首页 > 文章中心 > 数学知识论文

数学知识论文

数学知识论文

数学知识论文范文第1篇

即使我们形成了一套完整的数学逻辑思维体系或者数学方法,但是难免会在应用的过程中存在残缺或者不能及时反馈的情况,而往往学生在经过不断地学习深造之后,形成了庞大的数学知识体系,但是经过一段时间从事非数学工作或者减少接触数学时间之后,这个数学知识体系就会慢慢走向坍塌、遗忘,与日常生活脱节。这并不是因为数学基础不牢固或者知识体系不全面而造成的,而是因为没有形成一种强有力的数学文化,让人在文化中运用数学、学好数学、思考数学。

二、数学文化的建构过程

知识不是通过教师传授得到,而是学习者在一定的情境即社会文化背景下,借助学习是获取知识的过程其他人的帮助,利用必要的学习资料,通过意义建构的方式而获得。2其中“,情境”、“协作”、“会话”和“意义建构”是学习环境中的四大属性。数学学习过程中亦如此,如下图所示。由图我们可以看到,数学文化作为一个大的目标环境,包涵了四大属性的所有内容。情境设定的条件下,展开协作和会话活动。而会话活动和协作并不是被割裂的,而是互动的一个过程。在不断地互动过程中,完成了其意义建构。这个从情境到意义建构过程,便形成了数学文化,也就完成了一个阶段性的数学文化建构使命。情境是数学文化建构过程中有关学习内容的建构。以往中国的教学大都采用课堂教学的方式,并不注重情景式的引导。例如学习几何图形的过程中,并不是简单的采用书本上画出的图形,而是引导学生认知生活中的几何图形,从文具到生活用品,皆成为学习的工具,而不是拘泥于课本上的举例,这样让学生们走进生活,融入其中,发现生活中的数学之美。教授“质量的认知和大小比较”的课程时,不再是想象中的、观念式的教学,而是真实的引入生活中的物品和生活中的测量仪,让学生亲自体验度量的过程,从而学会质量的认知和大小的比较。协作是数学文化过程贯穿的主线。无论是教师、同学或者家长,均是学生学习的伙伴。一个良好的课程教学需要课程设计、资料搜集、数据分析、思考反思等过程,以往的教学方法都是老师取而代之形成了完整的教学过程。但是协作却是一种新型的突破。会话是协作过程中必不可少的环节,也是学习中交流的过程。每个人都从旁观者成为参与者甚至成为领导者,从设定议题到寻求答案,这个过程是一个学习的过程,而由此建构的数学文化便是主动的、积极的,这样更有利于数学文化的形成和强化,从而对学生的认识起到影响。例如三视图的教学,老师的引导下,学生通过自己的观察交流,学会三视图的画法,这样形成的认识会更加深刻,也会对后期深造升学中的立体几何的学习产生积极影响,从而影响未来社会化过程中的思维以及认识。意义建构是数学学习过程的终极目标。为什么要学习数学,中科院王梓坤教授曾经指出,数学的贡献在于对整个?科学技水平的推进与提高,对科技人才的培养和滋润,对经济建设的繁荣,对全体人民的科学思维与文化素质的哺育,这四方面的作用是极为巨大的,也是其他学科所不能全面比拟?的。3正是基于此,数学文化的构建就显得愈加重要。数学仅仅是运算、规则等基本功能便失去了数学文化建构的意义,正是它在培养人文素养、理性精神等方面起到积极地不可或缺的作用,所以从小的数学教育中便应该贯穿数学文化的培养,使学生在学习的过程中真正的认识到学数学可以做什么。我们无法预测一个喜欢几何的学生未来是不是一个建筑师,无法预测一个喜欢计算的学生未来能不能成为一个科学家,就是这样数学文化的形成,至少让他们在社会化的过程中学会思考,学会认知,学会学以致用。

