首页 > 文章中心 > 航空摄影测量

航空摄影测量

航空摄影测量

航空摄影测量范文第1篇

利用航空摄影测量技术可以快速获得道路阻断、河流阻塞、城镇的损坏和重要基础设施的破坏情况,为抗震救灾决策指挥提供依据。也可以在城镇规划中提供数据依据。

航空摄影测量就是在航空器上利用航摄仪器对地面连续摄取地面相片结合地面控制点测量、调绘和立体测绘等步骤,绘制出地形图的作业。

航空摄影测量单张像片测图的基本原理是中心投影的透视变换,立体测图的基本原理是投影过程的几何反转。

航空摄影测量的作业分外业和内业。外业包括:像片控制点联测,像片控制点一般是航摄前在地面上布设的标志点,也可选用像片上明显地物点(如道路交叉点等),用测角交会、测距导线、等外水准、高程导线等普通测量方法测定其平面坐标和高程。综合法测图。内业包括:①加密测图控制点,以外业像片控制点为基础,一般用空中三角测量加密方法,推求测图需要的控制点、检查其平面坐标和高程。

解析空中三角测量

a.扫描像片b.立体观测:在精密立体坐标量测仪或解析测图仪上,立体量测加密点及框标在左右像片上的坐标.当作业人员通过观测系统使左右眼分别观察左片和右片,则可看到重建的立体光学模型。其他建立立体视觉的方法,包括:互补色法;偏振光立体眼镜法;液晶立体眼镜法等。

c.内定向:内定向是指根据量测的像片四角框标坐标和相应的摄影机检定植,恢复像片与摄影机的相关位置,即确定像点在像框标坐标系中的坐标.

d.相对定向:相对定向的含义是,恢复摄影瞬间立体像对内左右像片之间的相对空间方位.确定两个像片的相对空间方位需要5个参数.相对定向的数学关系通常用同名光线共面条件表示,即左右摄影中心至地面点的两条光线共面.相对定向一般假定左像片保持水平不变,右片相对左片的五个参数通常以基线分量Bx,By和右片的旋转角Ф,W,K表示.相对

定向方程式为非线性函数,需要将其线性化.相对定向至少需量测6个定向点,利用最小二乘法平差解算.

e.绝对定向:绝对定向也称大地定向,是指确定立体模型或由多个立体模型构成的区域的绝对方位,也就是确定立体模型或区域相对地面的关系.绝对定向参数为7个.

f.区域平差:区域平差也称区域空中三角测量,俗称电算加密,是对整个区域网进行绝对定向和误差配赋.区域平差目前一般采用独立模型法或光线束法.独立模型法是以单个立体模型为单元;而光线束法则以单张像片为单元。

g.联合平差:联合平差是指,摄影测量数据与非摄影测量数据的整体联立解算。联合平差也称,带辅助数据的解析空中三角测量。辅助数据系指大地测量观测数据,例如地面距离、水平角、方位角,像片外方位元素,湖面点等高等条件。目前,联合平差主要是指,摄影测量数据与机载GPS精确定位数据的同时整体解算。这是解析空中三角测量的一项重要进展,可以实现少地控或无地控空中三角测量。

h.加密成果:解析空中三角测量的成果,包括所有加密点的三维坐标和像片的外方位元素。每张像片外方位元素有6个,包括像片对应的摄影中心坐标和三个绝对角元素。

4.数据采集―测图

a.内定向:在立体测图仪上的内定向,是通过严格的装片来实现的,即使用对点器――一种精巧的放大镜,分别地将涤纶像片上的框标精确对准承片盘上的相应框标.从而就实现了恢复像片内方位元素.

对于解析测图仪,则只需将像片的基线大致平行于仪器的X轴.像片的内定向,是通过精确量测像片的四角框标,利用严密的解析公式计算求解,同时进行像片的变形改正.

b.相对定向:对于模拟型立体测图仪,包括机助测图系统,立体像片对的相对定向,是通过左右像片车架的空间运动来实现的,以便消除立体模型内各点的上下视差,从而实现恢复立体像对左右片在摄影瞬间的相对空间方位.解析测图仪的相对定向,与解析空中三角测量的相对定向算法相同,而且可以利用加密成果中的像片外方位元素直接进行安置,可以加快相对定向的速度.

c.绝对定向:传统的模拟立体测图仪绝对定向,通常分成高程置平和平面对点两个步骤来完成的.立体模型的绝对定向,通常需要6个已知平高定向点,至少应有4个平高点。

解析测图仪和机助测图系统,立体模型的绝对定向,是按三维正形变换算法,利用最小二乘法进行平差解算的。

d.地物采集:作业人员在完成立体模型的绝对定向后,需经专职质量检查人员联机检查,确认精度符合要求后,方可进行地物采集.应参照外业调绘片,在立体模型上仔细辨认,分类进行测绘.对于数字化测图,应按统一的地物编码系统分类进行采集,并且分层进行存储.同时采集的数据还应加上地物属性,以方便于同GIS建立接口.为了便于在采集和编辑中明显地区分不同的地物,各种现状地物通常赋予相应的颜色.

e.地貌采集:在传统的模拟测图中,包括机助测图中,地貌采集是由等高线描绘和注记高程点两个部分组成的。等高线的基本等高距,应按规范根据成图比例尺、地形类别及用图需要选定;计曲线则取基本等高距,即首曲线的5的倍数。

