首页 > 文章中心 > 隧道工程论文

隧道工程论文

隧道工程论文

隧道工程论文范文第1篇

根据设计,SMART将按3种模式运营[2-3],如图3所示。1)模式1。无暴风雨或低降水量情况,没有洪水分流到该系统中,泄洪隧道处于无水状态,公路隧道正常对外开放,见图3(a);2)模式2。在中等洪水情况,即上游Klang/Ampang交汇处的L4雨洪流量站测得流量达到70~150m3/s,通过原有的泄洪设施排泄的流量控制在50m3/s以内,超出的部分则需通过SMART隧道泄洪,但公路隧道区段仅限于隧道的底部空间用于泄洪。公路隧道正常对外开放,见图3(b);3)模式3。大暴雨、特大暴雨情况下,即上游Klang/Ampang交汇处的L4流量站测得流量超过150m3/s,公路隧道关闭交通,隧道内的车辆和人员全部撤离,隧道全断面泄洪,见图3(c)。对模式3而言,在隧道接到泄洪通知后45min内,隧道内的所有车辆及相关人员必须完成撤离,每次过洪后重新恢复道路交通需要52h。对于3km的公路隧道区间,由于隧道需要在干湿2种环境中运营,因此隧道内的照明设备及CCTV系统均按IP68设计,即可以被水淹没。隧道的应急电话系统设计为可快速更换类型。设计最大洪峰泄洪时流速为4.7m/s,所有的机电设备及指示牌尽可能按流线型设计,且设备安装应有足够的刚度与强度。工程按百年一遇的暴雨标准设计。依此标准,一年内绝大部分时间SMART都将按模式1运行,可能会有7~10次按模式2运行,而按模式3运行的频率为每年1次甚至几年1次。

2隧道地质情况与施工方法比选

2.1隧道地质情况

地质调查结果表明,SMART隧道所经历的地层主要是KualaLumpur石灰岩(简称“KL石灰岩”),这种地层将是工程面临的巨大挑战,隧道纵断面见图4(a)。KL石灰岩90%以上的成分为方解石,具有典型的Karst地层特征:1)石灰岩地层出露地面形成陡峭绝壁或深切峡谷,见图4(b);2)长期的水溶作用形成溶洞,溶洞大小可以与隧道掘进机的尺寸相当;3)溶洞往往与地下水相联系,隧道施工过程中的降水活动可能给周边建(构)筑物带来风险;4)在历史上地层出现塌陷的地方往往被松软土层充填,这种松软而不密实的充填物对盾构的掘进施工将存在极大风险;5)施工降水可能引发新的地层塌陷。从施工的角度来看,最为关键的就是岩层的起伏变化以及遭遇大型溶洞。为了准确地确定岩层的起伏变化情况,在2001年利用Mackintosh探钻打了1072个地质探孔。另外,为了解溶洞及上卧层疏松土的松软程度及低密度情况,对2个分岔井间的隧道段,按平行于隧道轴线布置5条线路进行微重力试验。试验结果大致给出了岩石露头的最低点以及大溶洞存在的区域范围。然后又在这些区段进行地质钻孔补测,结果表明微重力试验的结果能大致给出岩层露头的定性而非定量结果。在施工初期又采用电阻物探法进行地层测探,以便获得更多的地层信息。

2.2施工方法比选

基于沿线的地质条件,对明挖法、新奥法以及盾构法等几种常用隧道施工方法进行综合比选,为了减少施工风险以及施工对周边环境的扰动,最终推荐采用盾构施工的方案。在盾构的类型(EPB或泥水平衡)比选方面,一方面泥水盾构较EPB能更好地适应复合地层,而且当时超大断面的泥水平衡盾构已有多个成功案例,而直径大于13m的土压盾构工程还没有先例,因此最终选定2台泥水平衡盾构进行施工。由于水力条件要求,隧道仰拱的标高不能变动,因此隧道掘进施工将不可避免地遭遇软硬并存的复合地层。