三、数学文化建构的意义

数学知识论文范文第2篇

论文关键词:线性代数,线性关系,知识体系

 

线性代数这门课程有一个特点:各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。内容有行列式、矩阵、向量、线性方程组、特征值问题、二次型、线性空间与线性变换。我们几乎可以找到从线性方程组、行列式、向量、矩阵、多项式、线性空间、线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络[1]。实际上,课程内容的展开不仅取决于课程本身的逻辑,也应该充分考虑学生的接受能力的因素。行列式、矩阵运算和方程组求解通常都被认为容易被学生理解的内容,而向量组的线性关系问题是线性代数的难点。通常的线性代数知识体系是按照由易到难道顺序安排,这样似乎可以渐进地接受难点,但实际上有以下几个弊端:(1)由于难点出现的时间较迟,学生没有机会对难点进行重复运用和消化理解就已经进入课程的尾声;(2)从心理上讲,学生学习有先入为主的现象,最开始学到的知识最容易记住,因此难点后出现也不利于学生接受;(3)运用向量组的线性关系理论可以统领线性代数的重点内容,如果不尽早引入这个理论,就不容易将块状结构有机地结合起来。

1. 线性关系理论的基本概念及其表现

线性关系理论的基本概念包括:向量组的线性组合、向量的线性表示、向量组的线性相关性、向量组的线性无关性、向量组的最大无关组、向量组的秩等。

对任意一个向量组,以这个向量组为列向量组构造矩阵,可以通过对实施初等行变换判别列向量组的线性相关性,进而获得该向量组的最大无关组,同时可以获得向量组中任意一个向量由最大无关组线性表示的表示系数,也可以获得向量组的秩。可见,向量组的线性关系问题集中表现在矩阵的初等行变换过程中。可以认为数学论文,矩阵的初等行变换过程是向量组线性关系理论的外在表现。

2. 基于线性关系理论的线性代数知识体系与关联

线性代数中主要问题的解决都是通过解线性方程组实现的,可以说线性代数的核心内容是线性方程组,而研究线性方程组及其解靠的是矩阵及其矩阵的初等行变换。因此,以线性方程组为出发点,可以为以后解决问题奠定基础。

通过线性方程组可以引出矩阵概念,并引出矩阵的初等行变换方法,进一步引出向量概念,以及向量的线性运算和矩阵与向量乘法运算。在这些基本概念和运算的基础上,线性方程组可以表示矩阵形式和向量形式,其中,是线性方程组的系数矩阵,为矩阵的列向量组,是线性方程组的常数列向量[2]。

由向量形式方程组进一步讨论向量组的线性关系理论,为深入研究和理解线性代数的其它问题提供理论基础。从矩阵形式的方程组出发进一步讨论矩阵运算,特别是在向量组的最大无关组和向量组的秩的概念下,矩阵的秩的定义变得很简单,逆矩阵也很容易理解。行列式可以认为是方阵中的一个特殊概念,事实上,阶行列式也可以用个为向量定义[2]。在行列式和线性方程组概念下,很自然地讨论矩阵的特征值和特征向量问题。二次型标准形问题则在特征值和特征向量概念基础上处理。线性空间和线性变换则是向量方法和矩阵方法的升华[3]杂志网。

在这种知识体系下,向量和矩阵是线性代数的核心工具,矩阵的初等变换是代数的核心方法,而向量组的线性关系理论是核心理论。矩阵的初等变换这一方法不仅可用于求解线性方程组,他还可用于求矩阵的逆矩阵;求矩阵的秩;求向量组的极大无关组及其秩;求齐次线性方程组的基础解系;求向量空间的基及维数;求特征向量;求实二次型的标准形等。而对于这些问题的理性认识则需要向量组的线性关系理论。

