首页 > 文章中心 > 医学生物技术

医学生物技术

医学生物技术

医学生物技术范文第1篇

在医学院校生物技术专业开设临床医学课程,有着迫切需要和实际意义。我校生物技术专业自招生之初就开设了临床医学课程。生物技术专业有了临床医学的指引,人才培养基础更加扎实,方向更加明确。同时,具有一定临床医学知识的生物医学人才,能够更好地将自身优势辐射到传统医学专业上,为临床医学的发展提供新视野,开拓新思路,注入新的活力。医学生物技术已经在临床医学的发展中发挥了革命性的作用,如基因工程药物和疫苗、单抗导向药物、人工血液代用品等已广泛应用于癌症、传染性疾病和一些遗传性疾病治疗。同时,许多临床新问题、老难题,也越来越多地依赖于生物技术的发展,相关疾病的基因定位、组织工程、干细胞研究方面也都取得了重要成果。显然,医学院校生物技术专业开设临床医学课程既是生物技术学科发展的需要,也是临床医学发展的需要。

2医学院校生物技术专业临床医学教学现状和问题

2.1课程体系和教学内容完全照搬临床医学专业本科教育

课程体系和教学内容是培养目标的直接反映,是培养人才素质、提高教学质量的核心环节。生物技术专业临床医学课程体系和教学内容,应该紧贴生物技术专业实际需求,有针对性地进行设置。然而,目前大部分医学院校生物技术专业临床医学课程体系和教学内容完全照搬临床医学专业本科教育,将内科、外科、专科教学内容按照病因、临床表现、病理、诊断、治疗、预防等毫无取舍地灌输给学生,呈现教师教学无特色、无重点、无思路,学生学习无方向、无兴趣的状态。这与学科设置初衷和社会人才需求脱节,不能培养学生的自主学习能力及创新能力,没有达到预期效果。

2.2课程目标不明确,考核要求不严格

目前大多数医学院校对生物技术专业临床医学教学不够重视,没有真正意识到临床医学对该专业学生今后发展的重要意义。医学院校生物技术专业临床医学课程目标应该是:使学生具有一定临床思维,了解临床医学前沿和需要,并能在医学发展和临床需求中找到生物技术的落脚点、发力点,运用所掌握的生物技术理论知识和技能,从事相关领域的科学研究、技术开发,最终为医学问题的解决开辟新思路、提供新方法。但是目前医学院校对于生物技术专业临床医学课程目标认识比较模糊,在教学过程中需要学生掌握哪些内容、掌握到什么程度没有一个明确的标准。考核过程较为敷衍,甚至没有考核,使临床医学课程开设存在“鸡肋化”的危险。

3医学院校生物技术专业临床医学教学内容

医学院校生物技术专业人才培养,在强调基本素质共性的基础上,应该有不同的培养类型和专业方向。医学生物技术专业临床医学教学内容必须体现职业生涯发展目标,尊重学生多样性选择。目前的教学内容和课程体系不能完全符合专业发展和人才培养需要,不能完全适应现代医学发展需要,不能完全考虑到多样化、个性化、专业化,因此有必要对医学院校生物技术专业临床医学教学内容进行改革。

3.1紧贴实际,重点突出

临床医学是医学生物技术的出发点和落脚点,在课程设置上除了要整体介绍临床医学概况外,重点是要筛选出能够体现生物技术学科发展价值以及与生物技术知识有交集的内容,体现出医学生物技术特色和资源优势,如临床诊断的新方法,基因诊断、基因治疗技术在肿瘤及其他疾病中的应用等;而疾病的临床表现、物理诊断及常规治疗方法等内容应该淡化。这样才会贴近生物技术专业实际,更好地激发学生学习热情,避免浪费学生有限的精力。

3.2以临床问题为向导,以临床难点为突破

医学生物技术发展动力就是临床问题。医学生物技术的发展已为我们解决了一个又一个医学难题,开辟了新思路,提供了新方法,已有很多成熟的、新兴的生物技术应用于临床实践。因此,应将目前临床上亟待解决的问题和需要突破的难点贯穿在教学中,引起学生的思考和学习兴趣,从而更好地把生物技术和临床医学结合起来。

