠,从而提高企业的整体信息和通信。(4)电网调度实时数据自动化系统。该服务将实时信息数据迅速传输至电力中心,全力保证功率调度过程的有效信息的准确性,同时在最大程度上减少网络延迟情况的发生,并将其控制在最低范围。(5)多业务传输平台。近年来,随着新兴科技的不断出现,网络技术也在不断革新。为了提高整体效率,完善信息服务,多服务传输平台作为一个新的优化技术系统,逐渐进入公众视野。多业务传输平台可以与目前市场上的所有TDM业务兼容,从而满足绝大部分IP数据服务的要求,是电力信息通信重点建设的优化平台。

2.3网络技术体制的选择和发展运用

国内现阶段大多数的电力企业已经有了一定规模的信息通信网络系统,但是在实际的运行和维护过程中还存在一些问题,主要表现在以下两个方面:(1)信息通信系统网络网架结构仍然是以链状为主,而这种结构的可靠性相对较低,但是现阶段国内电力通信网络拓扑仍然需要依靠输电线走向来确定,所以基本上是以链状拓扑结构为主,可靠性相对较低,根据现阶段国内电力通信网络的发展状况必须似乎用线路保护倒换的方式来对电力信息通信网络采取环形网络保护;(2)目前国内的电力信息通信网络仍然不能够支持IP业务的发展,现阶段的电网系统对于传统同步数字体制的传输主要还是借助语音传输等相关业务,但是这种结构集中式供应以及有效扩展性体系结构的同步数字业务传输来说,并不能实现,所以很难处理一些突发性的IP业务,系统局限性很大。从这些方面进行考虑,再加上电力信息通信系统的技术要求,IP业务未来在电网系统中的比重会越来越大,所以为了更好地适应未来IP业务的发展,电力信息通信系统需要注重DWDM波复用技术、RPR弹性分组环技术以及MSTP传输平台技术的融合使用,同时要时刻关注NGN网络以及纯IP宽带网络和软件换的使用。

3、电力信息通信中网络技术的发展趋势

在当前,互联网已经成为了不可或缺的组成部分,互联网技术也得到了发展,推动了社会的进步,改善了人们的生活状态,正是这种发展趋势,电力信息系统中网络技术发展已经成为了全新的发展格局,且面临着不同的要求。其中在一方面,人们要求网络信息要具备智能化,需要保证信息的开放性与全面性,能够实现信息路径以及工作兼容的有效结合;另一方面,当前社会在不断发展与进步,越来越多的人希望网络传播的速度增快,这在一定程度上给网络速度提出要求,无线网络的出现改善了传统的模式与弊端,也将传统网络中所存在的不足改善,为人们的生活带来了帮助。但是毋庸置疑,正因为社会的不断发展,电力信息系统中网络技术需要从最基本的内容出发,如此才能得到创新发展与进步。

总之,对于电力信息通信工程,要想在激烈的社会竞争中有立足之地,则需要从全局出发与分析,加强分析与探究。

参考文献:

[1]李娜.新形势下网络技术在电力信息通信中的应用[J].电子制作,2014,18:113.

[2]李学伟.论电力工程信息通信中的网络技术[J].广东科技,2011,08:20-21.

[3]周慧莉.探讨电力系统信息通信中网络技术的应用[J].科技与企业,2012,08:108.

网络工程的发展范文第5篇

关键词:电阻抗谱;扫描电镜;氧化钙;坩埚;烧结状态;无损评价

中图分类号:TQ175.75 文献标识码:A 文章编号:1009-3044(2016)08-0247-02

1背景

氧化钙坩埚具有良好的脱氧、脱硫以及高温稳定特性,在特种合金熔铸方面引起业界企业关注,已经开始应用于铜铬合金、钛镍记忆合金等高产值产品的生产。随着终端企业对特种合金的气体含量、含杂等指标的要求越来越高,传统的石墨坩埚、氧化镁坩埚的市场占比将逐渐下降。氧化钙由于容易水化,在生产中目前通常使用添加剂来对氧化钙改性。但添加剂的成分(单一或复合)、质量百分比、坩埚生产中的冷等静压成型压力等众多因素均会影响坩埚烧结状态,进而影响坩埚质量。目前,坩埚企业普遍采用航空工业部标准HB5407-1988抽样检测坩埚成分、耐压强度、体积密度、气孔率以及热稳定性次数等指标;采取目测检查坩埚有无坐底、有无砂眼、表面有无杂质等。理化检测属于有损检测,无法对每一坩埚作出评价,仅能通过抽样对批次坩埚的质量作出估计预测。因此,无论从坩埚研究、生产以及质量检测等方面均需要更为科学、可行的评价方法。

氧化钙坩埚的烧结状态表现为晶粒大小、晶粒结构、晶粒间关系以及晶界发育,通过无损阻抗测量可间接评价烧结状态[1]。扫描电镜是一种先进的分析仪器,广泛应用于材料学研究,可直接反映坩埚的微观结构信息。但扫描电镜检测费用大且属于有损检测,检测结果仅反映坩埚局部极小范围(数十微米范围内)的信息。下面,我们将从阻抗谱测量方法、阻抗谱与扫描电镜对比入手介绍,并给出最终结论。