3SMART隧道设计

3.1结构设计

根据隧道排洪与公路交通多功能的需要,与常规的交通隧道或泄洪隧道相比,沿线的结构布置、隧道的断面形式以及整条隧道的防灾减灾系统均需要有特殊的考虑和安排。在3km公路隧道的南、北两端各设1座分岔井,作为车辆出入口与洪水入口的分叉点。公路隧道的出入口分别设在KampongPandan环形岔路口和KL/Seremban高速公路的立交处与既有线路衔接。2个分岔井还兼作公路隧道的通风井与隧道泄洪的调压井。另外,3km段交通隧道每隔1km布设1座中间风井。作为防灾措施之一,每250m左右设1座联络通道连接上下层隧道。SMART主体隧道采用盾构法掘进施工,隧道结构采用管片衬砌。综合考虑隧道的泄洪能力以及公路隧道的布置需要,隧道内径设为11.83m。管片设计除了要平衡衬砌厚度与含钢量间的关系外,还考虑管片的正常处置状态(如拼装、翻身等)的受力情况、在高强度石灰岩层中掘进时千斤顶反力集中对管片的作用以及在松软地层中管片的受扭不利工况等。管片采用C50混凝土,厚度为500mm,含钢量为90kg/m3。管片环宽为1.7m,1环包括9块管片,即6块标准块、2块临块和1块封顶块,每块标准块的质量为10.3t,1环的总质量为82t。管片的环向和纵向均采用M25高强度螺栓连接。根据隧道线路布置,最小转弯半径仅250m,管片最大楔形量为110mm。管片不设直线环,直线环由左曲环和右曲环交替拼装而成。中间3.0km公路段,采用双层结构布置,由2道横隔板将隧道分成3部分空间,上部为向南的车道,中间空间为向北的车道。底部的空间用于运营模式2和模式3情况下泄洪。每层各提供3个车道,包括2个宽3.35m的正常车道和1个应急车道。受空间限制,隧道内只能通过高度不超过2.55m的小型车辆。隧道内的设计限速为60km/h,实际显示的限速为50km/h。隧道的内部结构布置见图6。

3.2防水设计

对SMART隧道工程而言,由于兼具排洪和公路交通的双重功能,因此对隧道的防水设计也提出了特殊要求,内部结构的防水要求较常规交通隧道要高得多。盾构隧道管片的防水通过在管片上预留密封沟槽安装EPDM橡胶密封实现,最大压力水头按32m考虑。中间3km的公路隧道段在运营模式2情况下,底部的空间水流按有压流考虑,而中部和上部均为无水环境下的公路交通,因此必须要防止水从底部渗漏到中上部空间,这是SMART隧道防水设计的关键与难点所在。为了最大限度减少水从底部渗漏到下隔板,所有施工缝的钢筋都全部连通,并在接缝处预留压浆管。隔板和竖墙的配筋要足够,以防止混凝土施工的早期裂缝。在C40混凝土配合比设计中选用低水化热的PFA水泥,混凝土浇筑的温度严格限制在60℃以内,对浇筑的隔板采取蓄水养护。为防止水通过管片环缝渗入上隔板,在环缝处设“T”形止水带。另外,在隧道管片衬砌与内衬之间预留压浆管。

3.3防灾减灾设计

SMART隧道工程设计开始于2001年,恰逢欧洲勃朗峰隧道火灾(1999年)和阿尔卑斯山隧道火灾(2000年)不久,因此公路隧道的防灾减灾设计尤为受到关注,为此咨询公司专门开展了火灾的数值模拟分析。假定隧道的下层道路发生2~3辆小汽车相撞产生10MW的大火燃烧60min。采用一维数值模拟分析了中间隔板底部的导热情况,通过分析不同深度混凝土结构的温度来推测混凝土剥落的情况。分析结果表明大火情况下混凝土剥落现象仅限于30mm深度范围,混凝土内部的钢筋不致发生软化现象。另外,作为防灾减灾措施的通风系统也十分重要。3km长的公路隧道按1km间隔共设4座风井,每座风井安装8套通风扇和增压风扇为上下层交通隧道供风,增压风扇主要作用是阻止火灾情况下烟雾进络通道,隧道通风模型见图8。在隧道的出入口设置轴流式风机进行新风补充。通风系统的操作系统与隧道SCAVADA系统相连。用于监测隧道内CO浓度与可视度的仪器安装在联络通道附近,整个通风系统根据监测的结果自动调节风量与风速。3km公路隧道沿线每250~300m间隔设联络通道用于连接上层与下层隧道,具置则根据具体地质情况与施工条件确定。一旦发生火灾,在无事故的隧道层则供增压风,以阻止烟雾进入非事故隧道。电气开关房布置在联络通道的中间,见图9。在联络通道与隧道的连接处设水密门,确保泄洪期间水不进络通道。根据地质条件的不同,联络通道采用马蹄形开挖断面+现浇混凝土衬砌和椭圆形开挖断面+喷射混凝土衬砌2种形式。

