前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇航空航天材料的特点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

航空航天技术是信息、能源、制造等综合性尖端技术的集合,是一个国家综合科技实力的象征和衡量标志,在国家的军事国防中起着中流砥柱的作用。近几年“神舟”系列载人飞船的成功飞行,以及我国首架具有自主知识产权的喷气式支线飞机ARJ21总装下线等,引发了人们对航空航天技术领域的极大关注,而航空航天类专业更是吸引了不少同学和家长的眼球,被同样怀揣飞天梦想的考生所追捧。
学科优势助推人才起飞
航空航天类专业主要研究飞行器的结构、性能和运动规律,培养如何把飞行器设计制造出来并送上太空的工程技术专业人才。从狭义上讲,航空航天类专业包括飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程、探测制导与控制技术等主体学科专业。然而,无论是飞机还是航天飞行器,都是综合科学技术的结晶,涉及材料、电子通讯设备、仪器仪表、遥控遥测、导航、遥感等诸方面。因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机、交通运输、质量与可靠性工程等都是航空航天技术不可或缺的学科专业。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。
航空航天类专业对同学们的要求是“厚基础、强能力,高素质、重创新”。同学们要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力,以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。
有同学认为航空航天类专业就业覆盖面窄,如果毕业后不能进入航空航天类企业,就很难找到专业对口的工作。其实不然,航空航天高科技辐射国民经济各个部门,航空航天类专业扎实的工程技术理论与实践基础平台,促成了其拓展性宽、应用性强、适用面广的专业特点。可供毕业生选择的对口职业有很多,如飞行器设计、制造人员,科研机构研究人员,国防部门研究管理人员,各级政府部门负责航空航天相关工作的研究管理人员,民航企事业单位的技术管理人员等。毕业生不仅可从事航空航天等领域的设计、制造、研发、管理等工作,还可在民航、船舶、能源、交通、信息、轻工等其他国民经济领域施展才华,像微软、IBM、贝尔、方正、海尔等知名企业都曾纷纷到航空航天院校招贤纳才。很多民用部门也都点名要航空航天类专业的毕业生,认为他们基础扎实、学以致用。
行业繁荣点燃人才需求
航空航天科技工业是知识密集和技术密集的高技术领域,航空航天技术的广泛应用影响到政治、经济、军事、科技、文化及通信、气象、能源、探测等领域,成为社会进步的强大动力。从世界范围来看,航空航天科技工业是朝阳产业,在提升国家整体科技水平和综合国力方面起着龙头的作用。
我国经济的快速发展为航空航天工业提供了广阔的发展空间。国务院公布的《国家中长期科学和技术发展规划纲要》中,关于大型飞机、高分辨率对地观测系统、载人航天工程与探月工程等航空航天领域范畴的工程便占到16个重大专项中的4项。未来我国航空航天发展将重点开发大型飞机设计与制造成套技术,载人航天实现航天员出舱进行航天器交会对接试验活动,直至实现登月计划等。2007年大飞机项目正式上马,给我国的航空业带来了空前繁荣,带活了一批航空类企业,也为航空航天类专业毕业生带来了良好的机遇。
航空航天科技工业极具发展前景,对人才的需求会持续旺盛。据统计,2011年最被看好的12类专业之航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理,航空航天飞机总体设计与研发、发动机研发与制造,零部件研发与设计,航空航天新材料研发、制造及总装技术、计量检测技术、航空航天电子电器设备设计开发、信息及测控技术,航空航天生物技术、航空适航管理、航空维修改装,以及航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。有关人士根据教育部公布的相关信息归纳出的“最出人意料的十个高就业专业”,便将航空航天类专业列入其中。
上海作为我国新支线飞机和未来大型民用飞机设计总装基地和重要的航天基地,举办了“上海航展”,展会上举行了航空航天人才大型招聘会。据航展招聘组负责人介绍,目前航空航天项目需要大量人才,仅空客A380一个项目组的技术人员需求数量就超过六千人,而我国这方面人才缺口非常大。
近年来,以航天科技,科工集团,航空一、二集团等为代表的航空航天类企事业单位生产和科研任务饱满,条件大为改善,待遇提高很快,一些单位的员工年薪可达十几万,稍差一些的单位其员工薪资待遇也可达到当地中上水平。航空航天事业的迅猛发展,无异于为年轻学子的成长搭建了理想的平台。像航天空间设计研究院、航空材料研究院等单位都炙手可热,受到重点院校毕业生的青睐。毕业生就业地域以北京、上海、西安、成都、沈阳、哈尔滨、深圳等省会及核心城市为主。
从个人长远发展来看,在航空航天类企事业单位工作,发展前景好,待遇高,成长快。随着载人飞船、探月工程、大飞机等重大项目的深入实施,必将有越来越多的青年才俊在锻炼中脱颖而出。
报考提示
我国目前开设航空航天类专业的重点院校有北京航空航天大学、南京航空航天大学、哈尔滨工业大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工程大学等。近年来,清华大学、复旦大学、上海交通大学、厦门大学等也相继设置了此类专业。开设航空航天类专业的普通院校有南昌航空工业学院、沈阳航空工业学院、郑州航空工业管理学院、中北大学、中国民航大学等。由于各个院校的发展历史、层次、实力不同,学科专业水平差异也较大,同学们应注意了解自己感兴趣的院校,根据自身实力,准确定位,合理选择。
学习航空航天类专业以及将来从事航空航天技术工作,需要具备较强的学习钻研及动手能力,要求同学们的数理化基础扎实,逻辑思维能力较强,严谨求实,乐于钻研。同学们应从实际出发,量体裁衣。
