首页 > 文章中心 > 海洋测绘论文

海洋测绘论文

海洋测绘论文

海洋测绘论文范文第1篇

关键词:海洋测绘;发展;探讨

中图分类号:P641.71文献标识码:A文章编号:

海洋测绘,对于海上航行的保证以及海洋事业的发展具有重要作用,而海洋测绘的研究成果,不仅体现在海洋事业的发展,还体现在国民经济建设、国防建设以及科学研究的方方面面。对于我国来说,从新中国的成立至今,海洋测绘的发展也从弱走向强,从小做到大,并且有了骄人的成绩。而海洋测绘成果体现在那一万四千米的岛屿岸线1 800km的大陆岸线以及300多万平方千米和6 500多个岛屿的管辖海域。对于我国的海洋测绘事业而言,海军的测绘力量开创的时间最早,随着海洋测绘事业的发展,我国成立了国家海洋局,国家海洋局对我国的海洋进行调查、规划以及实施,使得海洋测绘事业有了蓬勃的发展。

1 海洋测绘发展历程

我国海洋测绘从1949年年初正式起步,已经经历了60多年漫长的发展时期。从最初简陋的测绘操作到今天的智能化操作,经历了质的飞跃。大体而言,可以将我国海洋测绘的发展历程分为如下几段:

1.1 起步时期

从1949年直到1978年改革开放前将近30年的时间内,我国海洋测绘在较艰难的发展中,逐步步入正轨,取得了稳定发展。1949年,华东军区海军海道测量局的建成后,开始了我国的海洋测绘工作。当时的测绘工具较为落后,最初测量水深使用的是水铊、测深杆以及光学定位仪器;1958年起,开始广泛应用电子管回声测深仪,改进了水深测量效果。另外,70年代开始使用的电子波测距仪,是测量工具上的一大进步,使得测边方式逐渐取代测角布网的方式,提高了测量效率。在人才培养上,哈尔滨军事工程学院于1953年首先开设了海道测量科,1956年国家教育部成立第一所民用测绘高等学校武汉测绘科技大学(后并入武汉大学),1959年总参测绘学院设立了海道测量系,大连海事学校于1973年成立了海道测量教研室,并于1978年设立海测系,在全国开始统一高考招生,对人才的培养力度逐渐加大。

1.2 发展时期・

从1978年改革开放至1993年,我国海洋测绘事业取得了开创式发展。在人才培养上,1978年 3月海军第一水面舰艇学校建立了海洋测绘系,首次开始了海洋测绘专业本科生的培养。在测量工具的使用上,从70年代末开始采用单波束测深仪,80年代后,研制成功了自动化水深测量系统,并同步开始多波束测深仪的研制;在定位测量系统上,80年代后期开始逐步使用微波测距定位系统;同时,海洋重力测量数据的处理开始使用微型计算机进行操作,提高了测量的精确性。90年代,《海道测量规范》的颁布,明确了国家在海洋测量方面的标准。

1.3 跨越时期

1994年,GPS定位系统的建成和投入使用,改变了海洋测绘行业的测量方式,并带动了其他测量技术的更新。此时在水深测量仪器上,已经采用微波遥感和可见光遥感的方法,极大提高了测量数据的精确度。此后,卫星遥感测图应用于海图的编制,海洋磁力测量覆盖了我国的很大部分海域。在人才的培养上,海军大连舰艇学院开始在测绘系招收博士生,培养更高技术水平的专业人才。2001年《海洋测绘》杂志在国内外开始公开发行,并成为我国核心期刊。此时期,海洋测绘业取得了跨越式的大发展,取得了极大的成就。

2 海洋测绘的信息化发展策略

现如今的海洋经过数十年的发展,海洋测绘取得了突破式进步,在当前的信息化发展时代,海洋测绘正逐步加快信息化发展步伐,不断提高测绘的精确性。在当前信息化发展时代,海洋测绘行业取得了不菲的成绩,但还需要采取积极对策,以不断促进海洋测绘业的全面信息化发展。

2.1 加快提高测深技术

最原始水深测量技术主要采用全站仪+测深锤、测深绳的方法进行。在水浅流速慢的水域,此种方法可以基本胜任水深测量的任务,当前在一些内河湖泊、小型的封闭浅水区内这种方法仍在使用中。但在开阔性的大型的水域范围内,此种方法就存在水深测量误差大、水深测量平面点位定位误差大的缺点。随着信息科技水平的进步,在水深测量上,海洋测绘也取得了很大进展,声波成为水深测量的主要手段。假设声波在水中的传播水面速度为V,当在换能器探头加窄脉冲声波信号,声波经探头发射到水底,并由水底反射回到探头被接收,测得声波信号往返行程所经历的时间为t,则:

Z= Vt/2

(Z就是从探头到水底的深度,再加上探头吃水就是水深了)

虽然回深测深的原理很简单,但水中的情况却是很复杂的,有干扰回波、有鱼群出没或杂物的回波,水底的反射条件各不相同,在浅水区还有可能出现二次、三次回波,如何从众多的杂波中跟踪得到真正的水底回波信号,需要采用相关的水底门跟踪技术(也叫时间门跟踪技术)、脉宽选择、信号门槛、自动增益控制、时间增益控制(TVG)等技术.当然这些都是国产水深测量仪器需要格外关注的地方。目前受制于先进的测量仪器技术含量高、价格昂贵,在当前我国的水深测绘中,单波束测深仪仍然是使用主力,对多波束测深系统也在逐步的引进,并且国内的的研制也已经到达了一定的水平。另外,水深测量使用到的新技术还有空间遥感技术,但使用的范围还较小,目前主要在我国的浅海区域,在深海区域的使用范围以及技术的精确度均有待提高。