3.4洪水监测与预警系统

由于SMART工程主要的功能是泄洪,并且还要实现泄洪与公路交通不同运营模式之间的转换,因此洪水的监测与预报系统(FloodDetectionSystem简称FDS)必不可少。该系统除了为公路隧道区间不同运营模式间的转换提供水情预报外,还对SMART工程中各个子系统运营状态进行监测与预警。这些系统包括通信系统、预警系统、隧道内安设的传感器、公路隧道出入口的水密门以及蓄洪池的闸门等。更重要的是在公路隧道按模式2或模式3运行时,该系统将为SMART工程中控室和交通管理中心提供实时完整的信息。洪水监测系统安装在SMART工程中控室,包括7个子系统:1)产流区域监测系统。28个遥感水文站,对河流与产流区域的流量进行实时监测,为FDS系统模型提供输入;2)预报模型系统。带有自动模拟与数据信息处置能力的水文与水动力学模型,可以对所选的地点进行长达2h的流量过程预报;3)预警系统。设置在关键位置的警报站;4)监测与控制系统。对各子系统信息进行整合与智能管理的软件系统;5)CCTV系统。设置在重要位置的摄像头和照相机等,以便对现场进行实时监督;6)SCADA系统。包括FDS与MCC系统的界面,用以SMART系统信息与传播的SCX系统;7)无线与光纤通讯系统。包括无线网络、电话以及光纤通讯系统等。

4主体隧道工程施工情况

4.1盾构设备选型

针对地下水位高、复合地层以及Karst地层特点,盾构选型的准则与依据如下:1)马来西亚土地(包括地下)属于私有财产,根据土地征用的具体要求,隧道的线路尽可能落在地面公路的土地使用范围内,盾构设备必须满足最小半径250m的急转弯情况;2)覆土厚度范围10~20m,因此盾构设备必须满足浅覆土施工的工况条件;3)为提供开挖面正面平衡精度,防止施工过程中开挖面前方坍塌,盾构采用泥水-气平衡系统;4)盾构绝大部分都是在石灰岩中进行掘进,部分区域会遭遇溶洞或岩石露头的突变等情况,盾构必须具备在复合地层中掘进施工的能力。经综合比选,SMART隧道采用2台外径13.21m的泥水平衡盾构进行施工。所采用盾构由德国Herrenknecht公司提供,第1台在合同签订后12个月供货,第2台的到货时间滞后2个月。刀盘的配置必须满足在复合地层掘进的需要,值得一提的是盾构采用了球形主轴承,这样允许刀盘与主轴承间以小于90°的夹角进行切削以满足急曲线转弯的超挖需要,同时也减小了作用在隧道管片上千斤顶的行程差,这样可以实现最大的超挖量达到400mm。这一特性还可以满足在岩石地层条件下,将刀盘缩回为查刀与换刀提供一定空间。为满足不间断地进行气压条件下对刀盘上的刀具进行更换,盾构配备了2个气闸室和1个小一些的材料闸室。盾构还配备了2套超前钻探设备和1套振动探测系统以供对开挖面前方的地层进行超前探测。

4.2隧道主体施工情况

隧道的掘进施工始于2003年11月25日。采用2台直径13.2m的泥水平衡盾构从北侧风井始发朝相反的2个方向始发掘进,盾构TUAH用于北侧隧道掘进施工,盾构GEMILANG则朝南掘进。盾构TUAH于2004年6月从北侧风井始发,经过24周的掘进,于2004年11月,到达北侧分岔井,共掘进了737m。2005年1月底,盾构TUAH从北侧分岔井重新始发开始第2段区间隧道的掘进施工,掘进的长度为4550m。SMART北侧盾构隧道的部分参数见表2。工程经过多次延误后,公路隧道段于2007年5月14日下午3:00正式通车,而泄洪隧道段最终于2007年7月底竣工。就在公路隧道通车后的几个星期内,隧道就进入运营模式3泄洪。截至2010年7月18日,SMART系统对7次灾难性的暴雨洪水成功实施分流,从而使吉隆坡市中心免遭内涝之灾。

4.3施工的主要挑战与应对策略

盾构掘进施工中潜在的风险与挑战主要包括:地层沉降或坍塌、Karst溶洞或坑穴以及泥水逃逸导致地表坍塌隆起、开挖面坍塌和泥水溢出地面等。为了防止所述风险并尽量减少泥水损失,施工中采用了一系列的技术措施与方法:1)针对溶洞的位置、大小、地层特点等信息,基于Mohkam模型对开挖面的平衡压力进行计算分析;2)根据地层特点将掘进分为均质地层中掘进、复合地层(掘进断面中含岩石和沉积土)中掘进、交界面中掘进以及在Karst溶洞中掘进等工况,针对不同的工况条件制定相应的盾构掘进施工参数体系;3)对地表沉降进行实时监测,通过监测数据及时反馈给盾构操作人员以降低地表隆沉与冒浆的风险。施工中采用的一些其他措施还包括:1)根据不同的地层情况及泥浆的损失情况及时调整泥浆的组成成分并补充泥浆量;2)在敏感环境区域采用补偿注浆、压密注浆和岩石裂隙注浆3种方法从地表对开挖面前方地层进行注浆加固。根据不同的具体情况选择不同的注浆方法与浆液配比。当地面不具备条件时,也可以从盾构内部进行注浆加固。