3.3着眼前沿,广泛涉猎

生物技术专业临床医学教学内容需要不断更新和发展。临床医学的最前沿往往与生物技术的发展密不可分,因此要把临床医学中最新的焦点和热点引入教学中,让学生体会医学生物技术对现代医学发展的重要性,增强荣誉感和使命感。同时,临床医学不断进展的案例也是很好的教学事例,让学生了解前辈们是如何发现问题、分析问题、解决问题,并推动医学科学向前发展的。但也要照顾到医学发展的冷门分支,给学生拾遗补缺的机会,在大家忽视的老问题上做出新文章。

4医学院校生物技术专业临床医学教学模式

生物技术专业临床医学教学模式应该有别于临床医学专业,要更加突出多样性、灵活性和自主性,最大限度调动学生积极性,将课程的作用发挥到最大化。

4.1课堂教学与课外教学相结合,选修和必修相结合

压缩课堂教学时数,将教学主战场放在课外,把更多的时间交给学生进行自主学习。增加选修课数量,鼓励学生选择自己感兴趣的方向进行探索。生物技术专业将来不从事临床医疗工作,对临床医学知识的学习应该是有重点和有取舍的,这个选择权不应掌握在教师手中,而应留给学生。让学生在课外通过文献查阅、学术会议、网络交流等多种形式,学习对未来职业发展有帮助的医学知识。

4.2大师进讲堂,将导师范围扩展至临床学科

师资队伍建设是实践教学体系改革的关键。目前生物技术专业临床医学师资结构中,中级职称教师比例偏高,真正的大师偏少。应该把临床医学的“大腕”请进讲堂,因为生物技术专业的导师往往更重视具体的新技术、新方法,而对临床医学前沿需求知之甚少,缺少宏观思路和顶层设计。这些可由临床导师很好地补充,他们扎根临床数十年,对疾病的发生发展、治疗的难点要点有更全面、深入的认识。要鼓励学生参与到临床导师的科研课题及科技创新活动中,使其不仅对原有理论知识和技术有更清晰的认识,还锻炼了临床科研思维能力;使学生能更准确地把握现代医学发展的脉搏,找到自己感兴趣、能钻研、有出路的研究方向,对未来职业发展进行合理的规划。

4.3启发为主,传授为辅

生物技术专业学生将来主要从事科研工作,应该是临床医生的益友良师。其临床医学教学不应以传授方式为主,而应采取引导、启发的方式,加入讨论及案例教学,让学生自己思考问题,用专业特长来分析问题、解决问题。强化学生创新思维和综合能力培养,在教学环节中启发学生自主学习和自由学习。在教学方法和教学手段改革中,坚持理论联系实际、基础联系临床的教学理念,强调教学过程的“四结合”:密切结合科研,密切结合临床,密切结合实践,密切结合新进展。

4.4考核评价与教学目的相统一

医学生物技术范文第2篇

    想挑战超人类主义所提出的概念,此概念试图补全那件仍只是半成品的人类改造工程。作为回应,笔者简单概括了一下《赫西奥德和埃斯库罗斯》中关于普罗米修斯神话的两种解释,它可以帮助我们正确地了解运动医学的道德局限。以此总结为一条平淡无奇的提示:人类是凡胎俗骨的,面对疾病和死亡的脆弱无助是远非人类自身可以克服或消除的,这代表了在道德以及普通医学,特别是运动医学这两方面的自然局限。

    二、生物医学技术与体育科学的发展

    把现代社会实践归结为科学问题很容易,同样,设想一种特定的科学技术,例如电脑技术来举个范例也不难。将技术与工具制造联系在一起,使我们又开始怀念起那些被闲置的工具。“技术”一词有一个古老的过去,它来源于两个希腊字技艺和徽标。技艺是指那种技巧——“实用知识”参与决策的事情,而通过标识恐怕只是推理的一种形式,旨在了解其性质或从事物中得到我们所认可的东西,它实际上是由亚里士多德创造出来的,“技术”的意义最初指修辞学的技术技能——标志字面上的技艺。但是,在日常生活中把科学和技术的概念混为一谈的做法并不少见。事实上,至少在英国,体育科学家就经常把他们的研究活动和本来该称作体育技术的事物混为一谈。目前,哲学领域的科学家早就明确区分了理论(科学)和应用(技术),但这一区分并没应用到在对体育的自然研究中。在日常交谈中,把科学和技术这两个概念区分开来是比较困难的。事实上,体育科学家经常把他们的体育项目和确切的应该称为“运动技术”的概念混为一谈。当今的科学哲学家已经可以把理论学(即科学)和应用学(即技术)明确区分开来了,尽管在体育运动的理论科学领域,这两个概念依旧难以区分。在此可以想象一下,如果医药领域和体育科技可以很简单的获得运用,通过理论知识到实践性知识再到设备与材料的步骤,分别得出医药和体育的目的。如果以上都可以获得实现的话,那么他们的显着特征就应该是一个“目的--结果”的结构。科技就可以被认为是利用目的去得到一个被选择好的结果。