2.2 提高GPS在海洋测绘中的精度

得益于GPS定位系统的开放应用,现在的海洋测绘定位精度已经得到了很大的提高。无论是在水工项目还是疏浚类工程中,GPS定位系统已经得到了普遍的应用。经过多年的研究以及使用,作业模式也呈现多种多样, 常见的比如差分DGPS,这套系统以我国沿海的海岸信标台为基准,精度可达1m左右,信号无偿使用,使用的坐标系统为WGS84坐标系统。对于高精度用户,厘米级的实时动态定位RTK定位技术已经越来越多的部门使用,特别是航道疏浚方面,可以大大提高作业效率,并且节约成本,这些技术的应用无疑将定位精度提高到了很高的层级。

在海洋测绘中,因为各地潮汐性质不同,验潮站控制范围有限,海洋测绘除了传统的验潮作业模式,近些年开发的基于GPS技术的无验潮RTK作业模式。GPS在陆地大地高的测量中历史较早,且测量结果较准确,但在将大地高转化为海图高的精确度上却并不高。由于海洋理论深度基准面具有跳跃变化的不稳定特点,无验潮作业模式便显出了其优越性,该模式可以进行船体姿态改正,动态的消除潮位、涌浪的影响,采集得到高精度的水深数据。

2.3 统一坐标系,提高海洋测绘精确度

当前在海洋测绘中,发达国家在一般使用地心坐标系进行测绘。地心坐标系因以地球质心为原点,较之参心坐标系在测量结果上更为精确,而鉴于各种原因,我国当前在坐标系的使用上,地方坐标系、国家坐标系以及施工坐标系的参照坐标还存在差异,且主要以参心坐标系为主,应尽快予以统一,并逐渐选择使用地心坐标系,以不断提高海洋测绘的精确度。

2.4 加快网络化信息服务系统建设,重视测绘人才的培养

海洋测绘信息目前还是主要在海洋测绘、科研、管理等部门建立的局域网上实现信息共享,并没有实现社会化应用,应尝试在当前局域网的基础上,与各级海事部门实现联网,通过与国家公共信息网站的链接,实现海事测绘公共服务信息的大众化使用,并尽快建立起信息服务系统,使海洋测绘信息能为与海洋打交道的各行业人员提供帮助。另外,应继续加强对于测绘专业人才的培养力度,除通过高校培养专门的人才外,基于科技的飞速发展,应注意对在业人员的培训,以及时更新他们的知识,使测绘人员的专业技能跟上时展步伐,并不断得以提升。

3 结束语

海洋测绘在我国的国防建设中发挥着重要作用,在几十年的发展历程,海洋测绘取得了突飞猛进的进步,尤其是随着信息化时代的到来,海洋测绘在技术应用上取得了跨越式发展,实现了测绘的数字化、智能化、自动化的发展目标,在我国海洋事业的发展中发挥愈加重要的作用。信息化海洋测绘经历了较为漫长的发展历程,当前已逐步步入信息化发展阶段,实现了测绘的智能化、自动化,极大提高了测绘结果的精确性,但在当前的发展中,在部分技术的使用上,还有待继续提高,测深技术以及GPS技术均需进一步加快发展步伐,还应统一测绘坐标系,加快建设网络化信息服务系统,并继续加快测绘专业人才的培养力度,以不断促进海洋测绘在21世纪的更快更全面发展。

参考文献:

[1] 马兰,孔毅.信息化海洋测绘的构想[J].现代测绘,2010,(1).

[2] 翟国君,黄谟涛.我国海洋测绘发展历程[J].海洋测绘,2009,(4).

[3] 黄文骞.海洋测绘信息处理新技术[J].海洋测绘,2010,(5).

[4] 毕永良,孙毅,黄谟涛等.海洋测量技术研究进展与展望[J].海洋测绘,2011,24(3).

海洋测绘论文范文第2篇

关键词:GPS;海洋测绘;应用;发展

Abstract: Marine surveying and mapping is a branch of the science of Surveying and mapping. From the name of the branch, we can clearly know, object of marine surveying and mapping is the sea. Marine surveying and mapping not only to acquire and display these elements of their location, nature, form, also includes the relationship and development between them, such as the relationship between the channel and the reef, lighthouse, harbor construction progress, current, temperature and seasonal changes. It is a basic and advanced work, all maritime activities cannot do without the marine surveying and mapping security, especially in developing marine, and utilize the ocean today, more and more important role in marine surveying and mapping. Important differences due to ocean area and the area of land natural phenomenon is the distribution of moment of water movement, there is obvious difference between the land surveying and mapping method and its mapping method, so the terrestrial waters of rivers and lakes of Surveying and mapping, usually included in marine surveying and mapping.

Key words: GPS; marine surveying and mapping; application; development

中图分类号:P228.4文献标识码:A 文章编号:2095-2104(2013)

一、海洋测绘的早期发展

海洋测绘大致可分3个阶段:①20世纪30~50年代中期,开始对海洋进行地球物理测量,包括海洋地震测量、海洋重力测量等。这阶段利用回声探测数据绘制海底地形图,揭示了海洋底部的地形地貌;利用双折射地震法获取大洋地壳的各种地球物理性质,证明大洋地壳与大陆地壳有显著的差异。②1957~1970年,实施了国际地球物理年(1957~1958)、国际印度洋考察(1959~1965)、上地幔计划(1962~1970)等国际科学考察活动,发现了大洋中条带磁异常,为海底扩张说提供了强有力的证据,揭示了大洋地壳向大陆地壳下面俯冲的现象,观测了岛弧海沟系地震震源机制。③70年代以后,广泛应用电子技术和计算机技术于海洋测绘中。