高程注记点,一般选在明显地物点和地形点上,依据地形类别及地物点和地形点的多少,其密度规范规定图上每10cm×10cm为5•20个点。

在解析测图仪上,地貌测绘可以有多种选择方式,除按等高线和高程注记点外,还可采用按程序控制的矩形格网或断面方式采集地形点。

5.原图编辑:地形原图编辑包括,对原图中地物地貌表示不合理之处的处理,相邻图幅的接边处理,以及道路、河流、街道等名称的注记。

6.原图清绘:在传统的模拟测图中,原图清绘的主要任务是在铅笔稿原图上进行清理着色,或者在聚脂薄膜上刻绘。

对于数字化测图,在经过图形编辑和审校后,可直接利用高精度绘图机绘制线划地形图,还可用磁介质提供数字地形图产品。

测绘地形图我们现在主要采用VirtuoZo 3.5,通过空三加密得出的左右影像叠加立体像对,利用计算机测绘出影片上按技术要求和比例尺要求应测绘的图形。

航空摄影测量是根据摄影过程的几何反转原理,置立体像对于立体测图仪内,建立起所摄地面缩小的几何模型,借以测绘地形图的方法的。

航空摄影测量的主题,是将地面的中心投影(航摄像片)变换为正射投影(地形图)。这一问题可以采取许多途径来解决。如图解法、光学机械法(亦称模拟法)和解析法等。在每一种方法中还可细分出许多具体方法,而每种具体方法又有其特有的理论。其中有些概念和理论是基础性的,带有某些共性,如像片的内方位元素和外方位元素,像点同地面点的坐标关系式,共线条件方程,像对的相对定向,模型的绝对定向和立体观测原理等。

立体观察的原理是建立人造立体视觉,即将像对上的视差反映为人眼的生理视差后得出的立体视觉(图3)。得到人造立体视觉须具备3个条件:①由两个不同位置(一条基线的两端)拍摄同一景物的两张像片(称为立体像对或像对);②两只眼睛分别观察像对中的一张像片;③观察时像对上各同名像点的连线要同人的眼睛基线大致平行,而且同名点间的距离一般要小于眼基线(或扩大后的眼基距)。若用两个相同标志分别置于左右像片的同名像点上,则立体观察时就可以看到在立体模型上加入了一个空间的测标。为便于立体观察,可借助于一些简单的工具,如桥式立体镜和反光立体镜。对于那种利用两个投影器把左右像片的影像同时叠合地投影在一个承影面上的情况,可采用互补色原理或偏振光原理进行立体观察,并用一个具有测标的测绘台量测。

内业判读后,外业像片调绘,在像片上通过判读,用规定的地形图符号绘注地物、地貌等要素;测绘没有影像的和新增的重要地物;注记通过调查所得的地名等。

航空摄影测量范文第2篇

关键词:数字航摄仪;DMC IMU/D GPS;激光测高扫描系统

中图分类号:C35文献标识码: A

引言

航空摄影测量就是在航空器中安装摄影仪器,进而在空中对需要测量的地形进行摄影。随着我国经济的发展,地形变化的速度非常快,同时由于我国地形结构复杂,依靠传统的测量技术很难对特殊地形进行实地测量,因此借助航空摄影技术可以实现对复杂地形的测量,并且航空摄影测量可以缩短测量工作周期,提高测量数据的准确。

一、航空摄影测量技术的任务

目前我国航空摄影测量技术的任务主要包括对地形面貌的测量和非地形测量两种:

1、地形测量

地形测量是航空摄影测量的主要任务,它是通过对测量地形的摄影,加强对地形的了解,并且按照比例尺寸对摄影的对象进行准确的浓放,以此实现测量的目的。在地形测量中需要做好以下三点工作:一是要保证摄影图形的具体数据和图形,并且按照预定的尺寸比例对航空摄影的图片进行数据还原,并且根据还原的数据图像,建立相应的图片库;二是要建立数据库,航空摄影要根据对地形的数据分析建立相应的数据库,掌握数据的不同分类以及数据之间参数的变化情况,以此实现在航空摄影时实现测量的数字化;三是积极掌握测量地形的相关数据,并且根据掌握的数据情况完成对地形的整体测量,最后实现摄影图像的真实还原。总之在航空摄影测量的时候要进行合理的分工,保证摄影的图像数据真实、准确,使测量数据更加符合标准。

2、非地形测量

航空摄影测量技术不仅仅应用在地形测量领域,其还应用在许多其它领域。非地形测量不是以测量地形为目的,而是通过对地形的摄影观察地形的变化,以此更加地形变化发现其中的问题,比如航空摄影技术应用在军事领域中,就可以通过航空摄影技术对某一区域内进行军事侦察,以此观察该地形是否存在军事设备以及该地区的变化情况;航空摄影技术应用在工程领域,通过航空摄影技术可以对地形进行勘测,分析该区域是否存在矿物质等,以此实现对该区域的合理开发利用。航空摄影技术的非地形测量功能被越来越多的领域所应用,其发挥的价值也越来越大。