一些考生和家长误以为报考航空航天类专业,体检的标准要按照军检的标准来进行,其实不然。航空航天类专业主要是培养航空航天领域的专业技术人才,对考生的身体状况没有特殊要求,同学们只要符合《普通高等学校招生体检指导意见》,就可放心报考。
关键词:低膨胀高温合金;发展;Fe-Ni-Co;性能;因瓦效应;时效硬化;分析
中图分类号:D993.4 文献标识码:A 文章编号:
现代低膨胀高温合金发展,是以因瓦效应以及时效硬化的发现为基础的,在上世纪70年代,随着国内航空航天事业的快速发展以及社会经济发展中能源危机的日益严重,逐渐为低膨胀高温合金在航空航天领域中的应用以及发展进步,提供了重要的契机。在低膨胀高温合金的发展历程中,最早出现的商用Fe-Ni-Co系列合金,在通过使用Nb以及Ti进行强化,去除Al并加入Si等一系列成分变化后,对于原有的商用合金材料的应力加速晶界氧化脆性进行明显改善后,使得低膨胀高温合金在航天航空领域中的应用得到大量的突破。后来,为了改善低膨胀高温合金的抗氧化以及裂纹扩展速率等性能,又进行了相关的新合金系研究,形成了以Inconel 783合金为主的Fe-Ni-Co-Al-Cr系合金与以Haynes242合金为主的Ni-Mo-Cr系合金的研究主流,使得低膨胀高温合金能够在750度的高温环境中仍能够实现完全的抗氧化功能和作用。
1、低膨胀高温合金的发展分析与概述
1.1 低膨胀高温合金的发展基础分析
在现代低膨胀高温合金的发展历程中,低膨胀高温合金的发展是以“因瓦效应”以及“时效硬化”现象的发现为发展基础的。在19世纪90年代后期,法国的一位研究学者发现Fe-Ni合金中的Ni成分含量在合金所有成分含量的36%左右时,合金的热膨胀系数会出现最低值情况,促成了因瓦合金的提出,它为低膨胀高温合金的发展奠定了一定的发展基础。随后,在对于低膨胀高温合金的发展研究中,由于精密仪器仪表行业以及电真空玻璃封装行业的发展需求,低膨胀高温合金以及定膨胀高温合金的的研究发展取得了较为突破性的发展与进步提升,在这一时期也先后出现了Fe-Ni系以及Fe-Ni-Co系、Fe-Ni-Cr系、Fe-Cr系等低膨胀以及定膨胀合金,也就是在低膨胀合金的这一发展过程与阶段时期,时效硬化现象被发现并研究提出,使得现代低膨胀合金发展的两大基础条件全部具备,并使得低膨胀高温合金随着时代的发展随之逐渐的发展起来。在现代低膨胀高温合金发展的两大基础条件中,时效硬化现象的发现提出,不仅使低膨胀高温合金的热稳定性能得到了显著的改善,并且也为低膨胀合金在航空航天中的应用创造了可能性。
1.2 商用Fe-Ni-Co系低膨胀高温合金的发展
在上世纪70年代,航空航天事业的迅速发展以及能源危机的日益加重,最终促成了商用低膨胀高温合金的出现产生。在航空航天领域发展中,应用低膨胀高温合金作为薄壁静子结构部件,比如机匣以及外环,或者是封严环、隔热环等,进行航空航天的生产制造应用,不仅具有生产制造控制部件间隙简单易行,并且能够减少航空航天机械设备的发动机零部件数量,降低发动机的重量以及生产制造成本,提高生产制造飞机的性能。随着商用低膨胀高温合金的出现,上世纪70年代初期,美国某公司推出了第一种商用低膨胀高温合金,主要是以Nb以及Ti、Al时效强化的Fe-Ni-Co基合金,这种低膨胀高温合金具有与Inconel 783系合金相近的优良抗拉强度,但是该类型商用低膨胀高温合金的热膨胀系数在Inconel 783系合金的热膨胀系数一半左右,能够应用于600度的高温环境中。在70年代中期,人们对于商用低膨胀高温合金进行了工艺以及成分上的研究探索,实现了添加Cr以及Hf、B成分,或者是降低合金中的Al含量来提高合金的应力加速晶界氧化脆性。随后,在80年代初期,对于低膨胀高温合金的发展研究中,又出现了第三代低膨胀高温合金,也就是Incoloy 909/CTX-909系合金,这类低膨胀高温合金在原有合金的基础上提高了对于Si的含量,最终形成该系列低膨胀高温合金,使合金的强度以及韧性、抗应力加速晶界氧化脆性、低膨胀系数等得到了良好改善。
1.3 抗氧化低膨胀高温合金的发展
在上世纪90年代,航空航天制造发展中,为了提高飞机发动机的效率,同时提高飞机发动机部件的工作温度,对于应用于航空航天领域飞机制造生产的低膨胀合金材料,也就提出了抗氧化以及高强度、低膨胀的要求,从而促进了抗氧化低膨胀高温合金的研究发展与应用实现。对于抗氧化低膨胀高温合金的发展研究,主要集中在对于Fe-Co-Ni系合金成分的调整研究以及对于Ni-Mo-Cr系低定膨胀系数合金的研究上,从这两个研究思路出发,在上世纪80年代末90年代初以及90年代中期,分别对于低膨胀高温合金有了新的研究与发展突破,实现了抗氧化性能好以及组织稳定、塑性损失小,工作温度可达到750度的低膨胀高温合金研究提出与应用实现。根据这一发展研究与应用趋势,低膨胀高温合金未来将集中于向抗氧化高强度低膨胀高温合金的研究与发展应用方向发展。
2、低膨胀高温合金在航空航天业的应用
在我国的航空以及航天事业发展中,都有对于低膨胀高温合金的应用实现,但是,两个领域中对于低膨胀高温合金的应用侧重点却有不同。首先,在航空领域以及行业应用中,由于低膨胀高温合金本身具有高强度以及低膨胀等性能特点,使得该类型的合金材料在进行航空设备发动机的转动部件与静止部件生产制造应用中,能够严格的进行生产制造部件间间隙与公差的控制,从而提高航空设备发动机能量的输出以及燃油效率,并且高强度的合金材料降低了飞机发动机的重量,使得低膨胀高温合金材料在燃气轮机以及蒸汽涡轮的密封环以及外环、隔热环、轴。机匣、叶片等结构部件制造中广泛应用。比如,CFM-56以及F101等发动机中都大量使用了低膨胀高温合金材料。而在航天领域中,低膨胀高温合金由于其特殊性能特征,在航天飞机的主发动机制造中,也被考虑应用。
3、结束语
总之,低膨胀高温合金是一种具有特殊和突出性能材料,在航天航空领域中有广泛应用,进行低膨胀高温合金材料的分析,有利于促进应用和发展,具有积极作用。
参考文献
[1]贾新云,赵宇新.长期时效对低膨胀高温合金GH783组织与性能的影响[J].航空材料学报.2006(4).