医学生物技术范文第3篇

1进行纳米生物医学技术教学的主要目标

纳米生物医学技术是一门非常典型的多领域交叉学科,生物医学、材料、化学和物理等学科的内容都包含在内,因此对人才培养的要求自然也非常高[5]。个人认为,应该将教学目标设计为培养学生具备相关领域多元化的知识结构,富有创新精神与思维模式,在纳米医学生物技术的某一或某几方面具有相当的专业实践技能与经验,能够将纳米生物医学的知识和技术应用于实际的科学研究与实际技术产业化之中,对纳米生物医学技术的发展方向和某一领域的当前产业情况主要发展趋势有所体悟,具有技术研究与项目管理实施的基本专业素养和技能。

2实施纳米生物医学技术教学的主要理念

纳米生物医学技术作为一门多领域交叉的新兴学科。作为一门非常强调实践与实用性的应用型技术学科,在纳米生物医学技术的教育教学过程中,我们必须坚持将理论教学与实践教学很好地结合在一起,通过把理论知识教学与课程实验教学、专业科研活动和产业企业课外实践活动整合成一个综合教学体系才能够真正培养学生的学习素质、自主发现、思考和解决实际问题的能力。因此,纳米生物医学技术的教学内容、方法、教学主体和教学对象等基本要素必需共同有机的地结合在一起,协同服务于学科教学目标,以合理的安排与布局,相互相同综合成一个有效的教育教学整体过程。我们应该充分注重激发与引导学生学习与创新的主动性与积极性,立足于提高学生的综合素质,不能像过去只是进行知识的单向传授,因此忽略了培养学生自主学习与思考、解决问题的能力,建立一种双向沟通、激励引导、教学相长的良性循环机制。在这种机制下,学生成为教学活动的主体,被动的接受知识变为主动的学习探索,教学过程也不再是枯燥、单调的知识传递,而是师生双方之间在智慧、思想与感情上的沟通分享。而且,教学模式应注意技巧设计,创造设计一个问题情境,通过好的提问与启发引导学生提出和发现问题,然后就该问题从不同的多个角度来解析与研究,并且进行持续的提问与思考,逐步分析挖掘该问题发生的根本性缘由,同时鼓励学生多角度多层次的寻找答案,通过答案的适度不固定性引导学生的思维发散开来,从而让学生主动学习和分析处理问题的习惯与素质得到良好的培养[6]。

3纳米生物医学技术教学课程体系的设计

纳米生物医学技术课程设置上要考虑多元化。作为一门多领域交叉融合的新兴学科,不是几个学科领域知识的单纯组合,而是将相关的学科都以一种非常紧密、多元化、多层次的联系在一起形成一个整体的。因此在课程设计的时候,教育者必须要充分认识到并理解透彻这些交叉学科之间的内部联系和知识理论结构,并依据这种联系与结构在多个学科的藕合点基础,设计出具有纳米医学生物专业特色的理论课程体系。这时候,对学科知识的划分上也不宜再过于详细,而应更注重该专业的理论特点,让学生的知识背景建立在宽厚扎实的大专业平台上。纳米生物医学技术课程设置上要考虑前沿性。纳米生物医学技术作为一门新兴技术其发展是日新月异的。所以,在教学内容上,我们要注意将该学科的最新前沿研究成果整理出来,及时、适当地融入到课程教学当中,并结合纳米生物医学技术在医学诊疗领域应用的经典实例,以让学生可以更好的理解本专业的发展方向、应用方式和创新思维方法,也让教学内容更加的丰富化和实用化,进而让学生知道如何学以致用,很好地激发强烈的学习兴趣[7]。纳米生物医学技术课程设置上要考虑应用性。纳米生物医学技术作为一门应用型技术,其实验教学对于培养学生将理论知识用于实践当中,主动发现问题、分析问题和解决问题的能力起到不可忽视的作用。因此,学生在独立设计、完成实验的过程中,其专业思维、创新意识、科研素质和动手能力都能得到很好的锻炼。这就要求我们注意控制死板的验证性实验所占的比例,多设置一些具有较好综合性、可设计性和开放性的实验,课程进行过程中也更注重学生实验得出结论的过程而非实验结果[5]。

