首页 > 文章中心 > 水利水电工程测量技术

水利水电工程测量技术

水利水电工程测量技术

水利水电工程测量技术范文第1篇

关键词:水利水电;工程测量;技术

中图分类号:TV文献标识码: A

一、水利水电工程测量技术

1、水利水电工程测量技术之控制测量技术

控制测量是水利水电工程测量工作的重要组成部分。在一般情况下,水利水电工程控制测量可以分为两部分,第一部分是测图控制网,第二部分是专用控制网,这两种类型的控制测量都会利用到平面控制测量技术和高程控制测量技术。其中平面工程控制测量技术较为常用。水利水电工程平面控制网测量技术包含三边网控制网测量技术、边角网控制网测量技术、GPS控制网测量技术,等等。近年来,GPS控制网测量技术应用的非常广泛。范围较广的测图工程的首选测量技术一般都是GPS控制网技术,范围较小的测图工程也会应用到GPS控制网技术。

在20世纪的70年代,美国的陆海空的三军加以联合最后研制出了新一代的卫星定位系统即GPS,它的主要目的就是给陆海空这三大领域及时提供实时地、全天候的与全球性的相关导航的服务,并且还用于具体情报的收集工作、核爆的监测工作与应急通讯工作等多种军事性目的。经过了二十多年的研究和实验,耗费资金高达300亿美元,至1994年,全球的覆盖率可高达98%的那些24颗GPS卫星均己经布设成功,这些标志着着卫星己经全部布设完毕,而且还预示着GPS全球定位系统已经真正迈进了成熟期。测量领域作为较早地采用了GPS技术的相关领域,积累了丰富的实践经验。一开始,这一技术主要地是用在高精度的大地测量技术与控制测量技术上面,从而建立起各种的类型与各种等级的用于测量工作的控制网。如今,GPS技术也用到了各种类型的施工放样工作、测图工作、变形的观测工作、航空摄影的测量工作、海测工作与地理信息系统工作和地理数据采集工作当中等多个方面。在各种类型的测量控制网的建立方面,GPS定位技术已基本上取代了常规测量手段,成为主要的技术手段。随着测量技术的不断革新,GPS技术在工程定位测量领域得到了广泛的应用,其主要技术特性体现在以下几个方面:

1.1使用精密的卫星专门的星历

精密卫星的专门星历作为GPS技术进行精密定位的可靠保证,意义重大。运用精密卫星的专门星历,将其设备调制到L1载波环节上的卫星轨道的相应参数数据、卫星轨道信息专门数据等参量数值。这样做以后就可以使得计算变得更加精确,从而让测量的误差率能够降到最低。

1.2区域的范围小,网中基线边长度较短

通常意义上讲,使用GPS的高新技术可以使接收机在卫星信号方面的工作产生那种近似的误差的特征,而且还会使接收到的网中基线边的误差无法超过5KM,所以造成在信号的接收过程时,可以通过差分解算来使得整个的公共误差产生很大程度上的抵消效果,进而测得高精度的专门数据。但是区域的范围较小、网中基线边较短的特征也变成了GPS测量技术的最大亮点。

1.3测量点的选择务必要灵活

在传统的测量模式之下,相互邻近的测量点间是需要一些互相通视的,所以对于测量工作的条件与工作人员的素质在要求上是比较高的,而且人眼的观测还会让测量在精度方面有所降低。在GPS的测量过程中,则不需要去考虑站点互相通视的问题,使得测量的数据全部依靠卫星来给出,其精度与灵活性便均得到了显著的提升,测量的过程完全由计算机自动完成。由于GPS技术具有精密性高、区域范围小、测量点选择灵活等优势,应用极为广泛。

2、水利水电工程测量技术之变形监测技术

变形监测技术就是指对监测物体进行测量,通过测量了解监测物体的变化情况。若将变形监测技术细分,还可以分为外观变形监测技术和内观变形监测技术。而水利水电工程测量工作主要应用的是外观变形监测技术。下面笔者就将详细介绍一下外部变形监测技术涉及的常用变形监测方法。

2.1变形监测方法之大地测量方法

大地测量法可做的测量工作有很多,如,对基准网的测量、对物体变形情况的测量,等等。相关工作人员在应用大地测量法的时候,需要使用到以下两种辅助设备,分别是电子水准仪和测量机器人。大地测量方法的具体特点如下:使用的辅助设备较为常用;相较于其它变形监测方法,其理论要点更为全面;通过该方法得到的数据,误差较小;该测量方法在实施的时候,成本较低;该测量方法的实施时间较长;需要较多的人力资源;该测量方法的科技含量不够高。