二、GPS技术在海洋测绘领域的应用

海洋测绘主要包括海上定位、海洋大地测量和水下地形测量。在海上定位和水下地形测量中都有GPS技术的应用。

1.GPS技术应用于海上定位

海上定位是海洋测绘的重要工作,在海上作业如果不知道自己的具置,那将是一件不可想象的事情。海上定位通常是通过定位系统,确定船只的具置和方向,主要是用于船只导航,同时也是海洋测绘中不可或缺的工作。GPS技术在海上定位的应用主要包括海面定位和水下定位,水下定位主要是用于水下地形测量。

为了能够获得比较好的海上定位精度,是采用GPS接收机与船上的导航设备组合起来进行定位。例如,在GPS伪距法定位的同时,用船上的计程仪(或多普勒声纳)、陀螺仪的观测值联合推求船位。对于近海海域,还可采用在岸上或岛屿上设立基准站,采用差分技术或动态相对定位技术进行高精度海上定位。利用差分GPS技术可以进行海洋物探定位和海洋石油钻井平台的定位。进行海洋物探定位时,在岸上设置一个基准站,另外在前后两条地震船上都安装差分GPS接收机。前面的地震船按预定航线利用差分GPS导航和定位,按一定距离或一定时间通过人工控制向海底岩层发生地震波,后续船接收地震反射波,同时记录GPS定位结果。通过分析地震波在地层内的传播特性,研究地层的结构,从而寻找石油资源的储油构造。根据地质构造的特点,在构造图上设计钻孔位置。利用差分GPS技术按预先设计的孔位建立安装钻井平台。

GPS技术在海洋测绘中的海上定位中的重要性不可忽视,海洋测绘的大量测量工作都要用到海上定位的数据。

2.GPS技术应用于水下地形测量

水下地形测量是海洋测绘的最基本的工作之一。由于海域辽阔,海上定位颗根据离海岸距离的远近而采用不同的定位方法,如光学交会定位、无线电测距、GPS卫星定位等。

水下地形测量主要是海道测量,海底控制测量是确定海底点的三维坐标或平面坐标,而水下地形测量还需要利用水声仪器测定水深。对于近海领域,采用在岸上会岛屿上设立基准站,采用动态相对位技术进行高精度海上定位。在船上安装差分GPS接收机和测深仪。测量船按预定航线利用差分GPS导航和定位,测深仪按一定距离或一定时间按照事先设定自动向海底发射超声波并接受海底的发射波,同时记录GPS的定位结果和测深数据。定位测量和水深测量的数据都有了之后,就可以利用这些电子手簿和计算机、绘图仪等组成系统,测绘水深图和水下地形图等。

三、GPS技术在海洋测绘领域的应用中出现的问题及解决方法

1.出现的问题

由于GPS技术是由美国军方制作并控制的,因此我们在使用GPS数据时就要考虑到数据的真实性和数据的实用性。美国军方可以随时修改我们使用的数据,如果数据不准确一切工作都没有任何用途。

另一方面,由于GPS定位系统是基于美国军方的国家战略研发的,所以其对外开放的彻底性还有所保留,加上整个系统本身研发时的局限性和民用领域的不断延伸,所以同其他测量手段一样,GPS测量误差也不可避免,因此在进行海洋测绘的时候需要注意出现的误差。

2.解决方法

在数据使用的问题上,我们目前还没有什么卫星定位系统可以和GPS卫星定位系统相比,不论是我国的北斗系列,还是GLONASS 全球导航卫星系统或Galileo系统总体功能现在都无法与GPS相比,因此我们要在研发新的系统的同时,还是要使用GPS的数据来解决我们目前的一些问题。

对于GPS测量时产生的误差,我们应该分析产生误差的原因,一般出现的都是系统误差。对于这些系统误差,我们不可避免,因此只能通过一些参数来进行数据结果的修正。另外,还有一部分误差是我们在进行数据转换的时候产生的。因为GPS卫星定位系统采用的是WGS-84坐标系统,而在我们国家一般使用的是北京54坐标系统,因此在使用GPS数据时就需要进行坐标系之间的转换。由于不同的地方的转换参数不同,因此坐标系之间的转换是一项浩大的工程,在转换构成中就会产生一些误差,对于这些误差我们也只能尽量避免。只有这些误差都减小了之后,我们进行海洋测绘的工作才能做的更精细,数据才能更准确。

四、海洋测绘学的新进展

1.海道测量。在海洋测深过程中,为解决回声测深仪波束角效应使记录的测深图像失真问题,提出了波束角效应的改进模型及其改正算法。针对多波束测深数据集,采用改进的距离反比权重算法和多细节层次模型技术来建立海底数字地形模型(DTM)。应用双频GPS动态后处理高精度定位技术建立了一套完整的GPS无验潮海洋深度测量作业模式,显著提高了水深测量成果的精度。

2.海洋重力场与磁力场测量。有关海洋重力的确定,首先研究了建立我国陆海新一代平均重力异常数字模型问题:基于重力场的频谱理论,给出了扰动引力在全球平均意义下的功率谱表达式;推导了垂线偏差同大地水准面差距偏导数的转换公式;推导了水平重力梯度边值问题的级数解。

对海洋磁力测量的研究,从磁偶极子磁场出发,推导出一个简单的测线间距计算公式。基于磁力线定义和均匀磁化球体周围的磁场分布,推导出一个简单的磁力线簇公式。以陆用地磁日变站为基础,结合DGPS系统和浮标技术,自行设计开发数据实时采集与传输系统。采用布设海底地磁日变观测锚系的技术方法,解决了远海区磁测日变改正观测资料问题。