4CDIO实践教学模式在纳米生物医学技术教学过程中的应用

CDIO实践教学模式是近年出现的一种全新的实践教育模式。CDIO的主要内涵是将构思(Conceive)、设计(Design)、实现(Implement)与运用(Operate)共同组成一个系统的实践教育方法体系[8]。该方法体系模拟了应用技术从研发到运行的完整流程,能充分培养学生运用主动性和综合性的实践方式来学习与运用学到的专业知识,进而提高学生的综合实践能力,非常适用于纳米生物医学技术教育教学体系。因此,我们应当将这套综合性和操作性都强的CDIO教学模式融入到整个教学活动中,把每个实践能力点的培养都具体落实到实践教学活动中,并且能够很好的与科研活动参与、行业企业实习等课程外实践活动结合在一起,为学生提供一种深度的“学以致用”的宝贵经历和体验,这不仅可以更好地实现学生创新实践能力的培养,还对其人际交往能力和专业思维能力都能提供有益的帮助。

5结语

纳米生物医学技术近年来的发展十分迅猛,同时具有鲜明的交叉与复合特性,能助力整体医学诊疗水平的提高,对人民健康水平的提升起到巨大推进作用。因此如何培养适应专业发展和产业需求的纳米生物医学技术专业人才,是医学院校相关专业高等教育目前所面临的核心问题。通过以上积极教育教学方面的研究探索,以及在后续的教学实践中不断完善与优化,我们若能据此更好地培养出纳米生物医学技术专业的研究与应用兼顾的综合性专业人才,将能发挥更大的教学效果和教育意义,促进人才培养质量和提高和纳米生物技术的更大发展。

作者:刘斯佳 孙健 凌敏 单位:广西医科大学 广西医科大学

参考文献:

[4]顾宁.纳米技术在生物医药学发展中的应用[J].AdvancedMaterialsIndustry,2002(12):67-71.

[5]胡建华,张阳德等.促进我国纳米生物医学高端创新人才培养的对策[J].中国现代医学杂志,2008,18(20):3070-3072.

[6]胡高,胡弼成.大学教学协同创新论[J].现代教育科学,2004(4):109-110.

医学生物技术范文第4篇

我校自2003年开办生物医学工程专业以来,根据医科院校特点,以为医疗和医学研究服务为目的,培养能将医学与工程技术相结合,从事医学影像、医疗电子仪器和计算机技术的研发、操作和管理工作,并且能够开展生物医学工程学科研究的人才[1]。该专业主要学习生命科学、电子技术、计算机技术及信息图像传输、处理等有关的基础理论知识以及医学与工程技术相结合的科学知识,设置的主干课程有:“电路原理”“模拟电子技术”“数字电子技术”“微机原理”“生物医学传感器”“医疗仪器原理”“信号与系统”“数字信号处理”“生物医学信号检测与处理”“单片机原理与接口技术”等。另外凭借医学院校的优势还开设了一些医学方面的基础课,生理学、人体解剖等。为了提高教学质量,更好的达到教学效果,所开设的这些课程基本上都需要做实验演示,以增强形象性效果和形象性验证。实验教学在大学教育中是必要手段。几乎每门课的实验教学都需要用到各种各样的电子仪器,主要包括示波器、信号发生器等。在传统教学中基本上都是使用相对独立、功能固定的电子仪器,不能够随意更改它们的结构和功能。对于需要电子计算机之类的课程而言,一般都得配备几十套教学仪器来供教学使用,这些仪器设备还需要不断更新维护,教学成本比较高。另外,在医学院校对于和医学相关的专业课程很多实验实际操作比较困难,效果不理想。中国的医学教育资源本身很紧张,另外医院的设备多是大型设备,体积庞大,价格昂贵,操作使用复杂,临床使用要求高,一般院校很难满足大型医疗设备的教学使用需要。因此,在医学院校的教学中就出现很多问题,比如医学实验教学中的人体生理参数采集等演示效果不好,所以,传统的医疗仪器教学只能偏重于理论讲解,不够生动,即使有个别实验模具,其教学效果也不理想。在当前学校经费较少的情况下,如果大量增加常规仪器、仪表的配置,学校财力难以支付。这样容易造成实验教学效果不理想,对提高学生学习兴趣,培养创新及实践能力都有一定影响。随着现代测试功能和计算机技术的密切结合,出现的虚拟仪器技术可以帮助我们克服一些硬件上不能解决的难题,弥补传统仪器教学的不足。