2.2变形监测方法之基准线测量法

基准线测量法主要测量的是水平位移的变化。基准线测量法分为很多种,每种测量方法应用的实际情况也有所区别。例如,真空激光准直法一般会应用于呈现形状为直线的大坝;垂线法一般会应用于呈现形状为拱形的大坝;而视准线法一般会应用于滑坡。

2.3变形监测方法之液体静力水准测量方法

液体静力水准测量方法的特点:测量数据的准确率较高;该测量方法的可测区域较广;该测量方法的自动化程度较高;该测量方法一般都应用在高程的测量。

3、水利水电工程测量技术之数字地形测绘技术

数字地形测绘技术可具体概括为以下三种模式:第一种模式,电子平板。这种测绘模式出现错误的概率较低,但是具有较强的波动性;第二种模式,数字测量记录。这种测绘模式应用的范围较广,但是易出现错误;第三种模式,数字摄影测量。这种模式的操作方法很容易让人理解,而且该模式使用的仪器也很方便存放,是一种实用性能较强的数字地形测绘模式。

4、水利水电工程测量技术之水下地形测量技术

水下地形测量技术一般会选用以下几种定位技术:RTK定位技术,CORS定位技术,等。这类定位技术的优点:准确率高;工作效率高;工作强度低;自动化程度高;可整天工作。

二、GPS、RTK技术在水利工程测量中具有的优势

1、GPS技术在水利工程测量中具有的优势

在水利工程的测量工程中运用G水利水电PS技术,水利水电能满足各测量站之间不需要进行通视的需求。水利水电通过G水利水电PS的定位技术,水利水电可以有效保障水利工程严格按照工程图纸的设计开展各项施工操作,水利水电充分简化了传统施工中,水利水电各测量站之间必须保持通视这一繁琐工序,水利水电加快了工程的进度。水利水电此外,水利水电在水利工程测量中运用G水利水电PS测量技术进行观测,水利水电其消耗的时长通常为30分钟至40分钟,水利水电大大缩短了观测时间。水利水电在采用G水利水电PS测量技术进行操作时,水利水电流程简便,水利水电操作性强,水利水电具有较高的自动化程度。水利水电水利工程的测量工作人员只需将天线对中整平后,水利水电将该天线的高度测量出来,水利水电再将电源打开,水利水电即可进行工程自动测量的观测。

2、RTK技术在水利工程测量中具有的优势

与传统测量方法相比较,水利水电R水利水电T水利水电K水利水电技术在水利工程测量中具有以下优势:各测量站点之间不需要进行通视,水利水电得出的观测值是相互独立,因而不会出现误差积累传播。R水利水电T水利水电K水利水电技术通过采取实时处理,水利水电在2内便了将测量点的三维坐标准确测出。提高工程的测量精度。水利水电R水利水电T水利水电K水利水电测量技术能对地形点和地物点的坐标,水利水电以及地图中的图根控制点进行快速测定,水利水电此种方法在加大程度上减少了水利工程在实际测量过程中,水利水电众多不必要的测量操作,水利水电不但减少了工作人员的作业量,水利水电同时充分保障了测量结果的准确度。R水利水电T水利水电K水利水电测量技术中具备专业性较强的测图软件,水利水电在野外进行测量操作时,水利水电能将所需要的电子地图进行快速生成,水利水电并在参考已得出的数据的基础上,水利水电开展工程的施工放样操作。

三、水利水电工程测量技术的发展趋势

水利水电工程测量技术的发展趋势,可以概括为以下几点:水利水电工程测量技术的自动化程度会更高,科技含量也会更高;水利水电工程测量技术的适用范围会更加的宽泛;通过水利水电工程测量技术得出的数据的精度会更高;水利水电工程测量技术的信息提取能力会更强。

结束语

在工程测量技术的不断发展,工程测量设备快速的更新换代的大背景下,水利水电工程的发展速度会越来越快,发展前景也会越来越好。我国的水利水电工程测量技术的信息采集能力会愈加强悍,与此同时,也会向自动化、数字化、多媒体化的方向发展;测量数据的储存与应用也会愈加的高效,愈加的简易;总而言之,相关工作人员仍然需要不断努力、研究、探讨,从而使我国的水利水电工程测量技术水平大幅度的提升。

参考文献

[1]陈静.水利水电工程测量技术的发展[J].水利规划与设计,2014,04:19-21.