3.空基海洋测绘技术。首先是重点研究了利用有理函数模型实现高分辨率卫星CCD影像的单片定位的方法;其次是提出了一种遥感图像半自动提取建筑物的方法;第三是提出了一种基于多分辨率小波高频特征系数的高光谱遥感影像亚像素目标识别方法;第四是针对IKONOS高分辨率卫星影像处理中的不适应性,提出一种更为精确细致的图像融合方法——自适应小波包分析法;第五是从测高卫星飞行轨道的规律出发,提出了采用“距离加权平均”计算正常点海面高的新方法;第六是研究了观测卫星的选择对基线解算质量的影响,提出了提高基线解算质量的人工选星的基线处理方法。

4.海图制图与海洋地理信息工程。首先是提出了基于Circle原理和“优胜劣汰”思想的地图综合新算法;其次是探讨了数字测图中的坐标变换方法,总结了一套作业思路和方法;第三是提出了基于Flash技术制作多媒体电子地图的解决方案及实现过程;第四是研究了一种由计算机自动生成Delaunay三角网的增点生长构造法;第五是实现了MapInfo图形数据在IE中的显示与浏览,从而验证了用VML实现地理空间数据可视化的可行性。

五、结束语

GPS技术已经广泛应用于各个领域,在海洋测绘领域也不例外。对于海上定位,海洋的水下地形测量,GPS技术发挥了很大的作用,我们使用GPS技术让我们在海洋测绘领域的成果更进一步,建立了海洋测量平面控制网。GPS技术的引进改变了传统的测量方法,节省了很多人力物力。

参考文献:

[1]朱道璋.浅析GPS测量的误差及应对措施[J].江西省水利规划设计院.2006.

海洋测绘论文范文第3篇

关键词:海洋测绘 水深测量 误差 对策

我国在海洋测绘工作中常用的传统测量方法,如测深铅鱼、测深杆、六分仪和罗盘定位、测深绳等,很难完成当前的各种工作,这些测量方法效率低下而且精度太差。利用传统的方法和仪器只能粗略的绘制海图,很难完成较高要求的探测工作。在经历了较为漫长的发展历程后,海洋测绘当前已逐步步入信息化发展阶段,实现了测绘的智能化、自动化,极大提高了测绘结果的精确性。在当前信息化发展时代,海洋测绘行业虽然取得了不菲的成绩,但在部分技术的使用上,还有待继续提高,测深技术以及GPS技术均需进一步加快发展步伐,还需要采取积极对策,对测量误差进行修正,统一测绘坐标系,建立完整的GPS无验潮海洋深度测量作业模式,加快建设网络化信息服务系统,并加快测绘专业人才的培养力度,最大限度的提高测绘结果的精确性,才能不断促进海洋测绘业的全面信息化发展。

一、海洋测量中水深误差的原因

在海洋水深测量工作中,采用无验潮方式时,由于RTK高程的可靠性、船体的摇摆、同步时差、采样速率等因素,会极大地影响测量结果的精度,这些误差要比RTK定位误差高出很多,这些原因的存在,严重地制约了提高无验潮方式水深测量精度。

动态吃水及船体摇摆姿态产生测量误差。动态吃水改正指的是测深船的静态吃水深度加上船体自重下沉和颠簸的总和,是需要求平均值的不定值,是精密水深测量的重要误差来源。

采样速率及延迟造成测量误差。GPS定位输出的更新率将直接影响到瞬时采集的精度和密度,现在大多数RTK方式下GPS输出率都可以高达20HZ,而测深仪的输出速度各种品牌差别很大,数据输出的延迟也各不相同。因此,定位数据的定位时刻和水深数据的测量时刻的时间差造成定位延迟。

RTK高程可靠性产生的误差。在测量海洋水深的过程中,RTK高程的可靠性问题是一个不可避免的问题,倍受关注。在作业之前,可以把使用RTK测量的水位与人工水准观测的水位进行比较,对其可靠性进行判断。为了确保作业精度,可从采集的数据中提取RTK高程信息绘制水位曲线。对曲线的平滑程度进行仔细的分析,根据曲线的平滑程度分析RTK高程有没有产生个别或部分点出现急剧升高或降低的情况,然后使用修正的方法,来改正个别高程存在错误的点。

二、对策

为了最大限度的提高测量结果的精确性,测量前,先要确定测区范围和测图比例尺,设计图幅,准备图板和展绘控制点,布设测深线和验潮站,以及确定验流点和水文站的位置。测量时,测量船沿预定测深线连续测深,并按一定间隔进行定位,同时进行水位观测。测量中要确定礁石、沉船等各种航行障碍物的准确位置,探清最浅水深及其延伸范围。同时还要进行底质调查,测定流速和流向,以及收集水温和盐度等项资料。取得水深的原始资料后,要对它进行各项改正,检查成果质量,最后绘制出成果图板。

(1)对测量误差进行修正。对于采样速率及延迟造成的误差,可以在延迟校正中加以修正,修正量可在斜坡上往返测量结果计算得到,也可以采用以往的经验数据。船体摇摆姿态和动态吃水的修正,可用电磁式姿态仪修正船的姿态,修正包括高程的修正和位置的修正。船的航向、纵摆和横摆等参数都可以通过姿态仪输出,借助专用的测量软件可以修正这些参数。动态吃水改正是船体自重下沉加上测深船的静态吃水深度和颠簸的总和,得到的是一个不定值,往往都是平均值。