二、航空摄影操作的关键和方式应用

1、摄影精确,设计科学

在航空摄影测绘的过程当中需要先对摄影实施准确的计算,从而令别的相关要求都有一个很好的发展,同时需要注意的是要优化航拍的设计。摄影办法是要先确定好摄影的地点以及实施一个适合的角度摄影从而能够进行准确的设计计算。进行摄影测绘必须要切合现实情况,利用适合的比例来对收集到的数据以及图像进行还原,此外还需要添加一个大比例尺的数字图,增加摄影的准确因子,增强摄影高度、比例尺、以及摄影的焦距以及图像的清晰度,经过以上的因素从而对摄影设计进行优化。另一方面,对图像进行还原的方案必须要是科学合适的,图片以及数据的收集设计需要有根有据,需要依据实际的图像从而进行数据以及图片的收集相关设计,测绘不能仅仅关注在绘制图像上,应当具有数据性的图像视频。

2、收集精确,处理科学

在航空摄影测绘过程当中需要对摄影器械摄影收集到的数据以及图片实施精确的计算分析,收集的方式要合理,满足相关的指标要求,利用精确的定位以及摄影的方式是科学合理的,从而使摄影的结果更加的切合实际情况、更加的精确。另一方面实施摄影的相关作业人员也需要对于摄影的方法有个准确的认识,根据摄影的高度不同,所采用的摄影办法都要根据实际做出调整。同样需要关注的是相关数据的处理方式,处理方式需要通过反复的分析探究以及相关人员的反复推算,从而可以完成对于各种数据的科学统计分析,因此令航空摄影测绘工作能够很好的被执行。航空摄影首先要在使用的飞机外体组装好测绘过程当中所需要使用到的相关装置,因此能够对地面实施竖直摄影,从而得到有关的图像视频,指导数据的采集朝着自主化以及数字化方面进行开发。

3、质量检测精确,结果提交科学有效

在实施航拍测绘的最终阶段需要针对收集到的相关数据实施高要求的检测,对于摄影的整个过程实施精确审核以及研究,从而达到整体的质量准确性标准,此外在最终阶段的检测作业中必须要把控好质量的这个标准。针对摄影的方式要增加每个操作单元智联的相互联系,能够分辨出各个操作单元之间的异同点,对于摄影的具体项目实施整体的计算,同时对于计算得到的结果要进行多次推导验证,验证结果是否符合实际情况,增加其真实性。此外对于数字的准确度、数据的完整性以及精确性都要实施验证,而进行验证的部门都是相关的质量检测部门,对于检测和验证的过程都需要依照相关的要求,将合同中的规定作为依据。在检测合格之后再实施相关的验证,如果出现检测资料不达标则验证部门能够拒绝验证。

三、航空摄影测量新技术的应用

1、数字航摄仪DMC

DMC航空摄影相机是利用四个多频率的接收器分别接收红、蓝、绿三色光以及近红外数据;而四个全色传感器分别捕捉的影像,依靠少量的重叠区域生成一个大的768013824镶嵌影像。此系统能够在各种光线环境中,通过调整相机的曝光时间,保证图片的质量,该系统对于地面的分辨率能够达到5cm。低空数字航空摄影测量以2000万像素以上的小像幅数码相机为传感器,采用无人飞机进行低空航摄,具有机动、快速、经济等优势。此种技术可以在较短的时间内获得部门地区较为准确的高分辨率的数字图像,另外对于天气以及机场的依靠性较小,目前已经被广泛的应用在应急保证、防灾减灾、图形测绘等方面。

2、IMU/DGPS辅助航空摄影测量技术

GPS,即是全球定位系统,运用在航空摄影测绘后,利用空三素的办法得到角元素,从而完成了部分直接得到投影光束。IMU/DGPS,即是惯性测量单元/差分GPS,运用在航拍之后,能够直接取得三个线元素以及三个角元素,极少需要甚至不需要地面控制点就能够实施航空摄影测绘,从而大大的简化了摄影测绘工作。IMU/DGPS协助航空摄影的工作原理是利用了IMU、DGPS两种新技术的综合分析验算,从而得到了具有十分高的准确度的航空摄影测绘相关的概念、技术以及方案。

这种摄影方法的工作方式是首先利用组装在飞机外体上的GPS接收装置或是地面站点的GPS接收装置,进行持续的并且同步的检测太空中的GPS卫星信号,接下来是利用GPS载波相位测绘差分定位技术的协助从而得到了航空摄影仪的有关定位数值。IMU/DGPS技术能够直接的得到每一张摄影到的图片外方位元素,把其当作加权检测值参加到摄影测绘区域网的平差,因此得到了准确度更加高的图片外方位元素结果,这种测绘的方法叫做IMU/DGPS协助航空三角测绘方法。高准度的差分GPS与惯性测绘部分得到航拍的曝光时间的图像定位期空间位置,之后再针对去实施变差的更正,因此得到个各张图片的高准度外方位元素的方法称作直接定向法。

3、LIDAR激光测高扫描系统

LIDAR激光测高扫描系统通过GPS辅助空中三角测绘技术,能够减小地表的控制点,减短测绘时间,降低成本,可以真正应用于困难地区、无图区及边境区的基础测量。

结束语

航空摄影测量技术的发展,为我国的经济发展提供了重要的贡献,带动了测量技术的发展。航空摄影测量技术的广泛应用,突破了地形复杂、摄影周期长等一些弊端,促进了我国测量事业的发展。

参考文献

[1]马涛.航空摄影测量中新技术应用与发展[J].科技资讯,2013,36:32.

[2]王金强.IMU/DGPS辅助航空摄影测量应用研究[D].昆明理工大学,2013.

