首页 > 文章中心 > 正文

网络覆盖下的高速铁路论文

网络覆盖下的高速铁路论文

1网络特点

高速铁路有着特殊的移动通信场景,导致网络覆盖的难度大大增加,主要具有以下5个特点:①运行速度快,导致出现多普勒频移现象。多普勒效应是指接收到的信号的波长因信号源和接收机的相对运动而变化。在移动通信系统中,设备的移动速度越快,多普勒频移出现的次数越多,基站接收信号的性能也越差。②车体穿透损耗程度大,无线覆盖能力较低。高速列车采用密闭式厢体设计,车体损耗较大,高铁列车车厢的穿透损耗可达24dB,这对基站的发射功率和接受灵敏度提出了更高的要求。③切换频繁。终端的高速移动导致穿越切换区的时间变短,切换难度增大。当穿越切换区的时间小于系统处理时间时,会因切换无法完成而导致掉话和脱网,进而影响了用户的通信服务体验。④线状覆盖区域。⑤多覆盖场景。高铁沿线场景复杂,高速铁路组网技术需要满足大多数场景的要求。

2组网和解决方案

2.1覆盖分析

2.1.1专网覆盖目前,高铁2G和3G网络覆盖均逐渐采用专网进行,LTE对高速铁路的覆盖也建议采用专网组网的形式,通过设置参数和频率,使专网与公网分离,从而在最大程度上满足高铁区域的覆盖要求。专网沿线可采用链型邻区设计,不与公网切换,以保证用户在高速移动时可切换和重选,从而提高通信质量。

2.1.2站址选择高速铁路车体由金属钢板或高分子合成材料构成,穿透损耗较大。为了降低车体穿透损耗,运营商在选择建设基站时应该尽量使基站靠近铁路,建议基站与铁路的垂直距离在50~200m之间。

2.1.3站间距选择为了确保高质量的网络覆盖,FDD-LTE下行电平强度控制在-100dBm左右。经综合考虑,高铁FDD-LTE站间距的选择为:在F频段、平均站高25m的情况下,非边界小区站间距应在1km左右为宜;边界小区站点存在重叠覆盖区,站间距在600m左右为宜。目前,2G和3G线网的站间距主要集中在500~1000m之间,可满足FDD-LTE网络站间距建设的需求。在满足覆盖需求的情况下,可考虑共址建设,以减少工程投资。

2.1.4链路预算分析FDD-LTE(F频段)的下行覆盖无线链路后发现,链路预算必须满足以下4个前提:①高铁隧道覆盖以其他覆盖场景考虑,本文中暂不作讨论。高铁沿线通常位于城市郊区地带,环境较为开阔,基站与列车呈直视径传输,应综合考虑地形、地物等的影响,场景模型应选用农村模型。②F频段车体穿透损耗设置为24dB。③天线配置。基站侧采用2T4R、UE侧采用1T2R;基站侧天线增益为18dBi、UE侧为0dBi。④功率配置。基站侧RRU发射功率为43dBm(考虑双模场景,预留20W功率给TD-SCDMA)、终端侧功率为23dBm。下行覆盖目标(-105dBm)覆盖的估算值如表2所示。

2.2多普勒频移终端高速运动时,从基站发向终端的信号和终端发向基站的信号均会产生多普勒频移。在列车靠近基站时,波长变短,频率增大;列车远离基站时,波长变长,频率减小。频偏大小与载波大小、运动速度成正比,而频偏会导致信号畸变,进而影响接收质量。当频偏到达一定程度时,甚至会出现信号完全无法接收的情况。基于频偏带来的影响,目前,主流的解决办法是通过一定的算法,快速测算因高速所带来的频率偏移,并进行频偏补偿,改善无线链路的稳定性,从而明显提高解调性能。

2.3小区合并技术小区合并技术是指将多个单通道RRU接入同一个BBU,并设置为同一逻辑。小区采用单通道小区合并技术后,可对上行链路进行数据合并,进而提高了接收增益;对于下行链路,可在所选择的天线上发送用户下行数据,这更具有针对性,有效提高了用户接收下行数据的质量,并降低了其余天线的负荷。对于高速铁路覆盖而言,小区合并的主要作用是延长单小区的覆盖范围,从而极大地减少了切换次数。

2.4车载直放设备可在高铁车厢内部署FDD-LTE车载直放站设备和外置车载天线发射和接收信号。车载天线可选用高增益天线,以改善车载台与基站之间的无线链路。机载台将接收到的FDD-LTE信号解调、放大后,传输至部署在车厢内的FDD-LTE室内微基站或WiFi信号转发器。这样可避免车体带来的巨大穿透损耗,保证车厢内部信号的强度,改善无线通信环境,为车厢内的用户提供良好的无线通信环境,从而提升网络服务性能。

3结束语

高铁经过几次大幅度的提速后,列车的运行速度越来越快,旅客也越来越多地选择高铁作为出行工具。因此,LTE高铁专网建设也显得越来也重要。本文中提出的LTE高铁覆盖方案,有利于高铁场景网络规划,可帮助通信运营商打造优质的LTE高铁覆盖网络。

作者:林奕彬单位:广东南方电信规划咨询设计院有限公司汕头分公司