(2)提高GPS在海洋测绘中的精度。GPS定位系统在大地高的测量中应用较早,且测量结果较准确,但在将大地高转化为海图高的精确度上却并不高。由于海洋理论深度基准面具有跳跃变化的不稳定特点,因此,将大地高作为无缝垂直参考基准应用水对水深的测量,还需要进一步加强对于数据处理准确性的研究,以做到通过大地高的测量,能对海图高的数值有比较准确的测定,尤其在我国的远海领域,应加大对GPS精确使用范围并加快相应技术研究,以不断促进海洋测绘技术的提高。

(3)加快提高测深技术在水深测量上,海洋测绘虽然在近些年的发展中,取得了很大进展,但由于受先进的测量仪器价格昂贵,以及海洋测绘较之陆地测绘起步晚,在技术上相对较弱等原因的影响,在当前我国的水深测绘中,仍然主要使用单波束测深仪,对于多波束测深仪的研制还有待提高,如果主要依靠单波束测深仪,将会降低我国测深效率以及测量结果的精准性,对于我国海洋测绘业的发展是不利的。另外,虽然采用了空间遥感技术,但使用的范围还较小,目前主要在我国的浅海区域,在深海区域的使用范围以及技术的精确度均有待提高。

(4)统一坐标系,提高海洋测绘精确度。当前在海洋测绘中,发达国家在一般使用地心坐标系进行测绘。地心坐标系因以地球质心为原点,较之参心坐标系在测量结果上更为精确,而鉴于各种原因,我国当前在坐标系的使用上,地方坐标系、国家坐标系以及施工坐标系的参照坐标还存在差异,且主要以参心坐标系为主,应尽快予以统一,并逐渐选择使用地心坐标系,以不断提高海洋测绘的精确度。

(5)建立完整的GPS无验潮海洋深度测量作业模式。在海洋测深过程中,为解决回声测深仪波束角效应使记录的测深图像失真问题,提出了波束角效应的改进模型及其改正算法。针对多波束测深数据集,采用改进的距离反比权重算法和多细节层次模型技术来建立海底数字地形模型(DTM)。应用双频GPS动态后处理高精度定位技术建立一套完整的GPS无验潮海洋深度测量作业模式,可显著提高水深测量成果的精度。

(6)加快网络化信息服务系统建设,重视测绘人才的培养。海洋测绘信息目前还是主要在海洋测绘、科研、管理等部门建立的局域网上实现信息共享,并没有实现社会化应用,应尝试在当前局域网的基础上,与各级海事部门实现联网,通过与国家公共信息网站的链接,实现海事测绘公共服务信息的大众化使用,并尽快建立起信息服务系统,使海洋测绘信息能为与海洋打交道的各行业人员提供帮助。另外,应继续加强对于测绘专业人才的培养力度,除通过高校培养专门的人才外,基于科技的飞速发展,应注意对在业人员的培训,以及时更新他们的知识,使测绘人员的专业技能跟上时展步伐,并不断得以提升。

综上所述,对于海水测量的水深误差,要采取针对性的对策,对测量误差进行修正,统一测绘坐标系,建立完整的GPS无验潮海洋深度测量作业模式,加快建设网络化信息服务系统,加快测绘专业人才的培养力度,才能最大限度的提高测绘结果的精确性,不断促进海洋测绘业的全面信息化发展。

参考文献:

[1]柯可;GPS技术的原理及其在测绘领域的应用[J];中国水运(下半月);2008年02期

[2]赵建虎;李娟娟;李萌;海洋测量的进展及发展趋势[J];测绘信息与工程;2009年04期

海洋测绘论文范文第4篇

关键词:现代测绘学数字地球

1993年和1994年美国先后以总统令的形式提出建立"国家信息基础设施"(NII),即通称的信息高速公路,以及"国家空间数据基础设施"(NSDI),这是进一步推进社会信息化,抢占信息产业发展新的制高点和主动权的重大战略步骤,时隔五年,这一计划的实施初见成效,刺激了美国的经济增长,于是去年又以美国副总统演讲形式推出数字地球的概念和构想,并计划到2020年试图达到地球信息化的最终目标,亮出了美国这一近期全球信息战略的底牌。由美国政府高层出面提出的这一"数字地球"构想引起全球各方关注,并成为学术界热点话题。中国学者尤其在地学界也作出了积极的反应,不论从科学技术的角度还是从国家利益的角度,中国要准备迎接这一严峻挑战,已成共识。作为测绘学科,测绘行业反应更显强烈,数字地球概念为测绘事业发展提供了新的机遇和更高层次的发展前景。这里我们想就现代测绘学的发展从学科的观点稍为具体地探讨一下它与数字地球的关系和在构建数字地球中的作用。

一、测绘学的现展

空间技术,各类对地观测卫星使人类有了对地球整体进行观察和测绘的工具,好象可以把地球摆在实验室进行观察研究一样方便。由空间技术和其它相关技术,如由计算机、信息、通讯等技术发展起来的3S技术(GPS、RS、GIS)在测绘学中的不断出现和应用,使测绘学从理论到手段都发生了根本的变化。测绘生产任务也由传统的纸上或类似介质的地图编制、生产和更新发展到地理空间数据的采集、处理和管理。GPS的出现革新了传统的定位方式;传统的摄影测量数据采集技术已由遥感卫星或数字摄影获得的影像所代替,测绘人员在室内借助高速高容量计算机和专用配套设备对遥感影象或信号记录数据进行地表(甚至地壳浅层)几何和物理信息的提取和变换,得出数字化地理信息产品,由此制作各类可供社会使用的专用地图等测绘产品。我国960万平方公里国土的国家基本地图的成图或更新周期可望从十几年,几十年缩短到几年或更短,测绘业的体力劳动得到解放,生产力得到大的提高。今天,光缆通讯、卫星通讯、数字化多媒体网络技术可使测绘产品从单一纸质信息转变为磁盘和光盘等电子信息,产品分发可从单一邮路转到"电路"(数字通讯和计算机网络传真),测绘产品的形式和服务社会的方式由于信息技术的支持发生了很大变化,进入了信息化的发展。当前,随着我国经济的高速发展和经济所有制成份和运行体制的改革,需要开放民用国家测绘产品;从技术方面看,西方国家卫星测地技术可制作全球几乎任一地区1米分辨率(相当1∶1万比例尺)的地图,卫星上的GPS又可将这种地图纳入全球参考框架和转换为他们的国家坐标系,中、小比例尺国家地图的保密价值已大大降低;对于军事敏感的重力数据,卫星重力技术所发展的低阶全球重力场模型已足够用于他们的远程战略导弹发射。目前全球高阶重力场模型(如EGM96)分辨率已达50公里,已接近我国现有重力数据的分辨率,其保密价值也需要重新评估。这一形势使绝大部份测绘产品可以作为普通商品服务于全社会,测绘业从单一国家事业逐渐转变为社会主义市场经济的产业,这无疑为测绘学的发展注入了新的活力和扩大了发展空间,这也是一个有重要意义的历史性转变。