航空摄影测量范文第3篇

关键词:数码航摄仪 位移补偿 控制点 影像

中图分类号:P23 文献标识码:A 文章编号:1672-3791(2013)04(b)-0037-04

自2000年第一台真正意义上的数码航摄相机并投入使用以来,数码航空摄影测量一直在争议中不断发展。经过10多年的发展至今,数码航摄摄影已基本取代了传统光学胶片航空摄影[1]。在此期间受限于CCD尺寸、存储设备、数据传输速率、计算机技术和光学镜头工艺水平等等技术限制,为获取更高的航空摄影效率和精度,不得不使用额外的设计,由此衍生了多种多样的数码航摄仪。

按照成像方式一般可以将数码航摄仪分为单一大面阵,多镜头、多CCD合成大幅面框幅式和线阵推扫式几大类[2]。很难用一个统一的标准去衡量这些数码航摄仪的优劣,他们各有特点,适用于不同的领域。

本文介绍的以色列VisionMap公司设计生产的A3数码航空摄影测量系统是比较特殊一种。这种数码航摄仪使用了多种尝试和创新,并取得了成功。本文主要介绍并分析了A3数码航空摄影测量系统的一些原理和技术。

1 A3数码航空摄影测量系统的组成和特点

A3数码航空摄影测量系统是一整套不可分割航空数码系统,主要包括空中和地面两大部分。空中设备主要有:航摄仪、控制存储设备、飞行导航管理系统(图1)。

地面数据后处理系统(图2)由后处理软件和硬件组成,主要功能包括:飞行设计、数据下载、数据准备、和数据处理。可自动完成空中三角测量并生成DSM、DOM、倾斜影像、拼合后常规大幅面立体模型等产品。

整套A3数码航空摄影测量系统的特点。

(1)影像获取非常高效,是同类数码航空摄影系统的2~4倍。

(2)一次飞行可同时获取垂直和倾斜影像。

(3)无需控制点和IMU设备就可获取高精度结果。

(4)全自动的空中三角测量、DTM、大面积正射影像成图及镶嵌。

(5)数据处理能力非常强大,可在2~5天时间内处理5000平方公里的影像数据。

2 A3数码航空摄影测量系统主要原理和技术方法

2.1 物理结构

它使用双量测数码相机刚性固定组合,垂直行方向摆动扫视拍摄(图3)。单个量测数码相机焦距300 mm。目前最新型号A3相机中单相机获取的影像(以下称子影像)幅面4006×2666像素,像素大小0.012 mm,摆动最大扫摄视场角104度(图4)。

2.2 扫视拍摄方式

单方向匀速摆动扫视拍摄后快速回摆,每台相机获取每秒可获取3~4幅子影像。

一个扫视周期内获单个相机最多可获取33幅子影像。

两台相机同时获取的子影像之间重叠度不少于2%,扫视方向上相邻子影像重叠度不少于15%(图4)。

单次摆动扫视后的的影像通过纠正后可合成幅面达62000pix×8000pix的大幅面中心投影影像(图5)。

2.3 覆盖能力

扫摄视场角104度,设航高H,理论上其单张大幅面影像覆盖宽度为:

2H×tan52=2.56H

即覆盖宽度为航高的2.56倍。

但是为保证正射影像的合理性,需要以传统光学胶片航摄相机旁向重叠25%(平地、村镇)和40%(山地、城区)情况下的地物投影差为界作为分类标准[3],将获取的大幅面影像分为正射影像和倾斜影像两个部分(图6、图7)。

为保证正射影像区域的地物投影差满足要求并存在一定的重叠度,使用A3数码航摄仪拍摄时旁向重叠度在平地、村镇地区一般需要大于60%。在山地、城区执行航空摄影时为保证效果,其旁向重叠度应大于80%。

此时在相同飞行高度情况下A3数码航摄仪的航线间隔略优于其他数码航摄相机,但是考虑到A3数码航摄像机获取同样地面分辨率的影像时,其飞行高度一般是同类数码航摄相机的1.5~3倍,所以在获取同样地面分辨率情况下,其正射影像区域覆盖能力也是同类相机的1.5~3倍(表1、表2)。

2.4 无控制点获取高精度结果的原理和方法

A3数码航摄系统携带有双频GPS,可实时记录每张子影像的位置信息。通过地面基站或事后精密单点定位技术解算获取每张子影像的精确位置精度可达2~20 cm[4]。

扫摄时同一周期内获取的相邻子影像重叠度大于15%,相邻周期直接对子影像重叠度(航向方向上重叠度)大于56%,相邻航带旁向重叠度在60%以上,所以同一地物可出现大量的影像上,这些地物各自对应一组独立的子影像位置信息(图4、图8)。

通过大量重叠子影像,充分利用多目视觉[5]、多基线匹配技术[6],对同一地物可获取大量匹配数据。构建三角网非常紧密,可同时获取大量的冗余结果,这些结果通过平差解算足以以一个较高的精度趋近真实值。(图9)。

在航向方向上相邻影像由于基线非常短,投影差很小,有助于提高匹配数量、匹配精度、定向精度进而提高平面精度[7]。

在相邻航带之间,由于旁向重叠度一般大于55%,可以同样可用于匹配、量测等作业。而相邻航带之间视场角很大,可充分利用基高比大的优点获得很好的高程精度和人工量测精度[5](表3)。

