首页 > 文章中心 > 正文

跟踪体系论文:光通讯跟踪体系的设计

跟踪体系论文:光通讯跟踪体系的设计

本文作者:董冉艾勇肖永军单欣作者单位:武汉大学

精跟踪子系统结构

1精跟踪系统硬件结构

精跟踪系统的硬件结构可分为探测单元、控制单元、执行单元3个部分,其基本组件参数如表1所示。探测单元采用的是PhotonFocus公司的MV-D1024E-160型CMOS相机,其最大分辨率为1024×1024,开窗为256×256时帧频最高可达到2200frame/s。控制单元为一台PC机加上SiliconSofeWare公司的MicroEnableIV型图像采集卡、一块AC6631隔离通用4路12位D/A卡(只用到两路)。执行单元为Newport公司的FSM300型音圈电机,其最大机械摆角为±26.2mrad,精度≤1μrad。如图1所示,望远镜镜筒中接收到的光线经过一系列反射镜和透镜后聚焦在相机的光敏面上成像,图像数据通过CAMERLINK线传递给图像采集卡,再由PC机处理,然后PC机控制D/A卡输出相应的电压制使得音圈电机产生偏转。

2精跟踪系统软件及算法

作为控制单元处理器的PC机有3点主要任务:(1)控制相机及图像采集卡;(2)将图像信息进行处理并得到要相应的控制电压;(3)控制D/A卡输出相应电压。其中第二项任务是重点也是难点所在,它又可以分为光斑的中心计算和跟踪控制的电压值计算。精跟踪系统需要高频率、高精度地得到光斑中心的位置。高精度的算法需要更大的时间开销,也就是说精度和速度必须统一起来设计出一个最优化的算法。该系统设计了以下算法:(1)用域值分割的方法减小背景噪声的影响。自适应域值通常需要全像素范围的计算,因此采用固定域值分割的方法,利用人工PC机上取点得到背景值可以大幅减小运算量。不足之处是,当背景噪声发生较大变化时,无法及时调整,会造成质心定位的不准确。(2)国内外文献显示,对于精跟踪来说,质心法是一种比较适宜的光斑中心的计算方法[5-6],所有高于域值的像素点均参与运算,所有低于域值的像素点当作是零。这种方法的缺点是,当离质心较远的像素出现大于域值的噪声点时,将很大地影响质心的精度,因此通常域值会取偏大一些,这样虽然会减小光斑的实际范围,但其对质心精度的影响较小[7]。跟踪控制的电压值计算采用的是增量式PID算法。经过优化后的最终算法,在处理256×256分辨率的图像时,从接收图像到发出控制电压耗时约为0.3ms,已经完全能满足实时处理精跟踪相机2200帧频图像的要求,且受外界背景光影响较小,在白天仍然能正常工作。

实验过程及结果分析

通信实验在武汉大学信息学部实验大楼和工学部主教学楼之间进行,两楼直线距离约为2km。实验时信息学部上的发射端向工学部的接收端同时发射650nm信标光和1550nm信号光。由于粗跟踪和精跟踪之间未建立反馈链接,因此采用的是跟踪标定点的方法,即粗跟踪将其CCD上的光斑保持在某个给定点时,精跟踪相机上的光斑进入视场,精跟踪将光斑稳定在光敏面上的给定点时,信号光接收光功率被最大化。接收端下方的一维旋转平台以指定角速度转动,模拟发射端在水平面上运动的情况。精跟踪系统的PC机由C++编写的程序里有坐标的记录功能,将其保存下来绘成随帧号变化的图形。共采集了旋转平台在不同的6种角速度下的光斑质心X、Y轴坐标。图2、3为其中的两组,中间的剧烈变化部分为精跟踪停止工作时的曲线,用于与跟踪状态下的曲线进行对比。同时,在原本放置APD的地方放置了光功率计记录光功率的变化,并将数据传送到PC机中,通过LabView编写的程序将其保存下来。