水利水电工程测量技术范文第2篇

关键词:水利水电;工程测量;技术要点

前言:

随着工程测量技术高速发展与测量设备更新不断加快,水利工程测量朝着数据采集自动化、数据处理规范化、数据测量精确化的方向快速发展。在工程测量领域中,水利水电工程测量是专业对水利水电工程进行测绘服务的学科,根据目前水利水电工程的施工环节,将其测量阶段分为勘察设计、施工建设以及运营使用阶段。水利与水电的测量工程内容主要包括变形测量、水下地形测量、地下洞口测量、地形测量等,在测量过程中融入大地测绘技术、卫星定位技术、数字遥感技术以及地理信息技术等先进科学技术,其测量技术已经涉及路线测绘、地界测量、计量测量等领域。

1.变形测量

变形测量主要通过测量对变形物体,来判断物体内部与空间位置形态的主体变化,水利工程的变形测量的内容涉及工作基点、基准网点、材料监测、构件变形分析等内容,目前变形测量常采用基准线法、大地测绘法、静力液体水准测绘法等。

1.1基准线测绘法

基准线法是测量人员在水利水电工程测量中最广泛使用的测量方法,主要是测量对象为重力坝、土石坝以及支墩坝等体量较大的坝体,测量人员对体量较小的坝体通常选择准直激光法、视准线法进行测量,对于拱坝坝体则选择垂线法进行测量。

视准线法主要是用来监测坝体水平位移的方法,具有高精度、低成本、监测速度快等特点,视准线读数设备由传统人工视准测读仪快速发展为先进的光电跟踪式视准仪、感应式电容视准仪以及电磁式视准仪,实现了自动化实时监测。

垂线法主要是用来监测坝体纵向位移变形的方法,其中正垂线法主要运用在监测水利工程不同高度的水平位移、挠度以及斜率等。而倒垂线应用于稳定、深入的基岩监测,包括测量岩层挠度、错动以及基准点水平变化。

1.2大地测绘法

大地测绘法是测量人员在水利水电工程变形监测中广泛使用的方法,常用于测量基准网变形情况、工作支点、变主体结构变形等内容,其设备包括全站仪、水准仪,主要采取交会测量、三角测量、几何测量以及边角测量等方法进行监测工作。大地测绘法仪器运用较为常规,理论体系可靠,计算数据准确度较高,测量成本低,然而作业时间过长、劳动强度高、智能化水平过低。

1.3 静力液体水准测绘法

静力液体水准测绘法常用于测量水利水电结构廊道内高程,通过设置传感器来容器内部液面高度的测量,获取各个监测位置的高程,该方法具有自动化水平高、持续性好、测量速度快等特点。除此以外,测量容器的间距可控制在五十公里的范围内,能够精确测量大跨度水利工程的水准。

2.地形测量

水利水电工程的地形测量的主要内容是测量工程所在区域表面的地形地貌水平投影高程与位置,根据设定的比例进行缩小,将所获得信息数据绘制成为地形图。随着我国计算机技术高速发展,水利水电工程的测量技术融入了数字生图系统,实现数字三维地形实时地形测绘。现阶段,数字化三维地形测量作业技术主要模式包括平板电子、数字记测、遥感摄影测量等模式。平板电子模式主要是测量人员使用便携机、全站仪、绘图地形软件等工具,采取镜站或测站作业方式进行地形测量,这种模式具有传统白纸模拟成图、无编码、直观作业等特点,在测量过程中很少出现错漏的情况,然而测量仪器的电池消耗较快、设备笨重且缺乏稳定性,在测量过程中受到周围环境条件的影响,只能适用于城市地区、平原地形测量。数字记测模式是使用图纸、全站仪结合内业图形绘图技术,进行测量,它这种模式尽管能够满足复杂环境地形的测量,然而成图效果不直观,甚至出现草图点号与测量点号发生冲突的情况,并且对制作现场草图人员的专业要求过高。遥感摄影模式主要是测量人员在使用全站仪进行测量同时结合内业图形绘图技术以及掌上绘图系统,这种模式它解决了平板电子模式的不足,充分发挥掌上电脑的优点,具有成图效果好、操作便利、稳定性强,成为目前最为理想的水利水电工程地形测量模式。