正射影像和倾斜影像均参与匹配和平差,同一地物不同角度的数据均参与计算,可以有效验证精度的可靠性。

综合以上各种有利条件,通过光束法区域网平差和其自创的验证算法,A3数码航空摄影测量系统理论上可以在无控制点的情况下获取较高的精度。

2.5 拍摄过程中各种位移补偿方法

相比于传统数码航摄相机,A3数码航摄相机在拍摄过程中存在不仅在飞行方向上存在位移变化,在其摆动扫摄方向上也存在的位移,并且没有陀螺稳定座驾补偿飞机飞行过程中震动和姿态变化带来的位移。必须通过设计补偿以上各种位移。

A3数码航摄系统通过全局快门曝光模式缩短曝光时间,此模式下所有像素同时曝光,可以保证所有像素在曝光时刻精度的一致性。

基于加速度传感器和实时GPS的数据,通过编码器计算所需要补偿的参数,并通过此参数控制一个特殊的内置镜头组做微小的姿态变化,从而达到补偿各种位移和角度变化的目的。其补偿方式和消费级单反数码相机的光学稳定系统(俗称镜头防抖)相同,但VisionMap声称其合作的镜头和相机后备提供商(佳能公司)做了特殊的设计,使其性能比一般消费级的光学稳定系统好。

在实际的飞行中,通过获取的影像也表明这一方式可以有效补偿像素位移[8](图10)。

3 数据后处理的能力和方式

数据下载后通过地面基站或精密单点定位技术计算每张子影像的高精度位置信息。以这些位置信息为基础进行匹配和区域网平差。

通过光束法区域网平差计算改正后合成大幅面影像的虚拟相机的自检校参数,并输出立体模型和纠正后的大幅面影像供立体测量使用。

评估精度并可生成DSM、DTM,同时可以计算、整理、生成并输出倾斜影像和正射影像。

在此过程中A3数码航摄相机分散的数据结构非常适合分布式作业,处理时间可以随着后处理硬件设备的数量和能力稳步提高[9]。

4 结语

A3数码航空摄影测量系统通过一系列巧妙的设计使其性能确实达到了其声称的标准。

在获取倾斜影像时,只能获取旁向方向上两个角度的倾斜影像,飞行方向上两个角度的倾斜度并不高,其应用有一定的限制但能满足大部分需要。

通过分析可以看出在获取地面分辨率低于10 cm时有很大优势,在获取优于5 cm影像时,其效率开始大幅下降。

当获取10~25 cm分辨率时,A3数码航空摄影测量系统效率是其他数码航摄相机的2~4倍。

当地面分辨率低于25 cm时,其飞行高度将大于7500 m。在此高度上执行航空摄影,对天气、能见度、飞行器的要求有了非常苛刻的要求,制约了其获取更低分辨率提高效率的能力。当对分辨率要求不高时,同类数码航摄相机可以通过提高飞行高度以达到相同地面覆盖效率。

虽然通过一系列的补偿装置有效减少了各种位移带来的影响,但是A3数码航摄相机300 mm的超长焦距,飞行时相对较高的高度,使其依然无法使用较慢的快门速度,对光照和能见度要求相对较高。

无控制点后处理方式和多基线、多目视觉的应用非常值得借鉴,将大幅提高作业效率和精度。

参考文献

[1] 张祖勋.数字摄影测量的发展与展望[J].地理信息世界,2004(3).

[2] 韩磊,蒋旭惠.几款数字航摄相机的应用与比较[J].城市勘测,2006(5).

[3] GIM International Magazine,Dr.Yuri Raizman,Flight Planning and Orthophotos.

[4] 张小红,刘经南,Rene Forsberg.基于精密单点定位技术的航空测量应用实践[J].武汉大学学报:信息科学版,2006(1).

[5] 赵梅芳,沈邦兴,吴晓明,等.多目立体视觉在工业测量中的应用研究[J].计算机测量与控制,2003(11).

[6] 张剑清,胡安文.多基线摄影测量前方交会方法及精度分析[J].武汉大学学报:信息科学版,2007(10).

[7] 张永军,张勇.大重叠度影像的相对定向与前方交会精度分析[J].武汉大学学报:信息科学版,2005(2).

航空摄影测量范文第4篇

关键词:航空摄影测量;数据采集;一体化

中图分类号:P2文献标识码: A

1公路航测的作业过程

1.1准备工作

(1)航摄范围的确定

对公路航测来说,首先是根据计划书的要求,收集路线所经过地区的有关地理、水文、地质、气象及该区域经济发展、规划等资料,结合1∶50000或1∶100000的小比例尺地形图进行认真的方案比选,确定路线方案,从而确定路线方案走廊。路线方案确定之后,根据路线方案走廊,在地形图上确定出测图范围和摄影范围。公路路线的航摄范围以路线方案线(含各比较方案线)控制,两侧各超出方案线的距离应大于500 m,当给出路线方案走廊范围时,两侧各超出走廊带的距离应大于300 m,以保证成图质量并防止造成漏测现象,并为方案比选需扩充成图范围而留有余地。