2虚拟仪器在课程中的应用

2.1虚拟仪器简介

虚拟仪器(VirtualInstrument,VI)是一种新兴的仪器,一种功能意义上的仪器,在以通用计算机为主的硬件基础上,由用户自己设计定义虚拟的操作面板,测试功能由软件来实现的一种计算机仪器系统[2]。其实质是以计算机为核心的仪器系统与电脑软件技术的密切结合,将仪器装入计算机。通过软件将计算机硬件资源与仪器硬件融合,通过软件编程来实现传统仪器中的由硬件电路完成的功能,利用计算机显示器的显示功能来模拟传统仪器的控制端,利用计算机强大的软件功能来管理仪器系统,完成对信号数据的运算、分析处理等,可以多种形式输出结果,少量的硬件模块则为虚拟仪器的正常运行提供信号I/O接口设备来完成不同要求的测试。虚拟仪器具有传统仪器没有的性能高、扩展性强、开发时间短、开发成本低等优点,具有很强的灵活开放性。不同领域的科学家和工程师都借助虚拟仪器来解决工作与课题中的实际问题。所以,虚拟仪器自诞生以来就在测量、航空航天、自动化、远程教学和生物医学等世界范围的众多领域内得到了广泛应用[3]。LabVIEW是美国NI(NationalInstrument)公司推出的一种基于图形化编程的软件开发工具,将功能强大的图形化设计平台LabVIEW与相关硬件结合应用于教学上,能够使传统理论教学与实际有效结合,帮助学生完成从理论到实践的学习。LabVIEW软件平台结合数据采集卡等相关硬件可以开发出示波器、信号发生器等常用的电子仪器,不仅可以代替传统仪器且摆脱了传统电子仪器功能单一、更换维护麻烦等缺点[4]。将基于LabVIEW的虚拟仪器应用在教学中极大提高了教学效率,已经逐渐成为一种新的手段。

2.2在医疗仪器教学中应用

“医学仪器原理”是生物医学工程专业的一门专业必修课。该课程涉及了医学和电子学、计算机、信号处理、传感器技术等方面的知识,是一门实践性很强的科目。作为生物医学工程专业的学生,要掌握常见的医疗仪器的基本结构、工作原理,而且还要具有一定的创新思想和科研水平,有开发和设计高水平的医疗电子仪器的素质[5]。因此做好实验教学是学生提高学生实验水平和综合能力的关键。医学仪器原理实验主要将人体生理信号的检测及处理分析作为教学内容,包括了人体血压信号、心电、体温、呼吸、脉搏等生理参数的测量。生物医学信号由传感器转变成电信号,因为人体生理信号比较微弱要先经过信号的放大、滤波等预处理,再进入数据采集卡。信号通过数据采集卡采集到计算机上以后,利用LabVIEW的图像化语言进行编程,实现对数据的各种分析,包括数值分析、频谱分析等,再通过仪器软面板把结果显示在电脑上。我们以人体呼吸测量为例,这种设备一般只在医院常见,用于教学中的仪器基本上没有。因此讲过理论原理后,学生不能够真正透彻的明白,无法满足教学上的需要。我们利用少量硬件设计结合LabVIEW软件编程构建了一个人体呼吸测量系统,采用阻抗式呼吸测量原理,硬件电路主要涉及放大和滤波环节,限于篇幅就不详细说明了。图1为基于LabVIEW平台搭建的呼吸测量面板图,针对学生教学取得了很好的效果,同学们一致反映对呼吸测量的原理有了更透彻的认识,并且能学习新的软件技术,扩展知识面。在LabVIEW环境下进行实验教学只需要根据实际情况,比如是呼吸测量还是心电测量等,通过软件编程及很少的硬件连接便可完成实验任务,即节省了实验成本,又利于实验设备更新,让教师和学生脱离了传统教学仪器功能单一的框框,更重要的是可以充分提高学生积极性和发挥创造性,像搭积木一样,根据不同的测试需要,在计算机上构建一个基于虚拟仪器技术的测试测量装备,这样做还能够充分的节省高校技术资源[6]。