3地形水下测量

大型水工建筑在进行地形水下测量过程中过去常用激光测距仪、经纬仪、标尺等测量工具,采用极坐标法进行定位,用测深锤、测深杆来获取精确的水深数据,然而这种测量方法出现所得数据误差较大、工作效率低等不足,因此逐渐被淘汰使用。随着科学技术的高速发展,GPS、 RTK 、CORS等技术广泛应用于地形水下测量中。测量人员在确定某一基准点后,通过接收系统来接收卫星信号,同时与计划点位置进行对比,从而来确定间距误差,测量人员通过用户电台来获取误差数值,实时进行精确校正,具有连续性好、精度高等优点。现阶段我国GPS、 RTK 、CORS定位测量已实现厘米级精度控制现代进行水下地形测量定位技术与传统的极坐标法测量技术相比,显示了巨大的优越性,尤其适用于在流域大的地形水下测量,能够极大减少人工成本,缩减工作周期。

4地下洞口测量

地下洞口测量是水工建筑测量的重要内容,包括测量地面与地下控制、传递地下原始数据、结构贯入度测量、施工过程监测、测量结构变形等。地下洞口的测量重点是监测地下工程的结构变形情况,地下洞口存在施工空间有限、空气粉尘含量大、光线强度差、施工干扰因素复杂等情况,因此测量地下洞口室借助具有防震、防爆性能的激光测距仪、专用全站仪、陀螺测量仪、无棱镜激光测量仪等设备。其中,激光测距仪能够完成地下洞口结构复杂的测量工作,有效确保了测量人员地下测量安全,同时还能实时导向地下洞口测量进度。专用全站仪能够对地下洞口测量数据进行自动化剪辑与处理,真正实现了人机交互。陀螺测量仪是由电脑后台系统进行控制,设备能够连续、自动测量陀螺真实的摆动情况,来补偿外部恶劣环境因素干扰,具有高测量精度、观测时间短等特点。无棱镜激光测量仪结合断面洞口检测软件已经逐步取代以往断面测量仪,能够实时进行数据处理、施工进度监督、炮孔检测与放样等工作,并且能够分析现场成果,能生成立体超欠挖图像,能够精确计算方量与生成报表成果。

结束语

随着建筑行业与科学技术的快速发展,全球卫星定位、数字遥感、地理信息等先进技术已经逐步融入到水利水电工程测绘中,数字测绘设备的大量应用,水利水电工程的测量手段与方法也应当加快更新速度,进一步拓宽其服务领域。水利水电工程的测量技术在未来的发展必然朝向数据处理与采集实时化、自动化,数据测量控制的格式化、科学化,数据应用与传输的多元化、网络化的快速发展,更好为水利水电工程测量工作服务。

(身份证号码 44162219******6018)

参考文献:

[1]裴喜安. 水利水电工程测量坐标系的选择[J]. 江淮水利科技, 2012, (03):46-48.

水利水电工程测量技术范文第3篇

关键词:水利水电;测量;测绘

中图分类号:TV221 文献标识码:A

引言

工程技术要得以顺利、快速、安全实施,高效、高质量的测量意义重大。工程有关测量按工程作业的先后顺序可分为运营管理、建筑施工、规划设计等;按照服务的对象可以分为以下几种:城市建设相关测量、输油管管道或者输电线线路、水利建设测量、地下或者隧道建设测量、桥梁或公路铁路建设测量、工业建筑测量。不同类型工程不同的建设中测量、测绘的具体工作特色鲜明,但是其中的方法及其原理大同小异。其中,水利水电工程中设计阶段设计的测量主要有工程控制、地形图、纵横断面图等几方面的测量。

1 工程控制测量

工程控制测量的目的是为后续的不同时期的工程建设提供位置参考信息,以满足工程实施中涉及的费用、进度、质量要求,主要为工程实施提供基准位置及基准空间框架。

1.1 平面控制系统

水利水电工程实施场所常常具有狭长、独立的特点,因此,平面控制系统应该根据工程实施位置和项目大小来确定。至于一些重点水利工程和水利枢纽等地点测绘时,若测量地点的投影长度大小大于5cm/km时,投影变形方法可以使用以下2种:使用高斯正形投影,也就是把通过坐标变换实现大地坐标到中央子午线转换;采用独立坐标系统,即起始数据为大地坐标和此点到另外一个大地点形成的方位角。