2测量方法

测量方法包括阻抗谱测量和扫描电镜测试,测量样品为氧化钙坩埚和坩埚碎片。使用扫描电镜测试时,需要根据样品台尺寸对氧化钙坩埚进行取样。

2.1 阻抗谱测量原理

阻抗谱测量电路如图1所示,正弦信号采用DDS芯片AD9959,输出频率:1Hz-200M Hz,相位分辨率:1°,幅度的分辨率是:1/1024。AD9959输出正弦激励信号给分压电路,Rs为标准精密电阻,阻值为1MΩ,DUT为待测器件。实际测量中,DUT为氧化钙坩埚,两个测量夹子分别夹在坩埚上口和底座上。坩埚置于纯铜底座之上,底座侧面设有一个测试柱,供测试夹连接。分压电路输出两路正弦信号,其幅值为V1和V2。设DUT的阻抗为ZU,V1初始相位为0,V1测试中幅值恒定为1V,V2与V1相位差为[θ]°,根据欧姆定理可得:

因此,只要能够知道V2/V1的幅值比和V2与V1之间的相位差,即可获得DUT的阻抗。幅值比和相位差可以通过幅度相位检测芯片AD8302转换为直流电压,通过A/D转换可获得幅值比和相位差。将幅值比和相位差代入(2)式可计算出DUT的阻抗。整个测量系统的激励信号频率、幅值设置和阻抗计算均由单片机控制完成,最终结果送往OLED12864液晶模块显示。

2.2 扫描电镜测试方法

扫描电镜用于分析材料微观结构,采用JSM-6390A型扫描电子显微镜,样品台尺寸为:X=80mm,Y=40mm,Z=5到48mm。样品为坩埚碎片,大小为1厘米见方,一次测试可在样品台上布置9个样品。

3 结果对照及分析

阻抗谱的测量采用10个频点,分别是100、200、400、600、800、1000、2000、4000、6000、8000和10000Hz。氧化钙坩埚生产中为了达到良好的烧结状态,需要在氧化钙主成分之外加入添加剂。添加剂一般为氧化物等的混合物,添加剂的含量直接影响烧结状态。分别试制了三种含量添加剂的坩埚,分别是3%、5%和7%。对每种含量测量了四个坩埚的阻抗谱。同时,对每种含量的坩埚进行扫描电镜测试,每种含量的坩埚的样品的扫描电镜结果较为一致,因此对每种含量的坩埚的扫描电镜仅给出一组结果。图2为不同含量添加剂的坩埚的阻抗谱,箭头表示频率增加方向,图3为扫描电镜结果。图3的第一行为3%添加剂的坩埚的扫描电镜结果,第二行为5%添加剂的坩埚的扫描电镜结果,第三行为7%添加剂的坩埚的扫描电镜结果。

由图2阻抗谱可以看出,添加剂含量的增加,会引起阻抗谱的变化,这说明阻抗谱对于添加剂含量的变化比较敏感,可用来分析添加剂含量对材料结构的影响。由图3可以看出,坩埚材料的结构由大的晶粒和晶粒之间的微小颗粒组成。根据电镜成分分析,大的晶粒为氧化钙,微小颗粒为添加剂。微小颗粒在高温下融化,在大晶粒之间流动形成网状结果,强化了大晶粒之间的连接,促进了烧结过程,使得材料的强度增强。从图3可以看出,随着添加剂含量的增加,坩埚的晶粒生长越来越大,晶粒之间的网络结构越来越好,材料烧结更为充分。那么从阻抗谱来说,材料的网状结构越发达,低频电流流过晶粒外部空间的能力就越大,表现为材料的低频阻抗就越低。材料的烧结越充分,晶粒内部越密实,连接越紧密,那么高频电流在穿越晶粒过程中的难度也就越低,那么高频阻抗同样也会越小。但阻抗谱的实际测量确恰恰相反,这可能与添加剂的特性有关。除了促进烧结,添加剂还有一个作用就是增强坩埚的抗热震性。添加剂在高温烧制过程中会发生膨胀收缩反应,造成坩埚内部产生大量的微细裂纹。由图3可以看出,7%的添加剂的坩埚中存在较多的裂纹和空隙,这会造成阻抗变大。两种效应中,膨胀收缩效应对阻抗的影响更大,因此当增加添加剂时,阻抗谱会向右移动。这与实测的阻抗谱一致,两种方法对材料结构的分析一致,可以从宏观为微观两方面对坩埚烧结状态进行评价。

4 结论

上述研究表明,阻抗谱的形状与坩埚的添加剂含量明确相关,可以用于表征坩埚的烧结状态。扫描电镜可以用来研究坩埚的微观结构。结合阻抗谱和扫描电镜可以更为全面的研究坩埚烧结过程。阻抗谱测量方法简单、成本低,进一步深入研究,该方法有望用于坩埚的研发以及产品质量的无损评价。