[2]郭绍庆,李晓红,袁鸿,毛唯,颜鸣皋.低膨胀高温合金焊缝金属凝固行为的模拟预测[J].航空材料学报.2004(6).
[3]孙雅茹,孙文儒,孙晓峰,郭守仁,刘正,胡壮麒.P的分布形态对一种低膨胀高温合金持久性能的影响[J].材料研究学报.2008(3).
[4]贾新云,赵宇新,张绍维.热处理对GH783合金组织与性能的影响[J].材料工程.2006(1).
关键词:“工程材料学”;航空航天专业;教学改革
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)04-0124-03
“工程材料学”是航空主机类专业(包括飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等专业)的学科基础课程。该课程虽然仅有48学时,但承担着为未来的航空工程师构建材料知识体系的重任,对学生今后的发展起着重要作用。本文结合近年的工作实践,对该课程在教学要求、教学内容和教学方法等方面的改革进行研讨。
一、高度重视航空和材料领域发展对“工程材料学”课程教学的影响
材料学既是基础科学,也是应用科学。材料科学与技术的发展,解决了很多工程领域的关键问题,有力地推进了相关科学和技术的进步,使得材料科学成为最活跃的科学领域,材料产业也成为国民经济发展的重要支柱产业。“工程材料学”以物理学、化学等理论为知识基础,系统介绍材料科学的基础理论和实验技能,着重培养学生把这些知识应用于解决工程实际中提出的对材料结构、性能等方面问题的能力。作为一门重要的学科基础课程,“工程材料学”具有较长的开设历史,在人才培养中发挥了重要的作用。航空航天领域的发展对工程技术人员的能力素质提出了更高的要求,特别是“卓越工程师”教育培养计划的实施,对工程类课程建设的需求更加迫切,有必要以新的形势为背景反思该课程的教学改革。航空以众多学科知识、先进研究成果为基础,已发展成为一个由多个分系统组成的大系统,需要工程技术人员采用系统工程的方法进行综合设计。现代航空技术一百多年的发展,使得人们可以在更大的范围内探索天空,也使得飞行器的工作条件更加恶劣,工作环境更加严苛。现代飞行器不仅要具有速度快、航程大、载重多等特点,还要满足节能低碳等要求。材料科学技术的发展,为解决航空航天领域的诸多难题提供了可能,“一代材料,一代飞机”已成为飞行器发展公认的规律。这对航空航天工程技术人员的材料知识提出了更高的要求。在飞行器及其主要部件的设计、制造和维护工作中,要全面认识材料的性质和特点,才能挖掘材料的潜能,充分利用材料的特性,满足工作需要。面对航空航天迅猛的发展形势,仅了解和掌握已有材料的知识是不够的。具有创新素质的工程技术人员,要了解材料科学与工程的发展方向和趋势,分析材料领域的发展对航空航天领域的影响,同时要认真研究具体工作对新材料、新工艺的要求,明确材料发展的需求。在新型飞行器的研发过程中,要综合考虑用户对飞行器总体性能的多种要求,对各项技术参数进行统一的优化。在落实对飞行器性能的要求时可以发现,很多要求是相互矛盾的,比如飞机的航程和机动性就存在着较大的矛盾。为了获得较好的综合性能,需要对飞机进行一体化设计,要及时掌握各种设计方案对飞机主要材料和工艺的要求,对飞机整体结构进行综合优化。在此过程中,各部门工程师都需要和材料系统密切配合,才能实现信息和资源共享,降低全系统的风险,提高系统的可靠性和综合性能。材料科学技术的迅速发展也对课程教学提出了新的要求。材料科学与技术是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是发展最快速的学科之一,在金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等主要方向上的发展日新月异,促使“工程材料学”课程内容的不断充实。
“工程材料学”课程要系统讲授材料科学与技术的基础理论和实验技能,使得学生掌握工程材料的合成、制备、结构、性能、应用等方面的知识。早期的航空工程结构以自然材料为主,如在美国莱特兄弟制造出第一架飞机上,木材占47%,普通钢占35%,布占18%。随后,以德国科学家发明具有时效强化功能的硬铝为代表,很多优质金属材料被开发出来,使得大量采用金属材料制造飞机结构成为可能,也使得研究者们投入了更多的精力于金属材料的探索。相应地,这一时期“工程材料学”课程内容也以金属材料为主。上世纪70年代以后,复合材料开始在航空领域应用。复合材料具有较高比强度和比刚度的优点使得工程技术人员对其抱有很大的希望。航空工程师首先采用复合材料制造舱门、整流罩、安定面等次承力结构,而现在复合材料已广泛应用于机翼、机身等部位,向主承力结构过渡。复合材料因其良好的制造性能被大量应用在复杂曲面构件上。复合材料构件共固化、整体成型工艺能够成型大型整体部件,减少零件、紧固件和模具的数量,降低成本,减少装配,减轻重量。复合材料的用量已成为先进飞行器的重要标志。相应地,复合材料必然要在“工程材料学”课程中占重要地位。钛合金的开发和应用使得飞行器具有更好的耐热能力,提高了发动机、蒙皮等结构的性能,有效解决了防热问题。“工程材料学”课程的教学内容应该及时反映材料科学在提高飞行器性能方面的新应用与新进展。与此同时,其他相关学科也取得了长足的发展,使得主机专业教学内容大幅度增加,“工程材料学”课程的教学内容和学时之间的矛盾愈加突出。
二、认真分析专业教学对“工程材料学”课程的不同要求
“工程材料学”课程是一门重要的学科基础课,是基础课与专业课间的桥梁和纽带,在航空航天主机类专业培养学生实践动手和创新创造能力,提高学生综合素质等方面具有重要作用。在多年的教学实践中,该课程对主机类各专业采用同一标准教学。虽然主机类各专业人才培养有其共性要求,但随着航空航天事业的发展,专业分工越来越细,差异化特征也越来越明显,因此“工程材料学”课程应该充分考虑不同专业的具体需求,结合各专业的课程体系安排教学。飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等主机类专业根据航空领域中的分工培养学生,毕业学生的工作要求有所不同,对知识结构的要求也不一样。就材料方面知识而言,不同专业学生也会有所区别,应按照专业特点纵向划分对“工程材料学”课程的要求。不同专业主要服务对象的材料特点是确定课程要求的主要依据。