3. 知识体系展开的基本逻辑

怎样设计线性代数课程的科学体系?这取决于我们对学科内容的本质的理解,对该学科在现代科学中的地位和作用的认识和课程的目标。在我国,理工科的线性代数教科书是把线性代数的各部分内容作为工具来掌握,而忽视了这门学科最终形成的思想基石――空间与变换,因此这样的课程并没有真正跨进线性代数的思想殿堂,顶多只能视为矩阵运算的初级教程。而我国数学专业的高等代数课程又过分沉湎于形式化概念的逻辑体系构建,而忽略了线性代数理论在现实生活中的鲜活背景和在现代科学技术中的应用前景,因此这样的课程在学完之后也不易明白学习该课程的目的和意义,甚至以为仅仅是学习其他课程的前期准备[1]。

很多文献([1][4][5])讨论了线性代数的知识体系,但是学者们基本上只考虑知识体系本身,而忽略了学生学习的心理因素。线性代数的一个公认特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备。面对抽象的课程内容和复杂度知识体系,学生在学习数学课程时往往会产生焦虑情绪[7]。按照块状结构安排线性代数的知识体系容易使学生产生焦虑情绪。

通常按照块状结构安排线性代数的知识体系,便于教师理解,但是,学生很难建立块状结构之间的联系。基于线性关系理论的线性代数知识体系是从学生认识能力出发数学论文,由现实世界的问题引出数学概念,使学生感到是因为解决现实的需要而学习新的数学概念、理论和方法。这种由现实问题到解决方法的逻辑关系称为生活逻辑,而按照块状结构形成的知识关系成为学科逻辑[7]。学科逻辑是出于本学科的研究者知识整理的需要,不适合向学生传授知识。基于线性关系理论的线性代数知识体系的基本逻辑关系是按生活逻辑展开的。首先,学生容易认识线性方程组与现实的联系,随着解决线性方程组问题过程的深化,提出矩阵和向量概念;进一步,矩阵和向量等新的元素需要进行运算,因此分别讨论向量运算(主要是线性关系理论和方法)和矩阵运算;具备了线性代数的核心工具(向量和矩阵)、核心方法(矩阵的初等变换)和核心理论(向量组的线性关系理论),就可以继续讨论特征值和特征向量,可以讨论二次型,也可以讨论线性空间和线性变换。整个线性代数知识是按照需求展开的,因此,很多过去块状结构中的知识内容(如矩阵、向量、线性方程组等)并非一次性的安排在一章之内,而是在不同的章节中逐渐深入展开。这样安排便于形成以矩阵初等变换为核心方法和向量组的线性关系理论为核心理论的主线,便于学生渐进理解线性代数的难点。

4. 结论

基于线性关系理论的线性代数知识体系将线性代数知识按生活逻辑展开,以向量和矩阵为核心工具,矩阵的初等变换为核心方法,以向量组的线性关系理论为核心理论,形成线性代数的知识主线。这种知识体系便于学生理解线性代数的难点,克服学习上的焦虑情绪。

参考文献

[1]刘学质.线性代数的体系与方法[J]. 重庆教育学院学报,2007.20(7):142-144.

[2]Peter D. Lax. 线性代数及其应用(第二版)[M]. 北京:人民邮电出版社, 2009.

[3]王玺等.线性代数[M]. 上海:同济大学出版社, 2009.

[4]彭德艳,金传榆.《线性代数》内容的关联性研究[J]. 大学数学,2007.23(1):170-175.

[5]贺继康.高等代数课程结构简论[J]. 陕西教育学院学报,2003.19(4):77-79.

[6]王玺.数学课堂教学中的学生情绪因素与教师行为分析[J]. 上海电力学院学报,2004.20(4):95-98.