1.2 高程控制系统

正常高系统是我国目前普遍使用的高程系统,即1985年国家高程控制系统基准点,青岛高程点为72.260m。但由于许多地区的使用习惯、一些历史原因(如与水文相匹配),这些地区仍然坚持原来的高程基准开始。安徽的高程基准系统有:吴淞零点、黄海的高程系、国家高程系统。

2 地形图测绘

地形图测绘需严格遵守国家行业相关测绘要求及规范,其主要内容有建筑物地点选取、工程选址等等。具体的测绘包括地物、植被、土质、地貌、水下地形等测绘。

2.1 地物测绘

地物测绘的测图主要有以下几个方面:垣栅、境界及地类界;气象、水文、地质勘测;独立的地物测绘;通讯和输电线线路测绘;管线、道路;居民点;测量的控制点。工程地物测绘分为区域外和区域内测量2部分。比如说,对中小型河流的地物测绘包括互岸、护坡、河道、加固等方面的测量。测量时还应注意旁边通信设备、电力设备、河堤旁建筑物及房屋、护岸护坡材质、河提河道各种堵水(如溢流坝、涵闸、桥梁)设备。地形图上还应具有建筑物大小规模的标注(宽、高)、堰顶高程、桥面高程、底高程等。

2.2 植被、土质和地貌测绘

不同于其他城市测量,水利工程中的植被、土质和地貌测绘特色更鲜明。在地图上植被面积大于1cm2时应该绘出地类界范围。水利工程中有别于其他测绘,在保留高程基准点的同时勾绘等高线,在绘制盆地、台阶、小丘时加绘地貌特征。

2.3 水下地形测量

水利水电工程中的重中之重便是水下的地形测绘,其他一些行业的测量、测绘常常只对河道的水涯线或河水线进行绘制,而水利水电中的工程测绘常常还需要对水下的具体地形进行详细的测量,图上的沟渠标记2~3cm的底高程。

3 纵横断面测绘

纵横断面有关水利水电方面的测绘主要为土石方方面的工程,为削坡、挖深、填高等。这些测量的精度对工程量的影响很大,纵横断面的测绘主要为提高测量精度,使工程概算精准。

3.1 横断面测量精度的提高

目前我国水利水电工程中纵横断面测量中广泛采用的方法为:GPS RTK测量方法和全站仪法。不论采用什么方式进行纵横断面测量,只要能够提高测量精度、降低测量误差,断面点的测量精度完全能够满足其断面精度的要求,但纵横断面点的选取应靠近断面线,以免代表性不强,规范要求为2m。

3.2 横断面位置布设

横断面的布设很大程度的影响了工程量的大小,横断面间距常常设定为20~50m之间,同时断面间距的选择不能过于稠密,需充分考虑相关因素。当然,在横断面的布设时不仅应该考虑断面间距,布设地点还应选择在支流入口、河道转弯处、比降变化明显,横断面长度变化显著的部位。为了设置合理的横断面的位置,常常需要在地形图上初选出,还需要结合实地考查。

3.3 横断面方向

断面方向的选择很重要,就工程量来说非垂直的堤防断面常常比垂直的堤防断面小的多。实施开挖时也一样,实际工程量常常要大于概算的工程量,常常需要选择断面方向为与河道、堤防垂直的方向,并且在地形测绘图上先判断和选好横断面方向再通过现场勘测来确定。

3.4 纵断面测量

测绘服务不同时,纵断面的选择也不一样,如:选择中心线拟建渠道、公路、铁路;选择顶线来堤防加固、选择中心线来疏浚河道等。因此,纵断面的测绘主要是为了选择纵断面的断面间距、测量两岸或沿线有关地物(如桥梁、涵闸)在中心线上的投影位置、中心线的高程变化。

4 结语

本文主要从工程控制测量、地形图测量、纵横断面测量入手,分析测量的必要性和重要性,但是目前我国的测绘手段和测量水平有待改进和提高,未来研究可以从进一步提高测绘精度、减小工程量入手。

参考文献

[1]薛广鹏.浅谈混凝土在水利水电工程上的技术应用[J].四川建材,2010(04):32-35.