5结论与讨论

隧道工程论文范文第2篇

1.1GPS在大桥控制测量中的应用

在建立大桥控制网时,采用桥梁轴线建立坐标系对所应用的GPS技术进行处理。在桥梁主轴线上,联测或假定一个控制点,并且以轴作为GPS控制网方位基准,由高精度测距仪测量主轴线两端控制点间长度确定网尺度基准。在主桥高程面上选择GPS桥梁控制网投影面。

1.2GPS在隧道控制测量中的应用

在布设GPS隧道控制网时,通常采用隧道工程坐标系。在布设隧道工程坐标系的过程中,其原点一般选择隧道洞口控制点,并且在方向上要求X轴指向与线路前进方向一致,同时通过正交的方式,使得Y轴与X轴构成右手系。在对GPS隧道控制网网点进行选择埋设时,需要考虑GPS测量对点位的要求,以及隧道施工的要求。

2GPS高程拟合精度评定指标

为了对GPS高程拟合精度进行客观的评论,需要对所有的GPS点进行水准联测,在全网上均匀分布起算点,选择其他点作为检核点。在内符合精度方面,根据参与拟合计算已知点高程异常与拟合出高程异常求拟合残差;在外符合精度方面,根据检核点高程异常与拟合出高程异常间差值,计算GPS高程拟合的外符合精度M;GPS水准精度评定,根据检核点与已知点距离L计算检核点拟合残差限值评定GPS拟合高程达到的精度。

3数据介绍

隧道主要应用GPS进行控制网布设进行高程传递。对于控制点来说,由于需要进行拟合处理,在这种情况下需要的数据比较少。以某一桥梁为例,采用20个公共点对三次样条模型和移动曲面进行拟合分析,根据需要数据前四位省略。在数据类别方面,根据GPS高程拟合原理,可以将其分为起算数据、检核数据。其中,起算数据中的点一方面包含大地高,另一方面包含正常高,同时以此为计算拟合 模型中的参数。检核数据是已知大地高,高程异常通过应用拟合模型进行计算,进一步获得正常高。本文中将11个数据点作为起算数据,9个数据点作为检核数据,具体分配方案为起算数据13个,分别为1、3、5、6、7、9、11、14、16、18、20点,检核数据9个,分别为2、4、8、10、12、13、15、17、19。

4数据解算结果及分析

分别对三次样条拟合和移动曲面拟合两种模型根据分配好方案进行数据拟合,三次样条拟合法比移动曲面拟合法效果更好一些。当多跨桥梁长度、隧道长度分别小于3000m、6000m时,通过移动曲面拟合法可以满足精度要求。对于三次样条曲线拟合,在应用过程中,需要注意X分量、Y分量对拟合结果产生的影响,在某些情况下,三次样条拟合出高程异常面会出现失真现象。对于多跨桥梁、隧道来说,当其长度分别超过3000m、6000m时,在这种情况下,通过移动曲面拟合法获取高程数据,在精度方面早已不能满足要求。对测区内一块宽1000m,长5000m区域采用三次样条拟合法和移动曲面拟合法进行高程异常拟合。通过对比分析两种拟合方法所得结果及拟合图形,同时结合三次样条和移动曲面拟合原理,可知三次样条拟合法存在一定的局限性,三次样条法拟合法与X分量或者Y分量密切相关,拟合结果受X分量、Y分量的影响,进而影响拟合结果的可靠性。

5结论

隧道工程论文范文第3篇

为了准确掌握隧道区工程地质特点、水文地质环境、不良地质情况,对围岩状况进行级别分段,为隧道工程的建设与设计提供科学的工程地质资料与合理有效的处理方案,地质勘察基于遥感判释运用了隧道工程地质调绘、地质钻探、高密度电物探法、地震勘探与钻孔超声波检测、抽水与压水试验、瓦斯检测等多种方式予以综合勘察。

1.1隧道工程地质调绘地质调绘的方法主要包括追索法与路线穿越法,对工程整个地质单元与隧道区两部分控制地质体与不良地质。与以往的方法进行比较,打破了调绘范围的限制,让调绘内容更细致、更准确。通过调绘方式,能够查明岩堆、危岩、软土、瓦斯、地下水等不良地质的分布情况,尤其是在隧道中部发育的岩溶管道水水流方向。隧道工程的地质调绘为下一步工作的实施奠定了坚实的基础。