[7]朱宁波,齐冰.学科课程内容组织的逻辑体系及其处理原则探析[J]. 辽宁师范大学学报(社会科学版)2007.30(1):61-63

数学知识论文范文第3篇

多媒体辅助教学,能够有效地激发学生学习的好奇心,多媒体的合理使用还能够让学生在思维上得到启迪,为学生积极、主动的学习创造有利的条件。例如,我在教学“函数的概念”的相关内容时,就是设计的问题情境,先问学生,函数的表达方式在生活中比较常见的有哪几种?制造问题悬念,让学生进行质疑,等学生回答后,再从多媒体课件中调出函数的图像式、图表式以及解析式等,一一地罗列在学生的面前,这时,很多学生心中的疑问也就能够豁然开朗了,他们的求知欲望也随之高涨起来,思路开阔。极大地增强了数学教学的丰富性和生动性,通过各种图像、视频和声音的演示等,也可以激发学生的学习兴趣和积极性。

二、运用多媒体辅助教学能够增加课堂教学的容量

一堂课的时间只有四十五分钟,在有限的时间里,教学效率的高效显得非常重要。在传统模式下的数学教学,教师仅凭口头讲解向学生传授知识,耗时多且效率低,如果能够合理地使用多媒体技术进行传授知识的话,则可以快速有效地帮助教师传授相关的内容和知识,学生也能在有效的时间接触更多的知识,进而提高课堂教学的容量,既节约时间,又能提高课堂教学的效率。

三、使用多媒体课件的弊端

(一)多媒体课件的过度使用,在一定程度上影响了课堂教学中的师生间的交流,减少了双方间的互动,从过去的“满堂灌”变“机灌”课堂这个大舞台是师生共同活动的场所,师生之间的情感交流也是教学活动中必不可少的环节之一。知识的传播过程也是一个教师与学生间良好互动的过程,但是在使用多媒体课件进行教学的时候,教师很容易把教学的重点放在课件的演示和解说上,学生也都把注意力放在了大屏幕上,学生上课就象看电影一样,只看屏幕,不看教师,师生间的交流、互动逐渐减少了,长此以往,肯定不利于学生的学习,也不利于高效课堂的建立。因此,教师在使用多媒体课件的时候,一定要清晰地认识到,多媒体只是课堂辅助教学的工具,不能完全依靠它。

数学知识论文范文第4篇

摘要:核心素养培养,说到底就是培养学生的素养,我们既要关注学生知识技能的培养,更要关注学生情感价值观的培养。《义务教育数学课程标准(2011)》中明确提出了数学教育的核心素养,“数感”是核心素养的重要内容。为此,我在数学教学中,通过培养学生数感的素养策略分析,逐步帮助学生形成数感,并在此过程中培养学生的健康品质,全面提升学生的数学素养。 

关键词:核心素养;数感;策略;数学素养 

核心素养作为促进学生身心得以健康成长、全面素质和谐发展的一种跨学科素养,在各阶段教育目标制订中占据了一席之地。数感是一种促使人对数及数的运用产生主动、自觉、自动化理解的感悟意识,在数学活动中发挥着联系数学概念与现实问题的重要作用,因而也可视为一种基本的数学素养。在《2011版数学素质教育课程标准》中,数感被列入数学教育核心素养关键词。作为学生激发学习意识、形成核心素养的重要阶段,阶段对培养学生数感有着较为直接的影响。本文基于发展学生核心素养的认知基础,针对如何培养小学学生数感提出建议。 

一、培养小学学生数感的实际意义 

学生们在接受小学数学教育前,经启蒙教育与学前教育的影响一般会对数学有了基本的认识,并获得了一定的数感。但在小学数学教育中,可能会因教学理念、教学目标、教学方式等影响,而教师过于重视指导学生掌握运算知识,提升运算能力,而不重视引导学生形成数感、发展数感,以此虽能培养学生对数学的精算能力,但无法激发学生对数学的学习兴趣,形成对数的感悟能力,无法培养其灵活运用数学的能力,从而不仅会对数学教学的开展形成一定的负面影响,还会导致学生数学能力水平因缺乏良好数感而难以提高与发展。因此,教师应重视通过培养小学学生数感,帮助其正确认识到数学的实际应用意义、促使学生感悟到数学的魅力,培养其良好的创新意识,引导其形成可受益终身的良好学习意识。 