水利水电工程测量技术范文第4篇

关键词:水利水电 无人机 技术测量

无人机是通过地面远距离无线遥控和机载计算机远程控制系统进行操控的不载人飞行器,具有设计结构相对简单、飞行灵活、运行成本低等特点。随着信息化技术的发展,无人机技术也在多个行业得到了运用发展,如快递运输、遥感测量等,其较为全面的成像技术、精准的数据测量,相关应用也得到了社会的广泛关注。探讨无人机技术在水利水电技术测量中的应用,有助于克服相对复杂的地形地貌,实现数据的全面覆盖,提高数据的精准性,具有积极的现实意义。

1.无人机技术概述

无人机,简言之就是无人驾驶的飞机,英文缩写“UAV”,是利用无线电遥控设备和系统程序控制装置操纵的不载人飞机。无人机实际上是无人驾驶飞行器的统称,从技术角度定义触发可以分为:无人直升机、无人固定翼机、无人多旋翼飞行器等多种机型。

1 . 1无人机的工作原理

无人机机体通常偏小,由机体、飞机控制系统、数据链系统、发射回收系统、电源系统五大主体部分构成,飞机控制系统是无人机飞行控制的关键,是飞机的“心脏”;数据链系统主要功能是准确传输遥控的指令,保障数据信息在控制人员与无人机之间进行高效、有序的实时传输;发射回收系统是确保无人机可以顺利飞抵标准高度及安全返回,实现重复使用的系统保障。无人机不同的机型,其功能也有所差别,无人直升机、无人固定翼飞机、无人多旋翼飞行器特点如下表所示。

1 . 2无人机特点

无人机是近年来在民用领域引起广泛关注的适用性较强的科学技术,是飞行、遥控、遥测与计算机技术的完美融合,较之于传统的测量手段,具有明显的优势。

1.2.1数据信息精度高

无人机在军用领域具有较多的经验,民用领域应用时间短且多是低空飞行,高度一般在50~1000m左右,对于地形地貌的图像捕捉属于近景测量,精度属于亚米级别,测量范围在0.1~0.5m之间。

1.2.2机动、实时、高效

无人机因其较低的飞行高度,不受传统飞行器航空管制的约束,而且受天气的影响较小,机动性高,可以全天候接受飞行任务。相较于传统的人操控飞行器,无人机成本较低,携带的摄影器材成本也不高,可以进行低空全景的数据采集,有效降低成本的同时提高了数据信息的采集效率。

1.2.3安全、灵活

无人机对于起降场地没有特殊要求,适应性极强,运行操控准备时间也较短,控制人员通常在经过短暂培训后即可以进行无人机操作。同时,无人机不需要人员进行实机机体内的操作,在天气条件恶劣的时候也可以进行测量作业,而且可以避免相应的人员伤害情况,安全性高。

1.2.4全方位测量

无人机对于数据信息的采集可以实现高精度的要求。无人机通常携带高精度的成像设备对地面影像进行采集,也可以进行垂直或者斜影拍摄,通过垂直的拍摄行程地形的平面数据,对地形、建筑物进行低空多角度的拍摄获取高分辨率的纹理影像,实现了对地貌进行全方位的数据采集。理论而言,三颗遥感卫星即可以实现对全球地面的全覆盖,通过与卫星遥感技术的结合,可以限度扩大无人机测量的范围。数据信息也是通过卫星或者地面信息站点进行传输,对地形的全方位数据采集,有效的解决的遥感技术与传统航测技术对于地面复杂地形的遮挡问题,实现了优势的互补及数据的全方位采集。

2.无人机技术在水利水电工程测量中的应用

水利水电工程需要在地形条件较为复杂的区域施工,对地形测量数据的精准性是工程设计优化的基础,更是工程有序、安全进展的重要保障。在工程测量中,人为测量方式受地形地貌的限制较大,卫星遥感在小面积的数据精确性方面又有不足,与传统的航空测绘作业活动相比,无人机具有机动灵活、反应迅速等诸多优点,是DEM数据获取的一项重要手段,能够填补通用航空在小面积、大比例尺摄影测量方面的空白,实用性较强。

2 . 1数据信息实时性

水利水电工程建设涉及生态环境、动态数据监控等多个方面,无人机数据信息的高效、高精等实时性特征对于及时把握第一手的工程现场数据信息具有重要作用。利用无人机,搭配空间信息技术,有效结合中低空无人机遥感测量数据与卫星空间技术的大范围数据信息,可以实现对工程周边环境的全覆盖,建立科学的工程设计,及时发现工程中存在的问题或者引起周边水土资源的变化,采取切实有效的优化措施,提高工程建设使用中的实效性。