飞行器设计与工程专业要全面统筹飞行器产品及各部件的设计和制造,主要从事飞行器总体设计、结构设计、飞机外形设计、飞机性能计算与分析、结构受力与分析、飞机故障诊断及维修等工作,要求了解材料科学与工程的发展对现代飞行器设计技术的影响,因此要较全面地掌握主要航空材料的性能、制造等方面的知识,了解轻质高强材料的发展动态和发展趋势。飞行器动力工程专业要求学生学习飞行器动力装置或飞行器动力装置控制系统等方面的知识,主要培养能从事飞行器动力装置及其他热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。飞行器动力的重要部件对抗氧化性能和抗热腐蚀性能要求较高,要求材料和结构具有在高温下长期工作的组织结构稳定性。因此,材料在高温下的行为、性能和分析、选择方法应该是该专业“工程材料学”课程的重点。飞行器制造工程和机械工程等专业要针对现代飞行器工作条件严酷、构造复杂的特点,采用先进制造技术,实现设计要求,并为飞行器维护提供便利。该专业要求学生理解飞行器各部件的选材要求,掌握材料的制造工艺。飞行器零部件形状复杂,所用材料品种繁多,加工方法多样,工艺要求精细。很多新材料首先在航空航天领域得到应用,其制造技术具有新颖性的特征,设计、材料与制造工艺互相融合、相互促进的特点非常明显,这就要求学生在“工程材料学”课程中把材料基础打好,适应工艺和材料不断发展的要求。虽然各专业对“工程材料学”课程的要求有所不同,但课程基础一致。
该课程名称为“工程材料学”,即明确其重点在于将材料科学与技术的成果运用于航空航天工程,把材料基本知识转化为生产力。“工程材料学”是相关专业材料学科的基本课程,学生要通过该课程了解金属材料、无机非金属材料、高分子材料等微观和宏观基础知识,学习材料研究、分析的基本方法,掌握材料结构与性能等基础理论,研究主要材料的制备、加工成型等技术,为更好地学习专业课程创造条件,为将来从事技术开发、工艺和设备设计等打下基础。由此可见,在明确了各专业对该课程的个性化要求的基础上,更要明确共性要求。“工程材料学”课程要培养学生材料方面的科学概念,提升材料方面的科学素质,扎实的材料科学与技术知识基础是学生学习专业课程、提高综合素质、培养创新能力的必备条件,是进一步发展的基础。因此,“工程材料学”课程采用“公共知识+方向知识”的模式比较合适,即把教学内容划分为每个专业均要求了解的材料领域知识和根据各个专业特色需要重点介绍的知识两部分,既满足了宽口径、厚基础的教学需要,又注重了后续专业课程学习和能力培养的要求,促进了基础理论和专业应用的融合渗透,较好地满足了材料、设计、制造、维护一体化发展的需要,增强了跨学科、跨专业认识问题、思考问题和研讨问题的能力。
三、多管齐下建设丰富的教学环境
作为一门学科基础课程,“工程材料学”课程要根据学校人才培养创新目标和相关专业的人才培养标准、方案,结合卓越工程师教育培养的要求,注重与专业课程体系的融合,注重与工程实践教育的结合,注重对学生创新意识、创业能力及综合运用知识能力的培养。在充分调研与分析专业人才培养对课程教学要求的基础上,要对课程的教学大纲和内容进行修订,与相关教学环节有效整合,拓展教学活动的空间,营造良好的学习环境和氛围,加强与后续课程及实践活动的联系,解决学科基础课的教学与专业人才培养需求的脱节或不衔接等问题。
“工程材料学”在第四学期开设,是一门承前启后的课程。在前期开设的课程中,“大学物理”和“航空航天概论”是两门直接相关的课程。“大学物理”提供了学习“工程材料学”的科学基础,认真分析“大学物理”知识点在“工程材料学”中的应用,有助于学生更好地理解相关概念。“航空航天概论”以航空航天领域的发展为主线,介绍飞行器的组成及工作原理。如果在“工程材料学”课程讲授之初让学生重新回到机库,从材料发展的角度再次审视航空航天的进步,结合材料学的概念研究飞行器的组成及工作原理,会使得学生对该课程有比较全面的认识。在相关专业的后续课程中,有好多课程与“工程材料学”密切相关,如“飞行器总体设计”、“发动机原理”、“先进制造技术”等,如果在“工程材料学”中对有关知识点作简单介绍,可以使学生更好地综合分析相关概念,加深理解。在主机类专业培养方案中,“工程训练”是集中式的工程能力培养环节,其教学内容与“工程材料学”密切相关。“工程训练”教学内容以机械制造工艺和方法为主,包括热处理、铸造、锻造、焊接、车削加工、铣削加工、刨削加工、磨削加工、钳工、数控加工、特种加工、塑性成型等,每一种制造工艺和方法都与工程材料密切相关。在以前的教学工作中,材料是加工对象,对材料的性能等的介绍很简单,学生的认识较浅。如果在“工程训练”教学过程中,针对不同的加工工艺和方法对材料作较深入的介绍,从应用的角度分析不同材料加工工艺和方法的适应性,可以促进学生把材料理论知识的学习和工程实际联系起来。通过让学生分析研究实际材料在加工过程中的表现来认识材料的性能,通过感性认识来体会材料变化的规律,把深奥的材料科学理论知识和生动形象的加工过程结合起来。这样不仅强化了工程训练效果,还能让学生把材料的知识学活,留下更深刻的影响,更好地发挥学生的潜力。
航空航天主机类专业的课程设计是重要的综合学习环节。课程设计任务一般是完成一项涉及本专业一门或多门主要课程内容的综合性、应用性的设计工作,通过一系列设计图纸、技术方案等文件体现工作成果。很多主机类专业的课程设计涉及材料的选用、处理等方面的问题。按照教学计划,“工程材料学”先行开设。因此,在相关课程设计中,有目的地提出材料问题,引导学生在更广的范围里选材,在更加深入的层面上分析材料性能,可以更好地调动学生自主探究材料科学的积极性,帮助学生把材料知识转化为初步的工作能力,克服课程知识的碎片化倾向。
四、结语
航空航天是现代科学技术的集大成者,该领域发展很大程度上取决于材料科学技术的进步。材料学是航空航天工程技术人员知识结构的重要组成部分。“工程材料学”要按照现代大工程观的要求组织教学,才能实现教学目标,提高培养质量。航空航天领域和材料科学技术发展,极大地丰富了“工程材料学”的教学内容。要根据学科领域的发展需要选择教学内容,按照理论实践结合、突出工程应用的要求构建知识体系。在教学工作中,应根据不同专业的培养要求,深入研究材料学的基本要求和各专业的发展方向,形成“公共知识+方向知识”的“工程材料学”课程结构,提高教学效率。统筹考虑专业教学与其他课程的联系,以及课程设计、工程训练、毕业设计等教学环节,以“工程材料学”课程为中心,注重课程的纵向推进和知识的横向联系,不断加深对材料学的理解和掌握,培养多角度研究分析、跨专业交流合作、多学科解决问题的能力。
参考文献:
[1]朱张校,姚可夫.工程材料[M].北京:清华大学出版社,2011.