二、核心素养对培养学生数感的影响作用 

核心素养对于学生而言,是一种可受用于其终身发展,并促使其适应社会发展需要的品格与能力。详细说来,核心素养要求学生拥有完善的知识基本技能、积极的情感态度、正面的价值观念,而其素养又属于可影响学生各个学科学习质量、学习思维、学习态度的跨学科素养,由此得知,核心素养的培养与完善对学生来说具备较为关键的影响作用。而在基于核心素养的认知基础上培养学生的数感,则意味着应培养学生在数学学习中的正确意识,使其具备数学学习的必备品格,掌握感知数学的能力。并需引导学生学会自主正确思考,确保能真正提升其数学思考能力与学习能力,继而有效地优化学生的数学思维,强化其数学实际运用能力,全面完善其数学素养。 

三、基于核心素养培养学生数感的应用策略 

(一)结合生活实例引导学生感知数学,帮助学生形成数感 

现阶段对于培养小学生的数感首先要求引导学生进行“数学的思考”,所谓“数学的思考”主要是要求学生感悟到数是通过对数量抽象转换得来,且明确数与其实施抽象的数量对象之间的关联性。在“数学的思考”中,则要求教师应重视结合生活实例,使学生能够将自身经历过的生活现象抽象成数学模型,并借助对应的数学模型来进行生活问题的思考与解决。在此过程中,能够使学生形成对生活事物中包含数与数量关系的感悟能力,继而有助于学生在面对生活现象中自觉地形成数与数量抽象转换的数学思想,并由此形成基本的数感。在感知数学、思考数学的过程中,让学生真正地培养起自身的数学意识,并在解决生活实例问题的基础上地锻炼自身解决问题的能力,以此可见对核心素养的培养也可起良好的促进作用。 

例如,在进行1~5的认识和加减法这一课教学时,教师在引导学生们学习减法这一知识点时,可在黑板上画出5个糖果,首先请学生们数出现有糖果数,然后擦去一个糖果,询问学生们现在黑板上的糖果数可用几个来表示,当学生们纷纷说出4个以后,教师可再擦去一个,再询问学生现有糖果数。在此过程中,可让学生们理解到减法便是在原有物品基础上去掉相应物品数量,以此可促使学生学会用数来表示数量。在《克和千克》教学中,教师可为学生准备1分硬币、一袋糖、一些豆子等,指导学生掂量看哪个物体较重,学生们便指出一袋糖重,教师便可告诉学生硬币和糖均可用“1”来表示,但硬币是1“克”,而糖是1“千克”,让学生形成数与数量关系的正确把握意识,帮助其对生活实际数的感悟形成基本的数感。 

(二)利用数学活动引导学生自主思考,帮助学生培养数感 

在2011版数学素质教育课程标准中表明,数学教学应重视引导学生通过自主观察、思考、操作来解决实际问题,由此令学生感受到数应用的真正意义,引导学生在自主思考、感受当中切实地了解数学知识的应用方式,并通过思考以寻找探究答案的不同方式,以此对学生发散性思维的形成同样能起到良好的促进作用。还能让学生在真正地参与至数学活动过程中加深对数学知识的理解,在切实利用数学知识解决实际活动问题的过程中,令其逐渐增强自身数感。且在教学活动引导学生自主进行操作过程中,可显著地提升学生的实践能力,促使学生挖掘不同问题解决方式,使其与培养学生实践创新的核心素养有着高度的契合感。 

例如,在完成《长方形、正方形面积的计算》教学后,教师可为学生组织“设计师”的活动,要求学生们回到家中在家长的帮助下测量自己房间地板的面积,并为学生提供40×60cm、60×60cm、80×80cm等尺寸不同、花色不同的瓷砖,让学生们根据自己的喜好选择瓷砖,然后计算出铺设自己房间地板的面积,需要多少块相应的瓷砖。学生在活动中通过与自己生活息息相关的问题激发起探究兴趣,还在亲手测量、计算的过程中锻炼了数学知识应用能力,增强了自身数感。 