(2)航带设计

公路航测的航带设计,一般以路线走向为导向,连续布设若干个首尾相接的航摄分区覆盖整个路线方案走廊,且各航摄分区的设置尽可能选单航带摄影。当路线弯曲过大或遇到需加大摄影宽度的地段(如大桥、特大桥、大型互通式立交、多方案密集分布等)时,才布设多航带摄影。沿路线走廊的纵向覆盖,要求航带两端各超出分区范围一条基线以上,保证分区接头部位的搭接宽度,避免产生漏洞。路线走廊的横向覆盖,应尽量满足设计要求,航迹线偏移应小于像幅的10%。这是对飞行时航迹线偏移提出的比较严格的要求,以保证路线走廊带范围完全包含在像片的有效范围之内。各个测段及航带一旦确定,根据摄影比例尺及航向、旁向重叠度的要求,可确定摄影基线(同一条航线相邻摄站间的距离)和航线间隔(相邻航线之间的距离),如下式。

B=m・l(1-h%)

D=m・l(1-p%)

式中B―――航摄基线;

D―――航线间隔;

l―――像幅边长;

h%―――航向重叠度;

p%―――旁向重叠度。

对于多航带设计的测段,其航带数R及每条航带的像片数n可有下式求得。

R=Ly/D+1

n=Lx/B+3

式中Lx―――测段长;Ly―――测段宽;1和3为常数,考虑像片重叠的加数。

1.2摄影工作

摄影时飞机要按使用单位提出的航带数、摄影宽度、航高、像幅以及对像片的要求(重叠度、倾角、偏角、航线弯曲等)进行摄影。1.3外业工作外业(外控)测量的内容包括:点位选刺、像片调绘、导线测量和水准测量[4]。点位选刺也就是所谓刺点,它是根据设计好的点位范围,按照规范中对点位的要求,将实地的明显位置,准确地刺到像片上,并在像片背后绘上示意图和加注简单说明。像片调绘分为一般调绘和专业调绘。一般调绘是在野外用像片和实地对照,按规定符号将地物和地貌用铅笔细致、准确地绘在像片上。专业调绘是在野外搜集及记录有关公路设计所需的水文、地质、材料等资料。

1.4内业工作

常规的航测内业工作包括电算加密、立体测图、底图清绘整饰、晒印等。根据地形的差异和用图要求的不同,测图方法也不尽相同。常规的测图方法有:多倍仪测图、立体量测仪测图、精密立体测图仪、解析测图仪测图,还有用纠正的影像平面图。全数字化测图(也称数字摄影测量)作为一种更为先进的摄影测量方法,目前也已经在实际测图生产中的到应用。由于目前数字摄影测量自动化的相关技术还不能完全代替人眼的立体观察,在隐蔽地区、陡峭地形、影像质量极差或云层遮盖地区,特别是对地物的识别和植被的处理仍需人工协助,所以在实际测图生产中,全数字化测图系统主要快速解决地形部分的数据采集问题,而在地物、植被和各种隐蔽区域则由人工借助液晶立体眼镜及手轮和脚盘,通过对计算机屏幕上建立的三维模型进行测量,采用模拟测图的方法解决这些问题,完成测图工作。

2航测数据采集与公路测设一体化

2.1传统公路测设方法存在的问题

按公路设计过程划分,公路测设分为勘测(外业)和设计(内业)两大部分。长期以来,公路测设主要采用模拟图解的方法测绘大比例尺地形图,然后从图中读取或用数字化仪采集地形数据进行初步设计;施工图设计阶段,则根据初步设计中已定好的平面线形,通过野外实测路线纵、横断面高程进行设计。传统的测设方法,外业、内业这两部分被分割成有一定关系的两个相互独立的设计过程,这主要带来两方面的问题:一方面,这种传统的数据采集方式,中间环节多、精度损失大、出错率高、效率低、费时费力,往往是影响设计周期的重要因素;另一方面,公路建设质量的好坏、投资多少、效益高低主要取决于设计方案的优劣。最佳路线方案是必须通过大量的方案比选才能得到的,由于每变动一次路线方案,按常规的作法就必须重新做一次数据采集工作,因此很难做到同等设计深度的、真正的多方案比选,因此也很难以得到最佳设计方案。传统的公路测设方法已严重地制约了公路CAD的发展和完善,影响了公路设计水平和效益的提高。目前,由于CAD普及率以及计算机出图率较高,公路测设中的内业设计部分已有很大改善。但严格地说,这种外业、内业相互脱节的设计方式,相当于在设计方案已经确定,外业测量已经完成的情况下,用计算机完成其内业计算与出图的工作,未从根本上解决公路测设所存在的问题。

2.2基于航测数模技术的公路测设一体化系统

公路勘察的数据采集与处理,是构成公路测设一体化的重要基础。要解决公路勘察方面的问题,从技术方面而言,主要是要解决数据的有效、准确地获取,这取决于测量高新技术及新设备的应用。对数据处理而言,主要取决于数据地面模型的应用,取决于数据地面模型系统的成熟和完善。数字地面模型作为联接野外勘测(数据采集)和内业设计(CAD系统)之间的纽带和桥梁,在公路测设一体化系统中起着至关重要的作用。

采用航测手段采集的地形原始数据是进行路线设计的基本数据。该数据质量的好坏,精度的高低,直接影响到设计成果的质量,也是影响航测数模技术用于公路路线施工图设计的关键所在。在地形数目有效获取的基础上建立沿公路走向的带状数字地面模型,从而可快速、准确地为公路设计提供所需的一切地形资料。