1.2地质钻探由于隧道区域地层与岩性变化的多样性,进行地质钻探时需要布置多个钻孔,加大钻孔分布范围。钻探方式主要是采用金刚石或合金钻进,一部分煤系地层地带的岩石粉碎,采用的是无水反循环钻进工艺。钻孔的深度除有特殊要求的钻孔外,都应当深入隧道设计标高2m~3m以下。钻进岩芯采取率要求破碎岩层与强风化层不小于50%;完整基岩不小于80%;覆盖层不小于50%。钻探钻进过程中,仔细测定地下水位,并及时记录,记录内容包括岩土分层、地下水位、钻进速率、水的颜色等。利用详细与具有代表性的钻探方式,隧道洞室围岩的岩性与整体情况能够直观显示;利用钻孔实施抽水、钻孔声波测试、压水测试、煤层瓦斯检测等一系列工作,以定性与定量两方面为隧道围岩的分段与分级带来有效的地质依据。

1.3高密度电物探法若存在钻探方式难以查证的地质,则能采用高密度电物探法,物探仪器为拥有我国先进水平的重庆奔腾数控技术研究所研究的WGMD-1型高度探测系统,方法是用α排列方式予以高密度数据采集,采用国际水平的Surfer软件与RES2DINV软件进行二维电阻率成像反演。能够准确判断地质情况,改善隧道工程施工的危险性,降低严重社会问题的发生率,有时还能避免路线更改,从而节约建设项目的投资资本。

1.4地震勘探与钻孔超声波测井以及探测岩石波速因其隧道区域地层岩性多样化,地表风化程度严重,钻探取芯能力弱,岩芯大多为碎块、砂状以及块状。地质人员大都是通过人为因素来判断岩石风化程度,很少客观判断岩体基本质量,未能科学划分隧道围岩类型。因而,地震勘探与钻孔超声波测井以及探测岩石波速技术逐渐被应用。地震勘探仪器采用的主要方式为折射波法,通过定性划分结合定量指标的整体分析,确定了岩石风化情况与隧道围岩类型,该方式更为合理,更具创新特色。

1.5抽水与压水检验方式若隧道区域属于条带状岩层组成的山岭,其水文地质单元更加复杂,含有较多含水单元与隔水层,其透水性与含水单元具有较大差异。为了能检验出准确的洞身段各岩石的裂隙性与透水性,准确预判隧道涌水量,于钻孔施工结束后分别实施抽水与压水试验。抽水及压水试验使用的是自制提桶与专业高扬程空气压缩机抽水与压水设施,其中提桶抽水试验应用于地下水位浅的地段,空气压缩机抽水和压水设施应用于地下水位深或不存在地下水的岩层内。并且还对一些钻孔实行了将抽水与压水相整合的试验,以便同单一试验进行对比。

1.6瓦斯检验对专门施工的ZK11钻孔,采用一套煤管、一套瓦斯解吸仪、两个取样瓦斯灌予以瓦斯检验,其具体方法为:在钻孔钻遇煤层后,下采煤管采煤同时迅速装灌后封闭,5min内进行解吸,获得现场瓦斯解吸量,最后采用图解法算出瓦斯耗损量,二者相加即为煤层瓦斯逸出量。该方式简易可行,结果接近实际情况,具有相对开拓性。

2关于工程地质环境对隧道工程的影响

在建设长隧道、深埋隧道以及大隧道过程中,会遇到各种各样的地质环境问题,不仅会对工程工期与造价造成影响,还会给隧道的施工与运行带来安全隐患。下述对影响隧道工程的几种地质环境作了探讨。

2.1软土地基在湖相与滨海相等古地质环境中,软土大都沉积在相对停滞与相对运动迟缓的水环境内,此类沉积软土颗粒细软、土质软弱、孔隙度大、含水量高、容易形成蠕变、凝聚力小几乎可以被忽略。在这种地质条件上建设隧道,必须考虑工程的地质问题。

1)该地质土性较软,受到隧道重负荷时容易发生沉陷,从而厚度发生改变,形成不均匀沉陷,导致隧道内衬砌等结构发生形变;

2)隧道结构会受软土蠕变的影响,及时进行支护与衬砌有重要作用;

3)软土一般存在于地下还原环境中,微生物作用容易形成甲烷气体,聚积在软土层孔隙内,隧道挖进时工作人员可能会受甲烷气体的危害,若遇到火源还可能引起爆炸。建设隧道时,对于软土地基,长度不长的隧道应采用盾构穿越更为简易;然而长度过长的隧道,因其软土的蠕变特点,会形成超量切削,导致在隧道盾构掘进的前端会出现蠕变凹槽,如果软土层厚度不够,容易使得上方活河水与海水大量潜入隧道。因此,在海域上存在众多沉积软土地带时,借助盾构穿越软土层,必须充分重视所存在的安全隐患。