数学知识论文范文第5篇

关键词:组合数学;图论;计算机;教学

中图分类号:G434 文献标识码:A 文章编号:1009-3044(2016)11-0115-02

Abstract: Combinatorics and graph theory is a kind of science aiming to study some discrete objects and one of the professional courses for computer science and technology. This paper integrates with teaching practice in recent years, discusses on four aspects including concept presentation, teaching pattern, professional feature and scientific research, intends to prove the teaching effect for the combinatorics and graph theory, maximally stimulates the students’ interest in learning, enhances the students' initiative and enthusiasm of studying,promotes students’ perception, and trains students’ abilities to solve practical problems and the academic vision.

Key words: Combinatorics, graph theory, computer, teaching

1引言

随着计算机科学的日益发展,人们时常需要借助计算机来处理大规模的离散数据,由此组合数学与图论的重要性也日渐凸显。组合数学与图论课程是计算机科学与技术和软件工程专业的一门重要专业基础课程,是计算机科学与技术专业的专业核心课程。以组合数学理论和图论为导向,让学生掌握离散问题的理论证明和相关算法,训练学生的数学抽象思维能力,逻辑推理能力,科学计算能力,解决实际问题的能力,离散问题的分析能力和算法设计能力,培养运用理论解决实际问题的能力。它的学习效果直接影响学生后继专业课程的学习,影响着学生日后运用组合数学与图论的思想方法分析和解决实际问题的意识与能力。

由于离散数据是计算机所处理的主要对象,因此离散对象的处理就成了计算机科学与技术的核心。当前,组合数学与图论是研究离散对象的最有力数学工具,在计算机科学中它扮演着很重要的角色,它提供了对很多问题都有效的一种简单而系统的建模方式。在计算机科学领域中,很多问题都可以转化为组合数学与图论问题,然后用组合数学与图论的基本理论与算法加以解决。

在现实的生产生活中,也有大量问题都可以运用组合数学与图论的知识和方法来解决,组合数学与图论所建立起来的数学模型具有广泛的适用性,高校里面的很多专业,如通信科学、电网络分析、结构化学、经济学、社会学、遗传学等,都会运用到组合数学与图论的一些理论与方法。

在组合数学与图论课程教学方面,针对计算机专业学生人们做了大量的教学探索、改革与实践。王桂平等[1]通过程序设计竞赛的方式来激发学生的学习兴趣,并提出了一些有效的课堂教学与实践教学方法。孙培等[2]将教学建模的思想和方法融入到课程教学中,以提高学生的学习兴趣和应用意识。刘瑞芳等[3]从一些教学的设计出发,探讨激发学生学习兴趣的方式,调动学生学习的主动性和培养学生发现和解决问题的能力。殷志祥等[4]提出了课程立体化教材建设的思想,以提高教师的业务能力,增强教师间的团队协助精神,激发学生的学习兴趣和研究兴趣,以及培养学生分析问题解决问题的能力。

笔者通过分析该门课程教学存在的问题,针对工科学生学习数学知识的特点,提出一些教学改革措施。

2组合数学与图论课程的教学改革

在组合数学与图论课程教学过程中,笔者将结合近几年的教学实践,从概念引出、教学模式、专业特点和科学研究四个方面进行探讨,旨在提高课程教学的效果.文中所涉及的一些概念和术语如无详细说明,可参见文献[5-7].