2 . 2实现科学的水域动态监测

水利水电工程对区域内的生态环境具有重大的影响,需要对水文信息进行动态的检测,掌握及时有效的数据,综合全面的分析环境影响。区域内的水文信息每时每刻都在发生着变化,依据传统的统计数据显然不具有时效性,无人机的遥感测量技术可以实现对水文信息的实时采集,通过高精度的影像收集设备,经过对比分析呈现出水文环境的变化,不仅有助于降低人力、物力测绘成本,也有助于提高监测效率。通过全民水域基础数据信息的收集,依据科学的信息处理流程,对分区域的水文信息汇集成像,准确获取不同区域水文信息的面积、类型、权属及分布,建立切实有效的不同部门的联合机构,构建水域动态数据的检测及管理机构,既保障水利水电工程的顺利运转,更保障生态环境的平衡。

2.3促进防汛工作开展

2004年7月,无人机遥感监测技术应用于暴雨引起的广西桂平市蒙圩镇洪涝灾害调查,第一时间获取了洪涝区、退水区、非洪涝区等信息的遥感图,为抗险救灾提供了重大帮助,这也是我国首次利用自控无人驾驶飞机对洪涝灾害的遥感监测的纪录。无人机的高机动性、低成本、数据影像收集快速、高效性,是空间数据收集的重要方式。水利水电工程在提供电力资源的同时,也是调节水流、防汛抗旱的基础工程保障,在日常的防汛检查中,无人机可以有效克服交通不畅、地形条件恶劣的影响,全时、全方位的进行滞洪区的水域环境监测,立体化的查看水库、敌方等险工险段,为管理控制人员提供第一手的信息资料,有助于形成更科学、合理的管理系统。同时,无人机机体小,便于携带,对其降落场地也没有特殊要求,一旦发生洪险,人可以在安全区域进行操作,无人机进入出险区域,有效的降低了人身伤害的风险。

3.结语

水利水电工程需要克服复杂的地形地貌环境,人工进行相关事项的测量越来越不符合实际的需求,无人机以其高机动性、实效性、全时性,为工程测量提供了重要的技术支撑,不仅有助于提供第一手的全面信息资源,也有助于降低成本提高工程的经济性。随着信息技术的发展,无人机的性能必将得到更人性化的升级,对水利水电工程而言,其数据监测的实效性也必将更进一步。

参考文献:

[1]尚海兴,薛绍军,雷建朝等.无人机低空摄影测量技术在水电工程测绘的应用[J].西北水电.2014[11].

水利水电工程测量技术范文第5篇

关键词:工程测量;水利水电工程;重要性

随着我国经济的不断发展,水利水电工程在社会经济建设加快了社会发展的脚步。近些年,水利水电工程表现比较突出,并且在工程建设中占据重要位置。水利水电工程的施工过程比较复杂,所以在施工过程中,一定要重视施工的质量,保证施工人员的安全。工程测量是水利水电工程的重要技术,有效利用工程测量使水利水电工程能够顺利进行。加强施工人员的综合素质、提高测量专业技术。工程测量是促进水利水电工程的重要因素,有效保证水利水电工程的施工质量。

1 水利测量注意问题

水利测量是建设水利水电工程的先决条件,只有先将准备事项做好,才能实施工程建设。利用所学测量专业知识,应用到实施测量过程中,要注意测量是经常出现的问题,及时解决,不能延迟改正。测量这项工作涉及到整个水利水电工程的技术安全,如果在测量出现失误,后续工作将会面临更大难题。这同时需要专业测量人员具备良好的心理素质与责任感,对待工作一定端正态度,明确工作的重要性。每次进行测量前,都应该对设备进行调整与校对,要知道测量人员在整个施工过程中,测量工作的重要性关系全局。

把学过的知识应用到实际工程中时,应结合当地的实际地形,工作态度一定要认真。实地考察后,及时将测量数据备案,以免出现丢失,导致重复测量,浪费时间。认真的工作态度,能够让工作更加顺利,做好自己的本职工作也是一种负责的表现。