[2]周风云.工程材料及应用[M].武汉:华中科技大学出版社,2002.
[3]王少刚,郑勇,汪涛.工程材料与成形技术基础[M].国防科技出版社,2016.
[4]闫康平.工程材料[M].化学工业出版社,2008.
[5]于永泗,齐民.机械工程材料[M].大连理工大学出版社,2010.
Discussion on Reform of "Engineering Materials" Course Teaching for Aeronautic Majors
WANG Tao,ZHOU Ke-yin
(College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 210016,China)
[关键词]高技术产业园区;产业聚集;龙头企业带动模式
[中图分类号]F127
[文献标识码]A
[文章编号]1006-5024(2008)06-0122-04
随着西部大开发的不断深入,西部省份如何充分利用本地雄厚的国防科技资源,实现当地经济的发展与腾飞,是一个亟待解决的问题。西安作为中国航空航天产业的重要基地,在中国乃至全球都拥有特殊的地位和声誉。2002年麦肯锡的战略咨询结果和专家论证表明,航空航天产业是西安市应该发展的支柱产业。也有资料指出,航空产业的投入产出在10年之后就是1:80,就业拉动是1:40。一个机型将有500多个企业单位与之配套,二级配套的厂商更达到3000-5000家,形成一条金字塔式的产业链。西安发展航空航天高技术产业在全国具有独一无二的比较优势。
一、高技术产业园区的阐述
高技术产业区域(Hi-Tech Jndustry District)主要是指高技术产业开发区,以及连绵形成的高技术产业开发带(以下简称为高技术区域),是高技术企业生存和发展的载体,是一种新型的科学与工业相结合的社会组织形式,包括高技术中心(Technopole)、科技工业园(Hi-Tech Industry Park)和科学城(Seience City)。
产业聚集是高技术区域的成功特征。理论研究与发展的实践表明,一个国家或地区竞争优势的获得来源于产业在其内部聚集过程中的优势获得。波特(Potter,1998)以为,在经济全球化进程中,产业聚集可以从三方面影响企业和区域的竞争:一是提高企业的生产率;二是指明创新方向和提高创新速度;三是促进新企业的建立,从而扩大和加强聚集本身。
实际上,新时期的产业聚集更强调在柔性聚集过程中知识、技术等要素的重新组合与创新,强调本地工程师、技术工人等要素的集中以及本地熟练劳动力市场的形成。各种知识型的资源优势越来越成为各国区域发展的主要动力。在高技术区域发展中,产业聚集更多的是依重于创新,聚集的方向是选择具有大量高技术人才和良好创新环境的区域。因此,可以说高技术产业的聚集是以高级知识、技术要素为主形成的,目的是为了获取具有持续竞争力的动态竞争优势。这也是高技术区域发展的重要基础。
高技术产业区域的聚集功能是指高技术区域凭借其具有的区位优势,将各种社会资源聚集在一起协同发挥作用的效应。从其内在实现价值看,聚集是高技术区域的重要区位特征,高技术区域的聚集功能是表现在人才、资金要素的资源聚集和创新的聚集,并最终体现在高技术产业经济效益的聚集;从其外在表现分析,高技术区域的聚集功能会造成对外部和其他区域人才、资金、技术的抽吸效应,从而使其取得聚集经济效益的快速发展,形成技术、经济优势的高势能区位,反过来又对外部和其他区域产生波及影响和带动作用。
二、高技术区域产业聚集的创立、成长与发展
产业聚集可以反映出一个高技术区域的竞争优势和条件,但是它并非一开始就以完整的面貌出现,必然要经历一个产生和发展的过程。从硅谷的发展可以辨识出,高技术产业聚集可以产生聚集效应,但最初的产生肯定是一些非聚集的因素在起作用。这些因素是一些区域的结构性因素,也是触发性因素(如斯坦福大学、政府投资含军事投资、企业衍生等),它们与其他的区位优势(如自然禀赋等)结合,就会产生指向性区位因素,形成最初的企业进入动力。而这些企业又会吸引其他企业进入,区域的功能性因素起聚集的主要作用,形成动态的聚集因素(如风险投资、企业家精神和协作文化等),促进产业聚集的自我发展。这个演化过程可以从下图表现出来。
高技术区域也可以看作是为产业聚集创立的一种区位优势。技术创新理论认为,在近乎完全竞争的市场中存在小企业技术创新的门槛,如果此类门槛过高的话,经济发展有时会因为小的历史事件而被锁定在某低级技术水平上。如果技术的创新和扩散是多数采用者都随着它“走”而引发的,那么优化选择的机制和环境就能提供有效的通道。为了帮助高技术小企业克服创新门槛的阻碍,并防止经济发展水平在某个低水平上锁定,高技术区域便应运而生,并以提供区位优势因素来帮助小企业进行技术创新,而不完全是出自自发的。高技术产业群的形成无疑需要企业有较低的进入门槛。创业企业能自由进入聚集产业,其进入会带来新技术、新思维、新的竞争方式,有利于促进竞争与创新,为产业聚集带来活力。