2.1运用故事和历史背景引出概念,激发学生学习兴趣

由于组合数学与图论是数学的一个分支,源于一些有趣的数学游戏,如Fibonacci序列小兔繁殖问题、欧拉36名军官问题、夫妻入座问题、Hanoi问题、幻方、鸽巢问题、七桥问题、着色问题、邮路问题等发展而来.另外,游戏的数学抽象往往涉及到一些著名的数学家。因此,在教学中,可以结合数学家的励志故事和其时代背景引出概念,同时探讨相关的理论知识。比如行遍性问题的教学,可以通过七桥问题、欧拉的故事和中国邮递员问题的故事一起来引出,既能让学生了解问题的起源、认识到数学家的思维方式,又能让学生了解到那一时代中国数学的发展,从而激发学生的学习兴趣。

2.2 采用“翻转课堂”与传统教学相结合的教学模式,提高学生的悟性

当前,由于大学课程学时数的不足,教学大都是用“灌输式”或“填鸭式”的方式,快速地把知识灌输给学生,学生被动接收知识,缺乏主动思考。然而,计算机科学的快速发展,计算机专业知识更新换代非常快,因此,“授之以鱼”不如“授之以渔”,培养学生的学习能力,发挥学生的主体作用尤为重要。

采用“翻转课堂”的教学模式,让学生通过图书馆、网上资源对新知识自主学习。课堂上,老师与学生之间、学生与学生之间相互探讨,对学生的疑惑进行答疑,发挥学生的学习能动性,培养学生分析问题和解决问题的能力。对于一些普遍存在的问题,采用传统教学模式对学生进行讲解,从而达到更好的教学效果。这样,两种教学模式的结合,有利于提高学生的悟性,培养学生之间的协作能力。

2.3 结合专业特点,培养学生解决实际问题的能力

由于组合数学与图论的数学理论知识丰富,需要一定的数学功底,通常在理论知识讲解上,容易讲解得复杂和宽泛。对于倾向于应用的计算机专业的学生来说,掌握组合数学与图论课程知识,不能停留在纯粹数学的思维方式上,还需建立起数学理论知识与后续课程的联系,也就是建立起组合数学与图论这一数学工具与计算机科学相关课程的联系。因此,在组合数学与图论课程的理论知识讲解上,对计算机专业的学生来说,不宜深究理论知识证明,应该力求简单化,保证基本的理论知识结构,结合相应的算法加以阐释,培养学生的抽象思维能力、逻辑推理分析能力、提出问题和解决问题的实际能力。

2.4结合科学研究,培养学生的学术视野

组合数学与图论知识可以应用到很多研究方向,比如组合优化、并行计算、容错计算、图论算法等等,因此,在教学过程中,可以有意识地结合自己或他人的科学研究成果,拓宽学生的知识面,培养学生的学术视野。比如,在图的连通度的教学中,可以展示网络的故障诊断性、网络的容错性、网络的拥塞等方面的论文,让学生意识到连通度知识的学习是可以用来解决计算机的一些实际问题,从而拓宽学生在这一理论知识方面的广度。对于有科研兴趣的学生,更容易切入到计算机科学的相关科学研究领域。

3 结语

本文探讨了组合数学与图论课程的教学方式与方法,提出了四种不同的教学策略,有利于激发学生的学习兴趣,调动学生学习的主动性,以及运用组合数学与图论知识解决计算机科学相关问题的能力。

参考文献:

[1] 王桂平,冯睿.计算机专业图论课程教学改革探索[J]. 计算机教育,2009(20):70-72.

[2] 孙培,刘凯,曾俊杰,杨本朝.在图论课程中融入数学建模思想的教学改革初探[J]. 大学教育,2015(8): 118-119.

[3] 刘瑞芳,贾会才.组合数学课程的教学实践[J]. 河南工程学院学报,2012, 24(1): 75-77.

[4] 殷志祥,张家秀,钱建发.组合数学课程教材立体化体系建设[J].安徽理工大学学报:社会科学版,2011,13(4): 83-86.

[5] 卢开澄,卢华明.组合数学(第三版)[M].清华大学出版社,2003.