2.3在信号处理类课程教学中应用

生物医学工程专业设置的信号处理类课程主要有:“数字信号处理”“信号与系统”“生物医学信号检测与处理”等。这些课程中往往涉及大量抽象的概念、公式,老师上课的时候也只是讲解推导公式或证明算法,学生没有直观印象,无法把函数公式与实际波形相联系,理解起来非常困难,从而很大程度的影响了教学效果。我们以“数字信号处理”课程为例作一简单介绍。“数字信号处理”是一门理论性很强的,以算法为核心的科目。为了使学生深入理解教材上提到的理论算法,需要通过仿真实验来验证那些理论。LabVIEW软件平台的特点之一就是具有丰富的运算且灵活高效的信号处理功能,LabVIEW图形化信号处理平台由多个信号处理与数学函数库组成,包含小波变换、滤波器设计、时频分析、图像处理等工具包,将信号处理的各种功能转化为VI函数,给使用者提供了方便、简单的编程途径,从函数库调用这些现成的VI函数就可以迅速完成信号处理。学生能一目了然地看到程序的运行情况,也可以比较不同的参数对结果的影响。在数字信号处理教学中滤波器是重点知识,也是教学难点。在以往的教学中发现学生普遍对于滤波器的作用弄不明白,另外根据学习的理论知识怎样设计出有实际应用价值的数字滤波器也不清楚。在讲授滤波器时,在LabVIEW中信号处理函数面板中的滤波基本函数栏进行选择,在虚拟仪器前面板上放置多个图形显示控件,完成对滤波器的设计,还可以同时显示多个滤波器的滤波结果,这种学习方式简单明了,学生很容易理解抽象的概念从而掌握所学知识。另外LabVIEW图形化的编程语言有助于学生在比较短的时间内开发出相对复杂的数字信号处理程序,增加了同学们的自信,提高了其学习积极性。虚拟仪器技术强大的功能可以使其对学生开展形象、直观的教学方式,灵活的应用于教学中,不仅可以帮助学生深刻领会抽象的理论知识,扎实掌握所学知识,同时还可以提高他们的学习兴趣,达到最佳教学效果。

医学生物技术范文第5篇

关键词:生物医学信号 技术处理 医疗检测 诊断

中图分类号:R318.04 文献标识码:A 文章编号:1007-9416(2014)05-0117-01

1 生物医学信号特点

生物医学信号其实就是人体内发出的光、电、声的信号,但是基于人体内的特点,生物医学信号与一般医学信号相比,具有不同的特点,比如:信号不强,在母亲体内得到胎儿心电信号就非常微弱[1]。噪声较强,由于人体本身信号不强,加上人体是一个综合的复杂体,所以,信号非常容易遭受噪音影响。频率范围通常不高,其中除了心音信号频谱有一点高以外,别的电生理信号频谱都不高。随机性较强,生物医学信号一方面是随机的,同时也是平稳的。正是由于这些特点的存在,让生物医学信号具有广泛的应用空间,对许多医疗诊断具有重要意义。

2 小波变换在医学中的应用

2.1 在电脑信号方面的应用

在传统的临床电脑影像分析中,基本是采用目测标注的模式来进行,这种方法容易让工作人员疲劳,并且误差很大,造成临床上多导EEG的“特征提取”与“数据压缩”始终处于主观处理上[2]。在分析过程中,窄窗口用于分析高频,宽窗口用于分析低频,这种分析方法体现了相对带宽频率分析与适应变分辨分析思想,有效的克服了上面的缺陷,有效的提升了信号及时处理途径。(1)EEG信号检测:在以往的瞬态检测中,通常是利用傅立叶变变换和匹配滤波的方法来进行,但是,后者在检测中需要相关信号的支持,前者一般只对有周期性并且能持续发出的信号有效。而小波变换检测具有突出局部特征的能力,对短时瞬变的低能量较为有效,而且不需要提前先验知识。利用小波变换中的多尺度分析,可以参照EEG中的棘慢波、伪差等不同尺度的表现来实现对异常波的检测。(2)EP信号检测:因为小波变换利用的基波的频率分辨率和时间各不相同,因此小波变换也使用于别的非平衡信号。在进入2010年以来,采用小波多分辨分析来提取诱发电位,在提高信噪比、减少刺激回合数等方面都研究已经向前迈进了一大步,在不久的将来有实现诱发电位单词提取的可能。