2.2砂卵石层地基在多样化地质条件如平原、河流、滨海、盆地中,会存在不同成因的砂卵石沉积层。各地砂卵石层的结构由于沉积时受到古地质地理环境的影响,各结构间存在差异。砂卵石层的沉积韵律和颗粒级配受到沉积时水动力条件的影响。砂卵石层危害隧道工程的几个方面主要是:

1)因为隧道施工排水,使得周边砂层的机械塌陷与管涌;

2)砂层涌入会引发丰富地下水;

3)砂层地质结构的不同,形成不规则沉陷,为隧道带来安全隐患;

4)砂层内夹杂的大块卵石,影响盾构施工,严重时会卡住刀片。采用沉管法在湍急河流的砂卵石层中建设隧道,容易使沉管下砂层形成冲刷,损害沉管隧道。

在厚砂层上建设隧道时,要注重下述几点:

1)抽水起始水位降低引发地面沉降、冲刷、潜蚀;

2)进行大量抽水后,水位降低迟缓,产生压力水头,极易使得下方的大量砂层溃入;

3)下方存在相对隔水层时,因为上方隧道抽水降低水压,下方高压水汇合;4)透水层凸起,形成众多越流向上补给,影响隧道运行。

2.3碳酸盐岩地层在分布有可溶碳酸盐地层地区,受到不同程度的喀斯特化作用,作用结果为在地表上形成奇特山峰,地下形成多个洞穴与通道。活跃在洞穴和通道中的喀斯特水包括孔隙水与裂隙水等,存在不同的特点。喀斯特水有五个对立统一的特点,具体包括:

1)独存与半独存的管道水流和拥有统一水力相关的地下水力面与扩散流同时存在;

2)不含水岩体与含水岩体同时存在;

3)非承压水流同承压水流之间互相变换;

4)层流运动和紊流运动同时存在;

5)非均质含水性和均质含水性复杂变化。在喀斯特化地层中,具有相当明显的三相流,即是气体、固体、液体三相物质混合形成的三相流。三相流具备一个重要特性,泥砂等固体流与水等液体流是不能被压缩的,而气体能被压缩,受压气体还会发生多种变化。

3结语

隧道工程论文范文第4篇

①由于每个地区的具体环境都不相同,所以公路隧道的建设也都需要结合当地的实际情况加以更改,所以在隧道工程开工以前,首先要对施工环境进行考察,做好现场调查研究工作。

②核对设计文件和编制施工组织设计,预测隧道施工可能对地下已设结构物的影响。

③积极了解施工现场的天气、施工材料和运输情况,对施工现场可能会出现的用电问题、水量问题(雨水冲刷)以及材料供应等作好准备。

④对交通运输条件和施工运输便道进行方案比选,合理安排施工工具,现场核对隧道平面、纵面设计等。

⑤对施工地周围的生活供应、医疗条件以及电力通信、劳动力等做好勘察,并测试周围的水源、水质,拟定供水方案。

⑥按照公路隧道施工方案或技术的不同,工程实施前需要预先准备好施工所需要的一系列材料,比如砂石、水泥和钢筋等,还有一些特殊的防水材料或钢材。这些原材料在投入工程使用前都必须经过严格的质量检查和筛选,坚决杜绝使用劣质材料,而符合国家规定的材料也要进行合理堆放,避免施工人员由于材料乱堆放而导致其他事故的发生。

2公路隧道工程施工中的难点和技术

2.1公路隧道建设环节的相关技术

公路隧道在施工时除了要按照隧道施工的技术规范行事以外,还需要对材料的质量进行严格的检测,并围绕新奥法原理来按照“紧封闭、勤测量”的原则来对各种复杂的施工技术问题进行处理。随着科技的进步,隧道施工方法也比较多,比如我国常用的新奥法人工钻爆施工等(台车钻爆和人工钻爆),下面我们就人工钻爆技术进行分析。

2.1.1洞口施工

公路隧道由于地势原因,在洞口施工时很容易出现山体滑坡、失稳等现象,这就要求施工人员在施工时及时勘察地势,并结合实际情况提出合理的进洞位置和加固方案,这样才能在出现滑坡现象时及时采取措施进行防治,避免一些可能对施工人员造成的安全隐患。还有在洞口开挖之前,要及时进行边仰坡的排水工作,检查周边的排水系统是否完好,避免出现水流倒灌的问题。另外,要及时清除基坑中的废物杂物,洞口之上的仰坡坡脚如果有损坏,要及时修补,在监理工程师验收合格之后才能够进行下一步的施工。