综上所述,由于以空间技术、计算机技术、通讯技术和信息技术为支柱的测绘高新技术日新月异的迅猛发展,测绘学的理论基础、测绘工程的技术体系、其研究领域和学科目标,正在适应新形势的需要发生着深刻的变化,表现为正在以高新技术为支撑和动力,进入市场竞争求发展,测绘业已成为一项重要的信息产业。它的服务范围和对象也在不断扩大,不仅是原来的单纯从控制到测图,为国家制作基本地形图的任务,而是扩大到国民经济和国防建设中与空间数据有关的各个领域。它必将随着21世纪更加成熟的信息化社会的到来向更高层次发展,在未来数字地球的概念和技术框架中占据重要的基础性地位。二、数字地球和现代测绘学

地球上一切事件都发生在一定的空间位置,人类社会经济活动所需要的信息绝大部分(约80%)都与地理位置相关。中国21世纪议程62个优先发展项目中,约有40个需要建立或应用地理信息系统。数字地球是利用海量地理信息(即地球空间数据)对地球所做的多分辨率、三维的数字化描述的整体信息模型,便于人类最大限度地实现信息资源的共享和合理使用,为人类认识、改造和保护地球提供一种新的手段,这里在数字地球的概念中突出显示了地理坐标的框架作用,因此NSDI是数字地球的基础设施,要求提供(地球)空间数据框架,包括大地测量控制框架(国家定位网和重力控制网)、数字正射影像、数字高程模型、道路、水系、行政境界、公共地藉等基础地理数据集。在此框架上加载各类地球自然信息和人类社会经济活动等一切所需要和感兴趣的人文信息。为数字地球提供上述地球空间数据框架是测绘业本身的"专职",但又对测绘学提出了更高层的技术要求。

NSDI要建立在NII上,要在因特网上运行,要求开发功能强、效率高的因特网GIS软件。这表明还要大力发展测绘产品的计算机网络技术,它的技术基础是宽带、高速图形图象网络,当然其中宽带高速问题需要国家投资在NII中解决。数字地球构想的另一个高技术特点是虚拟现实模型。目前发展起来的全数字化摄影测量就能够利用功能强大的计算机系统或工作站,对数字化影象进行处理,建立立体地形或地物虚拟模型。但如何将这一技术用在因特网上对多种测绘产品和普通用户提供虚拟模型甚或虚拟现实模型,则是要进一步研究和发展的。数字地球是对真实地球及其相关现象的多分辨率、统一性的三维数字化整体表达,这里强调了统一性和整体性,要求全球多源数据无缝无边的连结和整合。从空间数据框架来说,其统一性和整体性是由大地测量来实现和给予保证的。大地测量是传统测绘的基础,对当前信息化测绘和构建未来数字地球更是基础的基础,即空间数据框架的框架。它要求全球采用统一的参考椭球模型和相应的地心坐标参考框架(如ITRF);全球统一的高程基准,即统一定义和使用的大地水准面;全球统一的重力测量基准(重力基本网);全球统一的地图投影系统。一切原有的测绘成果,特别是国家基本地图都要转换到上述全球统一的参考系中。数字地球对全球大地测量提出了更高更紧迫的要求。GPS配以少量SLR和VLBI站是各国保持和维护各自的地心参考框架的基本技术,但局部坐标到全球坐标的转换目前还难于达到优于米级的精度;全球高程系统的统一问题,大地测量学家经过几十年的研究,目前还是一个未能解决的难题,最终要通过全球重力数据,特别是新一代卫星重力计划和卫星海洋测高计划在国际大地测量协会的统筹和协调下实现。

海洋占全球面积的70%,海洋将是21世纪资源开发的主要竞争空间,海洋动力环境的变化(如厄尔尼诺现象)又是决定全球气候变化的主要控制"阀门"。数字地球向海洋测绘提出了挑战。从全球来说,目前海洋的精细测绘基本上还是空白,多波束测深技术的发展加速了各国领海海底地形的测绘,但要将陆地坐标参考框架以相近的精度扩展到海洋仍存在困难,海上GPS定位精度还低于5米;由于陆地高程基准不能用水准测量传递到海洋,在卫星测高技术的支持下用某种去掉潮汐影响的平均海面作深度基准,精度可达米级,和多波束测深精度相当。但广大的开阔深海的海底地形测绘不可能用船载测深仪完成,用卫星测高结合重力数据(低阶或中阶重力场模型)反演海底地形,目前试验精度可达10-100米。数字地球将要求海洋测绘技术有新的突破。