2.2 在心电信号处理中的应用

ECG作为生物医学信号的重要组成部分,是非常适合利用时间尺度与时频来进行分析的。众所周知,P、T、QRS就是ECG信号的组成部分,在这个组成中,各波的频率特性有所不同。通过以上的分析可以得出,ECG是一种具有明显时间尺度与时频特征的生物医学信号。(1)ECG信号检测。QRS波群的检测方法多种多样,常用的主要有:面积法、阈值法、斜率法等[3],这些方法在使用过程中具有很多的弊端,如果遇见干扰严重等情况时,通常错误率较大。在最近的一些检测中,有的工作人员将小波变换引入到了ECG信号特征值的获取和识别中,而且对于解决上面的弊端起到了非常明显的作用。 (2)ECG晚电位检测。当下,在累加平均是许多晚电位分析仪器检测采用的主要手段。Meste有效的利用了小波变换对晚电位获取进行了讨论。

2.3 生物医学信号的处理方法

生物医学信号处理是研究从扰和噪声淹没的信号中提取有用的生物医学信息的特征并作模式分类的方法。生物医学信号处理的目的是要区分正常信号与异常信号,在此基础上诊断疾病的存在。近年来随着计算机信息技术的飞速发展,对生物医学信号的处理广泛地采用了数字信号分析处理方法:如对信号时域分析的相干平均算法;对信号频域分析的快速傅立叶变换算法和各种数字滤波算法;对平稳随机信号分析的功率谱估计算法和参数模型方法;对非平稳随机信号分析的短时傅立叶变换、时频分布(维格纳分布)、小波变换、时变参数模型和自适应处理等算法;对信号的非线性处理方法如混沌与分形、人工神经网络算法等。

3 光学技术在癌症诊断中的应用

在癌症诊断应用中,将光线安装在可以自由转动的仪器上,利用光在移动中碰见组织而反射的路径,这时,光的许多特征就可以为观察者提供许多的人体内在结构观察窗口。光学人体扫描仪主要是为了定位、诊断、识别人体内部患处的问题,对患者内部相关部位进行照亮,让观察人员了解到患处与周围内在结构之间的不同之处,进而实现有效的诊断。

自体荧光技术;在癌症诊断中,光谱技术很早的已经得到了使用,主要起源于光动力学质量研究阶段。在70年代左右,众多癌症专家都在尝试着将光敏荧光法应用到癌症诊断中,并且取得了理想的效果。但是,利用这种技术进行诊断时,患者必须提前注射抗光敏药物,但是,这种药物存在着很多副作用,所以,这种诊断方法不能大量使用。为了克服这种诊断的弊端,“自体荧光法”检测激光诱导的肿瘤组织自体特征荧光的方法得到了许多人的关注。

国内一些专家进行了大量的共振喇曼光谱、血清自体荧光实验研究、进行了许多的统计分析,通过波长激光对患者的血清处理变化,观察自体荧光的信号变化与共振喇曼峰二者之间有无明显差异性,进而对癌症患者进行诊断。实验结果说明:食道癌、胃癌、胰岛癌等癌症患者在经过血清激光作用治疗后,喇曼光谱有明显的差异性[4], 并且荧光信号强度在降低,荧光峰发生了变化,变化幅度与正常人相比要大得多。

一些癌症学者又通过自体荧光体侧检测系统在结肠镜下测量获取组织自体荧光光谱,在对光谱进行判别分类时,是采用的多元判别法。实验的实验结果显示:所采用的多元判别法可以依靠很高的特异性与灵敏性来分别肿瘤组织和正常组织。

4 结语

综上所述,伴随着研究的深入,理论研究更加成熟、通信系统和医学图像归档相续出现、家庭医疗保健器材快速发展、远程医疗诊断需求不断提升,对医学信号的图像增强、分析处理、压缩、去噪等多方面提出了相应的要求,在这种背景下,通过现代分析方法和传统分析方法的结合,足以满足未来发展的需要,而生物医学信号技术的出现,对未来的医疗检测与诊断具有非常重要的促进作用。

参考文献

[1]张阳德,周以,李小莉.基于生物医学信号处理技术的医疗检测与诊断[J].中国医学工程,2005,01:52-55.

[2]李国峰.基于生物医学信号的体域网低功耗设计与研究[D].吉林大学,2011.