2.1.2洞身的施工

完成了洞口开挖之后,先要进行超前支护,才能再进行洞身施工。洞身的施工方法有很多种,比如全段面法、台阶法、眼镜工法和超前支护法等,而如何选择具体的施工方案则要根据具体的围岩情况。

2.1.3初期支护

初期支护是为了加强隧道围岩的自承力,从而形成一个完整的支护体系,是复合式衬砌的重要组成之一,属于早期支护。进行支护时,一定要严格按照规范来施工。在公路隧道建设中,部分围岩的自稳能力极差,根据新奥法原则,需要在软弱破碎的围岩地段及时进行支护,控制围岩的变形和松弛,施工过程中可以通过合理的机械和劳力组织,三台阶开挖和初期支护同时开始,同时完成,形成一个循环的两大步骤。

2.1.4监控测量

监控测量是工程实施过程中的重要内容,细致的监控测量能为施工提供科学、可靠的监测信息,通过信息来反馈具体实际的施工情况,并进一步确保施工质量和施工安全。在这个信息化的时代,具体的数据资料在工程建设中能起到许多重要作用。

2.1.5二次衬砌

二次衬砌不仅对围岩起支护作用,而且还美化了隧道外观,所以衬砌质量必须要达到内实外光的效果,以保证隧道的美观。如果初期支护的围岩变形,且变形速率无减缓迹象,严重超过规范要求,初期支护多处开裂时,必须及时采用临时应急支顶措施,如果因此影响到二次衬砌的质量,就必须对支护类型和参数进行及时调整,做到既能有效控制变形,避免塌方发生,又能保证工程质量。另外,在挑选二次衬砌所用的台车时,要尽量挑选表面平整、接缝严实的大模板或整体式模板台车,必须要满足设计的要求,选择合适的刚度,减少模板变形等问题,这样才能保证衬砌表面的光滑平整,还有就是做好防排水措施,避免渗漏水。

2.2新奥法施工技术

新奥法施工是世界通用的国际工法,在隧道施工时可以根据地段的不同来选择性采用钻爆法施工,实施光面爆破。在具体操作中,要以维护和利用围岩的自承能力作为出发点,尽量减少对围岩的扰动,可以考虑采用“中洞超前,预留光爆层,光爆扩边”的复式开挖法。首先开挖导洞,根据隧道断面尺寸来确定导洞断面大小,钻孔前测量中线和水平线,按画好的炮眼位置和顺序钻孔,装药和填炮泥与一般隧道爆破相类似;然后再二次开挖,根据隧道情况的不同来确定导洞挖掘的深度;最后开挖光爆层,通过复式开挖法让光面爆破痕留存率达到90%以上,使隧道开挖轮廓与设计轮廓更加吻合,降低围岩的扰动,能够很好地体现出新奥法的施工优点。

2.3施工过程中的难点管理

2.3.1施工进度问题

由于公路隧道工程的复杂性,很容易出现一些突发的危险问题,所以为了能够确保工程能够在工期内完成,必须做好相应的管理工作。在施工过程中,必须严格按照执行公司所制定的各种管理制度,将责任落实到个人头上,在设计工程方案时,要对工期做好科学合理的安排,对施工团队和现场的管理人员做好相应的专业培训工作。

2.3.2对工程质量的检查

如果将劣质的材料投入工程使用,会造成非常大的安全隐患,因此必须要加强对施工整个过程的质量监督和管理,需要监督部门建立和完善质量监督管理体系,将责任落实到个人头上,严格按照质量验收制度的规范来对工程质量进行监督和检测,发现问题,必须要严查,这样才能大大减少工程质量问题。

3结束语

隧道工程论文范文第5篇

1.1铺装层脱落。造成铺装层脱落的原因有很多,施工人员对于工程的外观的美观性过于重视,但是对于工程本身的施工质量却相对忽视,在施工操作时不能按照相关的施工规范进行施工,这会导致隧道铺装层产生裂纹、松动和脱落现象。

1.2钢筋锈蚀。很多施工人员对于钢筋的保护意识比较淡薄,没有采取相应措施对钢筋进行保护,在钢筋暴露在空气中的时候没有对钢筋进行涂层操作,或者是涂层操作的规范性比较差,钢筋暴露在空气中容易与空气中的氧气和水发生反应,容易造成钢筋的腐蚀。另一方面,在施工人员按照要求对钢筋采取保护措施的情况下也不能完全保证钢筋不会受到腐蚀。钢筋在很多过程中都会发生不可预知的损伤,例如:储藏和运输中发生磕碰现象都会对土层造成一定的破坏。