高技术产业区域的发展模式对园区发展至关重要。Walt,Whitman.Rostow在《经济成长的阶段》(1960)一书中认为正确规划某一时期的主导产业、确定其发展模式是制定区域产业政策的核心内容,也是壮大区域经济实力,提高区域竞争力的迫切需求。林金忠(2001)认为,聚集经济本质上是空间意义上的外部规模经济。他把规模经济分为两类:单个企业的内部规模经济;众多企业在局部空间上的集中而产生的聚集经济。他提出了三种聚集经济的类型:多层次聚集(企业间横向联系而形成的聚集):企业纵向关联而形成的聚集(产业链);由于区位优势而形成的同一产业或不同产业的众多中小企业的聚集。在科技园区的建设中,涵盖了三类的聚集活动。三种的聚集活动在园区中处于不同的层次,和园区的发展阶段紧密相连,如何协调三者之间的关系,如何促成不同阶段的企业的聚集活动,这取决于园区发展模式的选择。
本研究认为高技术的产业聚集最适合选用的模式为“龙头+网络”的形式。“龙头+网络”形式也被称为混合式聚集,是由多核式与网状式混合而成的产业聚集。聚集内部既存在几个核心企业及相关的小企业,又存在着大量没有合作关系的中小企业,例如美国的硅谷和印度的班加罗尔软件工业园。
高科技产业聚集以高科技龙头企业为核心,以大量的中小民营科技企业为配套,以科研院所为支撑,实行政府退出,行业协会运作的机制。高科技产业聚集生产高科技产品,经营风险大,产品的技术层次高,附加值往往也很大,要求企业拥有核心技术和自主知识产权,具有很强的技术创新能力。这类产业聚集在科技资源高度密集,传统工业基础雄厚,民营经济发达的地区容易形成规模,如东莞的计算机硬件产业聚集,西安的航空航天产业聚集,长江三角洲的先进制造业聚集和北京的信息产业聚集等。
三、龙头企业带动模式
(一)龙头企业带动模式的基本内涵
通过龙头企业的发展,带动一大批配套、协作企业,围绕龙头企业形成产业聚集。其主要特点包括:(1)多核式与网状式聚集并存;(2)核心企业不仅带动了配套企业的发展,也为散存的中小企业提供了机会;(3)核心企业与配套企业依靠品牌为核心竞争力,散存的中小企业主要以低成本为竞争优势;(4)技术创新是聚集中小企业生存和发展的关键。
(二)行业内龙头企业带动因素
1.龙头企业与产业聚集的关系。在任何一个产业聚集中,小企业都占多数。从产业聚集内部各类企业的数量来看,有完全以众多小企业组成的“原子式”产业聚集和以少数大企业为中心(龙头企业)、众多小企业为而形成的“轮轴式”或“中卫式”产业聚集。在两类产业聚集中,尤以中卫式产业聚集最为普遍。在该类聚集中,大企业处于整个企业聚集的支配地位,小企业聚集处于或下层,主要为“核心企业”进行特定的专业化加工。并且核心企业主要负责产品的最终组装与生产技术难度高、附加值大、对规模效益反应敏感的配套产品,小企业多是分工生产技术要求低、批量小、专业性分工度高的各种零辅件与半成品等,参与聚集的小企业往往又有一次承包、二次承包甚至更多次承包之分,即把核心企业委托的生产业务根据专业分工要求分包给其他小企业,从而会形成多层次的分工协作体系。中卫式产业聚集的形成往往是少数大企业首先产生,然后众多小企业逐渐聚集在其周围。因而相对于众多小企业而言,政府首先吸引大企业聚集更有目标性,也更容易成功。吴旺延(2[)04)认为,处理好大企业集团与中小企业的关系是西部地区发展中小企业聚集的基础。龙头企业是产业聚集得以发展壮大的关键,当地政府应当为龙头企业保驾护航,要注意发现和培植聚集龙头企业,注重龙头企业和品牌建设。在计划体制下,西部地区建立了一批军工企业和重工业企业。这些企业是按照全能型模式创建的,集企业管理功能和社会管理功能为一体,是基建、供应、生产、销售、生活服务自成体系的,大而全的企业组织结构。由于体制的原因,这些大企业迫切需要“瘦身”并和其他企业“牵手”,才能恢复活力。
2.龙头企业对产业聚集发展的带动作用。“火车跑得快,全靠车头带”,产业聚集龙头骨干企业在加快产业聚集,推动产业聚集发展中起着非常重要的作用。
首先,龙头企业促进产业聚集。一是龙头企业都具有较大的规模和实力,在市场经济条件下,资本、技术、人才等资源总是首先流向那些拥有较大规模和较强实力的大企业。这也就是说,大企业拥有更强的吸引力和凝聚力,能更好地发挥产业聚集主角的功能。二是龙头企业都具有自主知识产权的知名品牌。品牌是市场经济的通行证,是市场竞争力和影响力的集中体现。拥有知名品牌的龙头企业对上下游产业链条具有强大的引领和整合能力。三是龙头企业具有自己核心优势。对于参与产业聚集的企业主体来说,核心优势包括核心技术、专利产品、管理技能、市场网络等诸多方面。一个企业只要在上述一个或多个方面具有独特优势,就会对上下游产业产生强大的拉动和聚集作用,从而与其他相关企业形成产业聚集。龙头企业作为区域内领头羊,一般都具有自己独特的竞争优势。
其次,龙头企业促进产业链延伸。龙头企业能适应国际分工和专业化生产的新形势,不断将一些配套件及特定的生产工艺分离出来,形成一批专业化配套企业,并积极支持中小企业进人自己的供应网络,而专业配套企业的大量进入,又会带领上游原材料供应和加工企业,下游销售企业的不断涌现,从而促进产业聚集内产业链的延伸。
再次,龙头企业加速科技创新、带动产业升级。为了保持行业内的领先地位,龙头企业会更加注重技术的创新和引进。通过与高等院校、科研院所的合作开发新技术、新工艺,与国际大企业合作,引进国外成熟的先进科技,在新产品开发方面不遗余力。研究表明,拥有龙头企业或知名品牌的产业聚集,科技经费投入规模较大,龙头企业科技投入也较大。