测绘学由于其技术的突破已日益向相关地学领域渗透。大地测量更成为研究地球动力学(包括海洋动力甚至大气动力)的重要技术手段,GPS监测已能提供全球板块运动和地壳形变精密数据,可用于研究地学灾害(地震、滑坡和火山爆发等)的预测;GPS已可以和VLBI相近的精度和频谱分辨率监测地球自转的变化,由此研究地球深部结构和动力过程及全球变化;专题GIS也成为环境灾害问题分析预测工具。数字地球最重要的功能之一是为解决21世纪人类面临的环境和灾害问题提供一个可供观察、分析、模拟和预测的全球信息系统,以期协调人与自然的关系。

我们赞成活数字地球或动态数字地球的提法,因为人类是生活在不断运动变化的地球上。现在在全球性的观测中,各种对地观测新技术已可能连续快速获取地球表面(或浅层)随时间变化的几何和物理信息,了解地球上各种现象及其变化。因此测绘学或者说测绘业则应当利用3S技术结合合成孔经雷达干涉技术(INSAR)以及其他新技术(如卫星重力探测技术等)对地进行观测,为构建活数字地球提供描述地球动态变化的地理信息产品。

数字地球构想是推动人类大踏步跨进信息社会的重大战略步骤,有挑战也有风险。测绘是数字地球的基础,测绘工作者也将是构造数字地球的"尖兵",也要求测绘学有新的发展和突破。

三、测绘学和地球空间信息学

在本文第一部分已谈及测绘学在新的技术进步推动下的现展趋势。从现代信息论的观点看,测绘学本质上就是一门关于地球空间信息的学科,传统的测绘受地面测量技术、时空尺度和精度水平以及投入的局限,其产品主要是单一的地形图和在地形图基础上编绘的专用地图。它不能反映、至少不能及时反映地球表面形态的变化,特别是大范围和全球变化。其产品制作周期长,已不能满足地区经济和全球经济高速发展的多种需要。信息技术加快了人类社会的运行速度。测绘学应该是提供人类生存空间自然环境及其变化信息的学科,它的学科内涵发生了巨大的变化,因此如何界定测绘学的含义,已是世界各国测绘工作者所关注的问题。于是从90年代开始,国际上将测绘学(SurveyingandMapping)更改为一个新词,以准确反映学科实质,Geomatics一词由此应运而生。随后,有关Geomatics的提法在我国学术界,主要是地学界成为热门话题,由于对其含义理解不同,其中文译名也是五花八门,现在将它译成"地球空间信息学",已基本得到认同。不管人们对Geomatics的含义如何理解,但根据ISO的标准定义和国际测绘联合会(IUSM)对"测绘学"的定义,两者的含义是基本类同的,只不过Geomatics所涉及的地球空间信息的范围更宽一些。Geomatics更准确地描述了测绘学在现代信息〖CD2〗通讯社会中的地位和作用,适应了现代社会对地球空间信息的极大需求的特点,因而发展和提高了测绘学的研究和工作领域,符合现代测绘学发展的实际。现代测绘工程的核心技术是空间技术,包括GPS、卫星遥感和航测,测绘的范围扩展到整个近地空间,例如近地空间航天器的导航定位,近地空间重力场的测定,大气层甚至电离层的信息;其支撑技术是信息技术,主要处理电磁波信息和影像信息,加之通讯、计算机网络等信息技术,使地球空间信息学科的理论和技术体系比传统的测绘学有了很大的发展和更新,由此,Geomatics适合于纳入数字地球的理论和技术框架。

随着数字地球构想的实施,测绘学面临一个历史性的发展新机遇,传统的或现代测绘学将以地球空间信息学的新面目立于地球科学分支学科之林,以更强的活力向前发展,前景良好。

四、建议

本文漫谈了测绘学的发展及其与数字地球构想的关系。为在21世纪加速建设我国空间数据基础设施,发展我国的测绘学科和测绘事业,以迎接"数字地球"的挑战,根据我国目前测绘事业发展的现状,从一个侧面(主要是大地测量方面)提出以下建议:

1.尽快统一我国大地定位参考框架的建设,对近年来由各个部门独立建立的各等级GPS定位网进行必要的联测和统一整体平差,此举可望进一步加强部级的大地定位框架;

2.将沿海各部门100多个验潮站统一组织GPS联测,精密确定各验潮站水位标尺零点的大地高,填补陆海相接地带重力测量空白。此举为统一陆海大地水准面,建立海洋高程基准,研究海平面变化至关重要;

3.研究将陆地GPS定位框架向我国领海扩展的方案,着手建立我国包括海域的广域差分GPS定位系统;

4.尽快完成重建我国重力基本网,发展航空重力测量系统,加密西部地区重力测量和GPS水准,加大力度支持对卫星测高数据的利用,为下世纪确定我国亚分米级或厘米级大地水准面作好数据储备,建立可在因特网上运行的新的重力数据库;

海洋测绘论文范文第5篇

【关键词】:地形测量;测绘技术;自动化技术

【 abstract 】 : along with the computer and the development of network technology and intelligent measuring instrument of surveying and mapping technology automation technology also changed a lot, from the past electronic range finder, the theodolite, water level and China gradually to a 3 g technology, digital camera measuring technique and artificial intelligence technology rapid development, and to promote the surveying and mapping technology of automation technology constantly updated, surveying and mapping technology is headed in automation, The Times, the Internet and digital direction of development, topographic more accurate, more simple and more convenient.