1精跟踪相机端实验结果及分析

对于精跟踪系统来说,需要跟踪补偿的光线倾斜角相当大一部分低频是由粗跟踪的残差造成的,大气湍流造成的抖动幅度则要小的多。因此,表2列出了运动平台在不同运动速度下粗跟踪系统的残差,而由于光路中透镜的变换,粗跟踪中X轴的抖动在精跟踪中表现为Y轴的抖动,Y轴则表现为X轴。可以看到表中粗跟踪系统在平台运动角速度大于0.8(°)/s时,其残差已经大于精跟踪的500μrad视场,但精跟踪系统的执行机构—音圈电机的偏转范围高达±26mrad,且其反应速度和相机帧频都相当高,而粗跟踪的残余抖动频率相对较低,一般仅为几Hz,因此,只要光斑进入过精跟踪视场,即使总偏移角度大于500μrad,仍然可以被有效跟踪到。经过精跟踪系统的补偿后,在定点及各种不同运动速度时的光斑质心变化如图2、3及表3所示。由于转台惯量等原因,粗跟踪的残差随模拟运动速度的变快而变大,也就是精跟踪在单位时间内要补偿的角度倾斜也在增大,因此预计精跟踪后的光斑坐标浮动也将随着运动速度的变快而变大。由于是一维转动,表3中,只有精跟踪的Y方向也就是粗跟踪的X方向质心坐标标准差的变化基本符合课题组的预测。但是最大偏移量却呈现出无规律的变化,初步推断是由于最大偏移量本身受突发因素的影响较大,而每组数据的记录时间只有几十秒,样本不够大而导致的。图3中,当平台运动速度较高时,跟踪曲线出现了没有被补偿到的低频抖动,且其频率基本和粗跟踪的残余抖动一致,课题组推断这是因为粗跟踪残差已经达到毫弧度级,经过望远镜放大,在精跟踪光路中则达到了十几毫弧度,做为执行机构,音圈电机在大幅度偏转时响应速度较慢,而且在粗跟踪残差很大时,到达精跟踪相机的光斑不仅产生了位移还产生了高频的明显形变,从而产生了质心的变化。

2光功率计实验结果及分析

由于跟踪系统最终是为通信服务的,为了得到跟踪系统对通信的效果和影响,把能向PC机传输数据的光功率计接入了在原通信系统中用来接收信号光的光纤处,以10kHz的频率采集耦合后的光功率,以此来评估跟踪对通信系统的影响。实验结果如图4、图5及表4所示。实验结果表明在各种平台运动速度下,接收到的光功率的均值、标准差基本和平台不动时的定点实验时采集到的数据一致。上节中,精跟踪相机端实验结果中的精跟踪残差由于幅度较小,而耦合有一定的接收面积,在光功率上基本没有体现出随着平台运动速度而变化的特点。表4中还加入了两组未开启精跟踪时的数据对比,可以看到第一组数据记录过程中,光斑完全未能耦合入光纤中,其数据基本可认为是背影噪声,而在第二组数据中,有短时间的耦合成功,但标准差远远大于开启跟踪时。而表4中的最大起伏值除了一组完全未能耦合的以外基本相同,课题组推断,是由于光斑闪烁变化的幅度本身就已经达到了光功率计能测量到的上限,所以文中的最大起伏已经是由闪烁引起的而不是光斑位移引起的,而这是一维的精跟踪系统无能为力的。

结论

APT系统一直是激光通信系统能否成功的关键技术。设计的APT系统中的精跟踪部分,通过对精跟踪相机端实验数据和光功率计实验数据的分析,可以认为该设计基本达到了设计目标,能够当目标以小于1.2(°)/s的角速度运动时,将误差保持在系统的允许范围内,保障了链路的畅通。同时,通过实验,也发现了一些问题:(1)由于精跟踪与APD接收模块之间无反馈回路,因此只能靠人工定出光功率较高的点,而光功率本身由于闪烁、飘移等十分不稳定,定出的较高点往往并不一定是效果最好的点。(2)当粗跟踪残差较大时,精跟踪会出现未补偿的低频抖动,这点有望通过控制算法的改进来解决。