最后,龙头企业提高产业聚集内的组织化程度。龙头企业按市场导向,进入某一产品或产业领域,组织专业生产,为了自身产品的保证和竞争力的培养,龙头企业虽然会发展很多的配套企业,将一些生产环节分离出去,但还是会通过协作,把产前、产中、产后作为一个体系来运作,激活各环节的生产要素,产生“一石激起千层浪”的连锁效应。
龙头企业具有开拓市场、引导生产、深化加工、搞好配套服务的综合功能。只要充分发挥龙头企业的带动作用,通过龙头企业的品牌优势、技术优势和市场优势,把分散的、小规模的生产经营组织起来,形成有竞争力的产业聚集,改进工艺、提高技术,带动整个产业水平提高,就会最终形成在全国甚至全世界有影响的产业品牌。
(三)模式中龙头企业所需条件
1、龙头企业有足够大的规模。龙头企业生产经营的规模较大,经营效益较好,有能力带动一批配套企业,并能持续为配套企业的生存发展提供市场空间。
2.龙头企业的产业链可拆分。龙头企业的产品产业链较长,并且每个生产环节可以拆分,使配套企业的独立存在成为可能。
3.龙头企业产品的外协性。龙头企业所需的原材料、半成品或零部件可以由配套企业生产或加工,不涉及龙头企业的核心技术。
4.龙头企业和配套企业要形成合理的分工协作关系。龙头企业与配套企业在产品研发、市场开拓、产品生产方面要有合理分工,建立良好的协作关系,不能成为竞争对手。
5.原料取得的便利性。为龙头企业配套的企业所需的初级原料要很方便取得,能够承受运输费用。
(四)应注意的问题
1.龙头企业要持续稳定发展。龙头企业的发展是整个产业聚集存在的基础,只有龙头企业的持续稳定发展才能为整个产业聚集提供发展的条件和机遇。
2.龙头企业的技术支持。龙头企业应为配套企业提供相应的技术扶持,使配套企业能够跟上龙头企业技术创新和发展的步伐,保证配套企业的健康发展。
只要培育好龙头企业,引导好配套企业,协调好龙头企业与配套企业的分工协作关系,就一定能促进龙头企业作为带动型产业聚集的形成和发展。
四、西安航空航天产业园区模式
(一)西安航空航天产业园区可行性分析。地区间的产业竞争集中体现在产业聚集的竞争,要提升产业竞争力,就要增强产业聚集的竞争力,进而要求搞好产业聚集的空间载体即产业园区的建设。产业园区通过培育主导产业和建立相关支持产业配套,聚集和整合大量的资金、人才、信息等资源,组建信息交流和知识扩散的网络,发挥其外部经济效应,形成了创新的系统环境,使各个主体能实现有效的分工与合作,同时产业园区通过建立使地方政府、企业、服务机构之间实现互动合作的对话机制,协调聚集之间的地域、产业分工和合作,从而促进聚集的不断成长并提升产业组织的竞争力。产业园区和产业聚集相互促进、相互制约,产业园区是形成、承载和促进产业聚集发展的空间载体,产业聚集是提升
产业园区和地区产业竞争力的核心内容。
产业价值链理论来源于哈佛大学商学院教授迈克尔・波特在其1985年出版的《竞争优势》一书中提出的“价值链(Value Chain)”理论。在生产者驱动的价值链中,价值链中的关键制造者一般控制关键技术,扮演协调各个环节的角色。在这里,生产商负责协助它们的供应商和顾客的效率。生产者驱动的价值链是那些大型的、通常由跨国制造商发挥中心作用来协调的生产网络(包括它们的前向和后向联系),这以资本和技术密集型产业――例如汽车、飞机、计算机、半导体和重型机械产业为典型。
所以,以核心企业为龙头,形成产业链,进而形成网络化集群是可行的。而且通过发展和完善产业园区建设,充分发挥产业聚集的空间聚集和产业链交织优势,更是增强地区产业竞争力和经济实力的有效途径。西安航空航天产业发展模式是围绕航天、航空等高新技术产业,形成产业链、产学研相结合的航空航天产业园区。其中,西安闫良航空产业园结合优势产业培育龙头核心企业、拉长军民两用科技园区的产业链条。即以西安飞机工业集团公司为中心,在支持龙头核心企业的科研活动及其成果的产业化,注重培育相关配套的企业,拉成产业链。西安韦曲航天科技产业科技园区是以龙头军工企业为核心形成的园区,即围绕大型军工企业形成军地两用型产业园区,以航天科技产业为主导,其产业定位是以发展航天科技产业聚集及民为支柱产业,发挥航天高科技的优势,促进航天科技企业的民用产业发展。
(二)西安航空航天产业园区现状。西安的阎良、韦曲作为中国航空航天产业的重要基地,具备了发展高技术航空航天科技产业的基本条件。其中阎良拥有一批在全国有一定影响的大型企业集团,如西安飞机工业集团公司、西安飞机设计研究所、飞行试验研究院,以及毗邻的西安航空发动机公司,是全国唯一的集飞机设计、生产制造、试飞鉴定、教学培训为一体、产业体系最完整的航空产业基地;韦曲以研发和制造液体火箭发动机的中国航天集团公司第六研究院基地为依托,兼具西安电子工程研究所等32家航天和高科技产业,充分发挥业已形成的航天科技资源对科技的带动作用,促进区域经济的快速发展。
根据西安市航天航空产业的实际情况及特点,作者对航天航空产业园区的发展模式进行分析研究,认为其产业聚集最适合选用的模式为“龙头+网络”的形式,即是由多核式与网状式混合而成的一种混合式产业聚集。
关键词:SLA;立体光固化成型;增材制造
SLA立体光固化成型法,英文全称叫“Stereo lithography Appearance”,它的原理是用一种限定的波长与强度的激光聚焦到光固化材料的表面,使之按照一定的顺序凝固,完成一个截面的形状,然后在垂直方向上移动到下一个层面,再固化下一个截面,这样一个截面一个截面的往下固化,直到最终完成整改三维实体模型为止。