1.3裂缝。道路桥梁隧道施工中一个重要的施工材料是混凝土,混凝土结构中裂缝是非常常见的,这个现象会对施工的质量产生不良的影响。如果混凝土质量不达标或者是施工人员没有严格按照施工规范进行操作都会使混凝土出现裂缝。当然,混凝土出现裂缝的原因也有很多,例如:施工人员对混凝土施工强度没有清晰的认识,这样会造成混凝土在空气中暴露的时间过长,在对混凝土进行配料时没有按照相关的标准进行配制,浇灌时用力不合理,后期的管理和养护不是很到位等都是造成混凝土裂缝的主要原因。

1.4安全风险。施工人员对施工安全的概念认识不清,施工安全知识掌握程度较差,因此在施工过程中经常会出现违规操作的现象。安全管理制度的建设仍然存在着很多需要完善的部分。对材料的管理工作不能严格按照相关的规定去执行,施工人员的管理力度和机器设备的正确使用等都存在着一些需要改进的问题。因此施工管理的安全性很难得到保障。

二、问题应对策略

2.1采取有效措施避免发生铺装层脱落现象。施工人员在进行施工的过程中一定要准确掌握铺装层的厚度,然后依据具体的施工情况选择材质比较好的材料,这样可以避免铺装层发生断裂现象,在对铺装层施工的过程中一定要对防水材料进行合理地使用,这样才能更好地防止渗水现象的发生,这样做不但可以提高铺装层的质量,还能够延长铺装层的使用年限,另外,地理位置也会对铺装层的质量产生非常大的影响,在整个施工过程中一定要根据所处的地理位置的地形、地势、地貌对其进行相应的处理,这样可以大大减少铺装层裂缝情况的产生。

2.2采取有效的钢筋锈蚀防御措施。在施工过程中对钢筋进行涂层处理能够非常有效的避免钢筋腐蚀状况的发生,在涂层操作结束后还要采取相应的保护措施,尽量防止钢筋在储存和运输时因发生碰撞而出现掉层的现象。如果钢筋已经出现了锈蚀现象可以采取措施对锈蚀的部分进行处理,也可以直接取出生锈部分的混凝土。2.3严格控制隧道裂缝。进行混凝土的配合比设计和施工时必须严格按照相应标准,施工人员必须在施工过程中验算裂缝情况,不同位置的混凝土构件需要配合不同的强度等级。在进行混凝土配筋率计算时必须保证计算公式的准确性和计算结果的精确性,同时还需要严格控制水泥用量和水灰比,根据混凝土的强度适当添加掺和料和外加剂。企业还需要重视施工人员的施工方面的培训,使混凝土裂缝得到有效控制,从而使施工质量获得有效提高。

2.4确保原材料质量。优质原材料使提高和完善工程质量的重要前提,施工企业必须加大对材料采购工作的重视力度,对供应商资质以及信用情况进行严格调查,在保证材料质量的基础上降低材料价格以提高企业的经济效益。严格把控材料的进场检验共组,认真进行报告单填写工作,若出现瑕疵等质量问题需要立即将材料清出施工现场,此外,为了使原材料的质量获得保证,还需要不定期进行抽检,远隔审核混凝土和钢筋等材料的出厂合格证,安排施工人员做好储存工作,防止受损。

2.5加大安全管理力度。施工人员安全观念以及意识的强弱对施工能否顺利继续具有非常重要的影响,因此,企业必须通过培训等形式不断强化施工人员的安全意识。推动安全管理制度的建立和完善,严格规范工作人员的施工行为,使施工安全系数得到有效提高。

2.6确保勘查设计工作合理有序进行。为了推动工程建设的顺利进行,降低施工质量不良事件以及意外事故等的发生率,必须于工程建设前加强勘查设计工作,尽量避开存在复杂地质地形条件的地段,确保隧道的稳固性,若所在区域定制条件稳定性较差需要及时采取相应的加固措施。严格按照施工图纸进行设计施工,尽量应用具有成熟技术和可靠性能的结构。

2.7对施工检验工作进行强化和完善。施工单位必须加强工程质量检验力度,定时或不定式进行自检,自检合格后向监理工程师报告检验结果,若在检验过程中发现不规范施工行为以及质量不达标等问题需要立即采取纠正措施。监理单位必须加强施工进度一起施工质量的管理和监督,全面监控施工的重要环节和工序,保证施工的有序进行。除此之外,还需要进行质量评定和抽检工作,使道路桥梁隧道工程的施工质量获得有效保证。

三、结束语