航测数模技术在公路测设中的应用,是将航测、数模与路线CAD紧密结合成一个有机的整体,形成覆盖数据采集与处理、路线初步设计、路线施工图设计到输出设计文件的路线设计全过程的一体化系统。其主要目的就是充分利用航测成图时可附带记录的地形图测图数据建立数字地面模型,进行公路初步设计和施工图设计,以尽可能减少野外测量工作,提高设计效率和设计质量。在沿公路走向的带状数字地面模型建立的基础上,只要路线的平面线形一确定,便可由数模快速内插出该路线的纵、横断面的地面线数据,配合路线CAD系统快速完成该路线的设计。在初步设计阶段,路线多方案比选是一项重要任务,按常规的方法设计,当路线方案变动时,必须重新做从地形图上读取纵横断面地面线的工作,工作量大,设计周期长,设计费用增高,因而很难实现真正的多方案比选。在这方面,公路测设一体化设计方法具有明显的优势,每变动路线平面线形,系统便可快速完成设计,而且完成的每个设计,均是同精度、同深度的。它可使设计人员在不须重新作数据采集的情况下,比较所有可能的平面线形,并通过直接由数字地面模型与路线设计成果自动产生的带地面景观的三维道路工程模型,能准确、客观地反映道路修建后的真实情况,设计人员可通过从线形设计指标、工程量大小、线形景观、道路与地形环境的配合与协调等多角度全面、客观评价路线设计成果,从而找出最佳设计方案。这对工程费用的降低,设计周期的缩短,设计质量的提高具有重要的意义。

结束语

传统的公路实地选线设计方法手段落后,劳动强度大,生产效率低,已无法适应当前和今后我国公路建设发展的需要,有必要利用新技术予以改造和武装。利用航空摄影测量技术勘测公路是公路勘测现代化的方法之一,它对加快测设速度、提高测设质量、革新测设手段是一种行之有效的勘测方法。

参考文献

航空摄影测量范文第5篇

摘要:随着科技的不断发展,高科技产品在生活和生产中的应用不断推广。无人机因为精准度较高,能在人们不易到达的地方完成任务等优点,得到广泛的应用。地形绘图在对一个地方的了解或者是其他任何的用途中,都有着重要的作用,所以进行地形图的绘制也是发展的必然的措施。无人机的航空摄影测量用在地形图的测绘方面,能够促进无人机以及地形绘图质量双方面的积极作用。文章就当下的无人机航空摄影的现状进行分析,就其在地形绘图中的应用进行一定的研究。

关键词:无人机;航空摄影;地形测绘;发展需要

1前言

时代的发展对于处于其中的人和物的要求都不断提高,许多新的事物的需求依靠人们自身的能力都无法完成,于是高科技产品便成了最有力的帮手。无人机在航空摄影中的应用,有许多积极的成果,摄影的优质效果也是的地形图测绘的相关人士认识到实际可用性。在实际的应用中表现出的具体的优势,也使得无人机的航空摄影测量在地形图的测绘中的应用不断推广。在具体的应用中,因为操作技术或是实施环境等的影响,还有许多亟待调整的方面,还有很大的进步空间。

2无人机航空摄影测量在地形图测绘中的现状

无人机的航空摄影是一中新型的测量方式,发展低空的无人机的航空技术的发展是当下测量工程重要的发展趋势,是国家在技术领域发展的需求和数字化城市建设的具体的需要。航空摄影测量在现实的测量工程的应用范围十分广泛,在实际的使用过程中,因为有速度较快,测量的精度较高等方面的优点,应用的范围和方式还在不断的多样化,在工程测量以及其他相关领域的时间中都有一定的应用价值。随着我国社会经济的快速发展,城市化建设的步伐不断推进,城市中的区域规划以及交通、水利等的布局都要依赖于实际的地形情况,在数据获取方面的需求量越来越大,质量要求也越来越高,相应和更新的速度虽然在不停的加快,但是作为一种新型的测量手段,还是有很多值得注意和改进的地方。无人机的航空摄影可以快速获取分辨率较高的影响,结合数字化的测量软件的发展,后期数据的处理也更加简单和精准化,成图的质量也有了大大的改善,所以相关部门支持该技术进行进一步的推广和改进,对经济和科技发展积极作用也驱动着相关的应用进一步的落实。航空数字摄影的测量方式是基础的地理信息获取采集的最有效的途径之一,无人机航空摄影中的资料和数据的包含量越来越多,符合发展的实际的需求。无人机航空测量的具体的优点有机动灵活、成本较低以及载荷多样性、操作简单等,在测绘行业的作用越来越重要。地形图的测绘也是建设工程必须要进行的基础工程之一,所以地形图的测绘对于建设的质量有着关键的影响,获取的数据的精准度也便有了更加重要的实际的意义。无人机航空摄影的成本也较低,符合相关建设单位的预算承受能力,所以应该进一步研究,充分发挥无人机航空摄影测量在地形图的测绘中的广泛的使用价值。

3无人机航空摄影测量在地形图测绘中的应用

无人机航空摄影的测量应用在地形图测绘的许多方面,笔者经过相关资料的调查,得出具体的应用主要在以下几个方面:

3.1航空摄像测量中的像片控制

利用无人机的航空摄影测量的技术可以对该地区的相关的地形进行较为全面的掌握,在进行像片控制方面,可以将无人机的航拍于全球定位系统进行一定的结合,将航空的具体数据与地面实际情况进行一定对应,保证获得的数据能和实际的地面的测量数据进行一定的相互转换,达到实现测量地区实际地形的掌握,也方便地面对于接受的信息能够进行及时记录,保证信息完整性。航空在具体的摄影过程中,通过对像片控制点的特殊的布置和设计,在结合全球定位系统等相关的测量技术,就可以对测量地区的信息进行完整全面的掌握。通常情况下的数据测量要求乖拐点的控制点分布,但是在进行控制点分布时,一定要记住具体的点之间的关系以及具置关系,保证后期测量受到一定的便捷度影响。

3.2航空摄像机测量中的空中三角

在进行无人机的航空摄影时,空中三角形的作用主要是对地形测量的准确度的把握上。设置好空中三角,人工就可以减少对航空摄影的内部的相关内容的定向进行一定的干预,系统可以根据空中三角的相关设置,进行自动的数据的收集和计算,也可以减少人力方面使用和消耗。在进行人工选取连接点之后,就可以进行连接点以及设定位置之间的调整测试,达到满足于测量地点实际的比例需求时,就可以依靠技术对地面的地形情况进行准确的测绘了。

3.3航空摄影的立体采编的测量

上述的步骤都是无人机在航空摄影中的部分细节之处的要求,但是在完成上述的步骤之后,应该注意对地形内部收集到的测量数据进行统一的采编。利用无人机可以保证一定的精准度,但是后期节点数据的分析和准确性的检验也是不可忽略的重要的步骤。但是无人机进行数据收集后,关于等高线和水涯线一定要用手绘的方式进行,对屋檐角等测量时可能产生较大误差的地方,应该进行一定的标记,在后期处理的时候可以进一步处理,提高整个地形测绘图的准确性。

3.4外业补测的操作

在运用航空摄影测量技术时,对测量不到的地方应该进行补测等措施处理,要求测量人员应该有相当高的技术水平,补测的测量人员应该积极的进行结果的比较,进行比较之后,可以就不同的地方进行补测,纠正测量的错误,并且积极实施改正,发挥补测的精准性,确保测量结果的准确性。

4无人机航空摄影测量在地形图测绘中的重要性

无人机航空摄影测量在地形测绘中的应用不断推广,不仅是因为技术自身的优点,还因为实际的需求使得无人机的技术有较大的可实施性。笔者经过对相关资料的调查得出无人机航空摄影测量的可行性在以下几方面:

4.1安全灵活无人机的技术

随着科学技术的进步已经有了较大的发展,在地形测量方面的可靠性已经有了较大的提高。因为利用无人机,可以不需要机上的工作人员,所以对工作人员的生命健康也是极大的保护,所以在使用过程中,可以充分发挥出无人机自身的优越性。不同于直升机等载人的飞行,无人机的起落都不需要专门的场地,所以使得具体的使用又多了一层灵活性,在不同的地形也可以正常的运作,大大提高了无人机的使用效率。因为测量的地方大都是经过较大改变或是地形较为复杂的地方,所以无人机的使用大大提高了工具的实用性。无人机经过设置后可以根据预先的路线进行运作,所以事先制定的计划可以充分发挥作用,也能保证稳定性和数据的准确性。经过无人机采集的数据,也可以根据事先的程序设定,及时的传导地面的工作地点,可以及时的进行数据的交换,提高数据的准确的和完整性。所以无人机因为具有的可靠性和灵活性,在地形测绘中的应用逐渐推广。

4.2成本较低

于载人的数据收集飞机相比较,因为没有固定的场地需求等原因,无人机的成本较低、又因为使用的飞行平台和控制系统都成本较低,所以利用无人机的航空摄影技术进行数据处理时,总的费用较低,性价比较高。无人机使用的人员进行训练的程序以及相应的技能掌握都较低,所以工作人员培训方面投入也较低。维修和保养的费用较低,因为无人机制造材料清洁和维护便利等先天优势,所以无人机的外部修护的费用也较低。因为设备的等级较低,所以相应的配置也不回太高,成本的费用便进一步降低。

4.3多角度测绘

无人机配置的数码成像的设备的精度都较高,所以在使用中,拍摄的角度可以多变,经过调整之后,还可以进行多角度的交错拍摄,全方位的获取测量地点的数据,可以解决高层建筑的问题,也可以根据实际的地形进行及时的调整,所以测量的数据的准确都较高。测量成像的分辨率较高,对收集的数据的精确性便也有了一定的保障。

5结束语

综上所述,无人机航空摄影的技术在具体的地形测绘中有重要的实际意义。在应用中有许多方面的积极作用,所以要根据无人机的积极作用进行相应的应用,充分发挥无人机测量技术的作用。与传统的技术相比,有着不可替代的优越性,应用的范围也会不断推广。

参考文献:

[1]支卫斌.无人机航空摄影测量在地形测绘中的应用[J].江西建材,2015(8):224~225.

[2]张瑛,胡亚杰.无人机航空摄影测量在地形测绘中的应用[J].工业b,2015(39):319.

[3]陶文.无人机航空摄影测量技术在电力工程测量中的应用[J].科技传播,2013(10):219~220.

[4]张颖秋.无人机航空摄影测量在地形图测绘中的应用[J].中国非金属矿工业导刊,2015(5):59~62.

[5]陈卫家,戴健.论无人机航空摄影测量在地形图测绘中的应用[J].工程技术:全文版,2017(1):00249.