【 keywords 】 : topography measurement; Surveying and mapping technology; Automation technology

中图分类号:P2文献标识码:A文章编号:

1.地形测量的概述

1.1地形测量学的研究是测绘地形图及与其有关测绘工作的理论、方法的应用技术学科。为了满足城镇的规划、矿山开采设计以及各种经济建设,以地形测量的方法可以提供不同比例尺的地形图。

1.2地形测量的类型

1.2.1控制测量,控制测量是测定一定数量的平面和高度控制点,为地形测图的依据。平板仪测图的控制测量通常分首级控制测量和图根控制测量。首级控制以大地控制点为基础,用三角测量或导线测量方法在整个测区内测定一些精度较高、分布均匀的控制点。图根控制测量是是在首级控制下,用小三角测量、交汇定点方法等加密满足测图需要的控制点。图根控制点的高程通常用三角高度测量或水准测量方法测定。

1.2.2碎步测量,碎步测量是测绘地物地地形的作业。地形特征点、地形特征点统称为碎步点。碎步点的平面位置常用极坐标法测定,碎步点的高程通常用视距测量法测定。按所用仪器不同,有平板仪测图法、经纬仪和小平板仪联合测图法、经纬仪测图法等。他们的作业过程基本相同。测图前将绘图纸或聚酯薄膜固定在测图板上,在图纸上会出坐标格网,展会出图廓点和所有控制点,经检核确认点位正确后进行测图。测图时,用测图板上已展会的控制点或临时测定的点作为测站,在测站上安置整平平板仪并定向,然后用望远镜照准碎步点的方向线,再用视距测量方法测定测站至碎步点的水平距离和高程,按测图比例尺沿直尺边沿自测站截取相应长。即可测绘出地形图。

2.测绘技术

地形测绘是研究地球局部性状态和大小,并且将其测绘成地形团的理论和技术。通过测定小范围地面表像高低起伏形态和地面附属物的特征、点和平面位置以及高程,通过相对的数据进行处理、采纳一定的测量标志按一定的比例缩放绘制在图纸上。以此获得与相对地面几何图形相同的地形图,为国家经济建设提供设计与施工的图纸资料。通用的测绘类型包括控制测量、地形测量、施工测量、竣工测量和变形监测5个部分。现代测绘技术自动化技术具有自动化程度高、测图精度高、图形属性信息丰富和图形编辑方便等优点。

3.自动化技术

测绘自动化是集中数据采集、处理、传输、显示于一体。随着计算机技术的飞速发展及测量仪器的智能化,测绘技术的自动化也随着技术的不断革新发生了变化,主要以3S技术以及集成技术为内容成为测绘技术自动化的核心。

3.1作为全球定位系统的GPS技术,是美国20世纪70年代开始研究开发的,经过20年的研究探索,于1994年3月全面建成,随着这几十年的发展,全球定位系统已经有了很大的发展,GPS技术在发展中为我国的各项事业提供了很多帮助。GPS组成主要有三部分,三者之间相互配合共同完成各项工作,他们分别是指地面控制部分,用于测量和调控定位系统、空间部分,具有24颗卫星,用于具体的工作和服务用户,装置部分,用于收发定位系统发出的信号,由于三者的有效合作,可以顺利完成工作要求。全球定位系统在地形测绘中不止仅限于陆地上的各种测绘运用,它还包括在海洋和航空航天中的应用,以此保障人类在探测海洋地形中正常的进行海上工作。全球定位系统在地形测绘中的特点主要有:测站之间无需同时,但上空应开阔,保证GPS信号接收;定位进度较高;观测时间短,节省测绘时间;提供三位坐标;操作简便和全天候作业,因此GPS能够得到广泛的运用。

3.2地理信息系统亦称土地测量信息技术,是通过系统测量确定和调查土地及其上附属物的权属、位置、数量、质量和利用现状的测绘工作。为土地管理、土地税收及其它经济建设,提供测绘保障。地理信息技术的测量主要内容包括:地籍控制测量;地形图测量;区划及权属界线;界址点、权属范围面积测定;权属物情况调查;地籍图测绘等。地籍信息是土地信息的一部分。

3.3 随着计算机网络技术和现代测绘技术自动化的快速发展,通过测量并绘制纸质地图的绘制理念已经不存在了,地形测绘得到了更深远的发展。种类多、用途广、准确性更强。例如数字化、遥感影像资料在测绘中也得到了广泛的应用。我国通过遥感技术完成相关的测绘工作的实例有很多,并借助在国外的技术状态发展下,推出相关4D产品模式,为我国的地形测绘工作发展提供了多方面的帮助。当前,国内很多测绘机构部门正在进行信息化工作,通过现代化手段完成现代化的地形测绘资料,国家测绘局也在遥感技术的帮助下进行多种比例的基础地理信息数据库的建设。遥感技术借助雷达卫星全天时、全天候及不易受其他恶劣环境影响的特点,通过立体摄影的方法帮助测绘人员获取测绘地面的三维信息,让人们更加直观的了解到测绘地形的特征。

3.结论

据上所述,我们明白了测绘技术的自动化更加明确了地形测量的发展和创新方向,主要解决了地球的自然与社会现象,解决人口、资源、环境和灾害等社会可持续发展中的重大问题,为土地、海洋及工程的规划和经济、国防建设提供技术和数据保障。随着计算机、网络技术的发展及测量仪器的系统、智能化的不断更新,相信在不久的将来我们能看到测绘技术自动化发展更进一步的发展。

【参考文献】

[1].胡明城,鲁福.现代大地测量学.北京:测绘出版社,1993

[2].海洋测绘词典编委会.海洋测绘词典.北京:测绘出版社,1999

[3]李淑燕.浅谈数字化测绘技术和地质工程测量的发展应用[J].科技信息.2009.25:p37.

[4]张德军,皱顺平.浅谈土地测绘技术的发展[J].山西建筑.2009.35(29):p355-356.