2 提高工程测量水平

水利水电测量工程,首先,保证工程质量,这是为以后的工程进展,提供良好的基础。只有保证良好的工程质量,才能把整个施工过程顺利完成。严格按照责任制管理,政府部门应严格监督工程质量,如出现问题,找到相关管理部门进行处理。严格按照正规操作流程进行,保证实施工程的安全性,加强提高各部门综合素质,确保工程建设质量。竣工后,监督部门应实时向上级部门提供核定等级结果,提供有效测量数据。

保证项目资金充足,提高工程建设资料的完整。严格按照设计图稿和建设工程规范,实施建设工程,应用材料符合检测标准。实施工程后,进行全面检测,工程项目不合格的地方及时处理,坚持按照工程工序展开工作。水利水电测量工程建设,需要工作人员具有较高的觉悟与专业技能,配合实施工程、严格要求自己、工作态度认真。必须实施认真测量,实地考察才能得到真实的测量数据。

水利水电测量工作涉及到的环境因素影响比较多,例如,技术环境、自然环境、施工管理环境等,施工人员一定要保持良好的工作心态,坚持克服困难环境所产生的抵触感,即使环境恶略,也要将工作按要求质量完成。错综复杂的环境影响,不容易克服,工作人员还应多利用技术能力,合理改善困难,结合实际地理环境,加强环境控制,保证施工安全。

3 提高水利测量技术

建设水利工程测量需要结合成熟的专业软件进行工作,利用GIS技术处理图像、图形、空间数据等专业软件技术,提高测量技术水平。目前,CPS被水利工程地质勘察测量广泛使用,较好的解决水利测量的传递问题,山区通视条件较差,使用GPS进行测量,有效的提高工作效率与测量质量。

遥感技术能提供大量的宏观现行构造信息,为设施建设提供地质特征、水系分布特征和地貌形态,对于构造稳定性有重大作用。据调查,水利工程库区岸的滑坡、泥石流松散堆积,利用遥感技术进行地质解译。遥感技术能够取代常规的地质测绘,为校核工作人员提高了工作效率。遥感技术针对彩虹外影响,进行岩溶水和岩溶的地质调查,不仅能很好判断岩溶地貌,还能利用其他介质光谱差异,判断地下水的分布。遥感技术采用数码影像机摄影,采集处理,自主开发处理岩质高边坡彩色影响图和线划图。

我国引进先进的水利水电测量仪器比较晚,但已经逐步完善,如综合测井仪、声波仪、电法仪、地质雷达等探测仪器,使水利水电测量工作更迅速发展,提高了数据采集的精密度和工作效率,促进我国勘测工程的进一步发展。

4 测量工程主要作用

测量水利水电工程建设是一项非常重要的工作,水利工程规划设计,需要大量的实地考察资料与具体数据,采用工程测量进行实现场勘测,也是给设计规划提供基本数据。首先,工程前期要建立施工控制网,从整体到局部,采取先控制措施。测量工作贯穿整个水利水电工程,工程测量要有正确认识态度。测量工作必须按照建设单位的建设规模和要求进行,结合自然条件,开展水利水电工程建设。

现场对建筑物的具置测量,对工程施工中的几何尺寸核对与测定。水利水电工程具有特殊性,在建设工程结束后,应该定期对工程进行验收,有些问题可能是自然环境因素引起,所以在建设过程中或初期不会被发现,但在经过一段时间之后,问题就会显现出来,导致这些问题的主要原因,是施工过程中,没有对施工设计进行全面合理的规划,或是施工过程中,遇到问题没有及时解决。通过再次测量整移、沉降倾斜和摆动进行全面的测量,判断水利水电工程在使用过程中的实际问题,通过与工程对设计员进行探讨解决方案。水利水电工程建设,需要把握好工程测量的重要原则,严格按照设计规划进行操作,测量数据必须准确,认真完成工作内容。水利水电测量工程中,应采用科学合理的工程测量方法,并加以优化系统。测量得到的数据,应该反复校准,避免出现测量误差,导致后期建设工程无法正常进行,提高测量精度,提高专业技能。

5 结束语

我国经济技术迅速发展,已经全面引进国外技术,加强提高我国水利水电工程测量水平,定期培养专业测量人员,去国外学习先进技术,引进国外仪器。测量工作人员,应不断提高自身的专业水平,学习新的测量技术,应用到水利水电测量工程中,学以致用。

参考文献

[1]王俊艳.GPS技术在水利工程测量中的应用研究[J].科技与生活,2011(17).

[2]简杰.提高水利工程测量水平探析[J].中国科技博览,2010(20).