在当前应用较多的几种3D打印的工艺方法中,光固化成型由于具有高度成型过程自动化、产品模型表面质量好、高精度以及能够实现比较精细的尺寸成型等特点,使之在当前各工业生产领域有着较为广泛的应用。在概念设计的交流、单件小批量精密铸造、产品模型、快速工模具及直接面向产品的模具等诸多方面广泛应用于航空、汽车、电器、消费品以及医疗等行业。
一、当前立体光固化成型法的应用
(一)SLA在航空航天领域的应用
在航空航天领域,SLA模型可用于一些必要的可靠性试验与环境测试,如:风洞试验、零件的可装配性检验、人机工程测试等。运用在航空航天领域的零件与我们日常生活中所接触到的零件有很大的不同,对其重量、结构的可靠性以及精密性要求也严格得多。在采用光固化成型技术以后,可以通过SLA模型进行前期的装配,以便检测个零件之间的配合度,是否有干涉、零件装不上去等现象。通过此技术还可以对一些复杂的结构零件进行加工制造讨论评估,制定最佳的加工工艺流程,对前期复杂零件小批量生产开发、反复测试、修改来说,可以提高效率、节约零件的开发成本。
航空航天领域中发动机上许多零件都是经过精密铸造来制造的,对于高精度的木模制作,传统工艺成本极高且制作时间也很长。采用SLA 工艺,可以直接由CAD 数字模型制作熔模铸造的母模,时间和成本可以得到显著的降低。数小时之内,就可以由CAD 数字模型得到成本较低、结构又十分复杂的用于熔模铸造的SLA 快速原型母模。
(二)SLA在其他制造领域的应用
光固化成型技术不只在航空航天领域起到了非常重要的作用,在其他的一些传统的制造加工领域也有着非常广泛的应用,如在船舶、汽车、模具制造等领域也有着重要的应用。下面就光固化快速成型技术在汽车领域和制造加工领域做一些简单的介绍。
在汽车领域,现代汽车生产的特点是产品生产周期短,型号多,为了适应不同的客户群体,一款汽车在生产定型后,还需要根据市场的需求不断的改进调整,但是不可能每一次的改进调整都直接投入生产,这样带来的风险是很大的,而且成本也高。虽然现在很多内容都可以在计算机上用电脑进行仿真分析,但是在实际研发的过程中仍然需要做出实物模型,可以直观的验证实物与模型之间的差距以及人机工程的合理性,对于一些结构特别复杂的零件,如发动机舱,可以采用光固化成型技术制作零件原型,用来验证设计的合理性。
发动机一直都是一个复杂的机构,而且对于发动机内仓的检测一直都比较复杂。采用光固化成型技术可以有效的检测发动机舱的液体的流动走向,确保发动机舱的冷却液能到全程循环流通。利用光固化成型技术可以很容易的制造出透明的发动机模型,然后在模型舱内注入某种循环液体,液体中加入一些细小颗粒或气泡,就能很直观的看到流道内液体的走向。该检测技术最关键的问题是透明模型的制造,如果采用传统的方法来制造,花费大且不精确,而用SLA技术结合CAD 造型仅仅需要4~5 周的时间,且花费只为之前的1/3,制作出的透明模型能完全符合机体水箱和气缸盖的CAD 数据要求,模型的表面质量也能满足要求。
二、光固化成型技术的研究进展
光固化成型技术自问世以来,在制造领域产生了巨大的影响,目前已经成为工业制造领域关注的焦点。该技术制作精度能够达到大多数工业产品的要求,而且性能可靠,成本较低,因此该技术一直成为国内外众多学者研究的热点。目前,有部分研究者通过对产品产性参数、成型方式以及材料等方面的因素进行分析,提出了一系列的改进,这些仿佛有效的提高了光固化原型的制造精度,有效的减小了零件的变形,降低了残余应力。到今天为止,光固化快速成型技术已经发展比较成熟。各类新的成型工艺不断出现并应用,推进了这一技术在实际工业生产中的应用。下面工微光固化快速成型技术和生物医学两方面对SLA技术的应用做一个基本的介绍。
(一)微光固化快速成型制造技术
目前,传统的SLA设备成型精度可达到±0.1mm,对于一般的工业产品可以很好的满足要求,到时在生物工程和微电子领域是远远不够的,这种领域要求制造的结构都是以纳米级的为单位。很明显传统的SLA工艺技术基本上无法满足这一要求。然而,在最进几年里,微生物和微电子领域发展迅速,使得这些微机械结构有了巨大的研究价值和应用市场。因此,在20世纪80年代,提出了微光固化快速成型μ-SL(Micro Stereolithography),此技术是在传统的SLA技术上,针对微机械结构的制造提出的一种新型快速成型方法,经过30多年的努力研究,这一技术已经有了一定的发展,并在某些领域已经开始应用。
(二)生物医学领域
在生物医学领域,光固化快速成型技术可以为一些通过常规方法无法制造的复杂的人体器官制造模型。基于CT图像的光固化成型技术是应用于假体制作、复杂外科手术的规划、口腔颌面修复的有效方法。目前在生命科学研究的前沿领域出现的一门新的交叉学科―组织工程是光固化成型技术非常有前景的一个应用领域。基于SLA技术可以制作具有生物活性的人工骨支架,该支架具有很好的机械性能和与细胞的生物相容性,且有利于成骨细胞的黏附和生长。
三、结语
当前3D打印等增材制造工艺作为未来工业加工、生产的趋势,SLA立体光固化成型法作为其中一种较为成熟的工艺已经在当前的各工业及医疗领域中有着广泛的应用,具有成熟度高、加工速度快、产品生产周期短、高度自动化等优点,但当前仍有很多限制和不足。未来立体光固化成型技术将向高精细化、多种可加工材料及微光固化成型发展,并将在工业制造和生物医学等领域有着更为广泛的应用。
【参考文献】