首页 > 文章中心 > 超声波的基本原理

超声波的基本原理

超声波的基本原理

超声波的基本原理范文第1篇

关键词:桩检测;超声波投射法;低应变法

引言

在桥梁的运行中,基桩是其整个结构中非常重要的组成部分,基桩的质量是否过关直接关系到整个桥梁的结构安全。目前,各工程单位即监理、设计、建设、施工等各方以及各有关部门对桥梁基桩的质量问题给与了高度的关注。同时,桥梁桩基的施工环境复杂,各工序也有其高度的隐蔽性,因此在施工过程极易出现影响基桩质量的缺陷,因此总体来说,相比于上部建筑结构来说,桩基础工程的质量检测、施工等将更为复杂,其对质量产生威胁的隐患也将更多。

质量检测的主要指标便是桩身完整性检测,目前主要采用低应变反射波法和超声波透射法来进行基桩桩身的完整性检测。

1 超声波投射法与低应变法的基本概念

1.1 超声波投射法

在混凝土灌注桩中预埋声测管,在声测管之间对超声波信号进行接收并发射,对桩身完整性的检测就是通过实测的声学参数即超声波在混凝土介质中传播的波幅衰减、频率、PSD、声时等。该方法适用于检测直径不小于800mm的混凝土灌注桩。

超声波及工程检测频率范围如表1所示。

表1 声波及工程检测频率

1.2 低应变法

低应变法的原理是在桩顶激振即采用低能量稳态或瞬态的激振的方式,对桩顶速度时程曲线做出实测值,对该实测值使用一维波动理论进行频域分析或时域分析,来进行桩身完整性的判定。该方法主要是对桩身的缺陷位置以及影响程度进行判定,进而对桩端欠固状况进行判定,因此比较适用于刚性材料桩如预制桩或混凝土灌注桩等。该方法的关键问题是桩底有明显的反射信号。

2 超声波投射法与低应变法的基本理论

2.1 超声波投射法的基本理论

超声波投射法的基本原理是,在混凝土浇筑前预埋声测管,在桩的两侧分别接收和发射超声波信号,超声波信号在电能被发射探头转变为机械能的情况下穿透混凝土桩,被接收到的超声波再将探头转变成电信号。根据超声波在混凝土中的传播时间在测得混凝土厚度的情况下尽可以算出在整个混凝土结构中超声波的传播速度,进而通过算得的声速来对混凝土的质量进行评判。显然,在检测的过程中,声速越大的越充分说明混凝土的质量越好,越密实,相反,对于松散的混凝土,或者是有离析、裂缝、孔洞等缺陷的混凝土,其声速也就会越低。因此,此方法可以科学的检测混凝土桩身的完整性和质量。不难看出,弹性波的波速与介质特性之间的关系既是超声波投射法对桩基质量进行检测的理论基础。对介质特性的变化可以从实测的波幅、声速等参数中推断出来。

声波在混凝土介质中的传播有如下特点:(1)指向性差,其原因主要有:a.低频声波扩散角大,波长长;b.混凝土内部结构复杂,具有大量的异质界面,会造成多个反射波和折射波,其各个波之间相互叠加和干涉,容易造成严重的漫射声能。(2)快速衰减。骨料在混凝土中的分布比较散漫,散射功率与声波频率的平方成正比,采用低频声波来检测可以增大声波在混凝土中的传播距离。(3)声波的构成比较复杂。在混凝土中的任何一点声场所及的范围内,都存在着一次声波及二次声波。一次声波与二次声波便是换能器所接收的信号。(4)传播路径复杂。声波的传播路径因为截面的折射和反射而曲折。当混凝土的内部结构中存在有较大的缺陷时,声波就不沿直线传播而是沿最短时间的路径传播。

2.2 低应变法的基本理论

低应变法的基本原理就是在桩顶进行激振,同时在桩顶接收速度相应信号,对桩顶的加速度或者是速度响应时程曲线测出其实测值,对桩身的完整性分析即利用假设条件下的一维波动理论。在桩顶使用敲击的方法给与适当的能量,但是其承载能力应该远大于其动荷载,使阻止贯入度的产生,即在只有弹性变形的情况下使桩土之间不产生相对位移。低应变法就是通过分析激励波沿桩身反射和传播的波形来检测桩身的安全。但是由于其结果不准确,误差较大且理论依据不足,不可以用来确定极限承载力。低应变法的仪器设备便于携带、检测快、成本低、监测面积大而且物理数学假设完善、理论模型成熟,因此应用广泛,发展迅速。

3 超声波投射法与低应变法的特征分析

在桩基的质量完整性检测中,超声波投射法与低应变法的主要特征以及对比如表2所示。

表2 超声波投射法与低应变法的主要特征分析

在大多数的情况下,超声波法只有一小部分是检测的盲区,一般会得出比较准确可靠结果,出现漏判的情况是少之又少;低应变法的测量结果是对桩身桩基的阻抗的变化情况,它是大体的反应了对于桩身上有缺陷部位的定性,但对于是缺陷的位置或者是怎样的缺陷均不能够做出精确的判断。

4 超声波投射法与低应变法的对比结果的分析

在适用范围上,相比于超声波法,低应变法更有优势。但由于其在检测的过程中存在一定的判断误差而且检测的精确度较低,对所涉及到的仪器设备也比较复杂且繁多,所以在目前桩的检测中相对于超声波投射法其应用范围还相对较低。但在一些特铁路的群桩中,施工进程中并未埋设声测管,所以低应变法便成为其常用的检测桩质量的方法。

此外,对于超声波法来说,它是科学化与信息化相结合的产物,不仅能够有效地提高我国各应用结构中桩的质量检测的效率的目的,同时也能够很好的体现出我国当前的科技水平。同时,该方法还具有新的检测方法,其具有强大的抗干扰能力,无疑该方法便可成为我国桩基检测中的有利方法。

5 结束语

总的来说,不论是超声波投射法还是低应变法都有其在工程运用中的优越性,并且对于我国的建筑行业的发展和施工进展都是不可或缺的。因此,对于我国相关行业的技术人员来说,其应该对超声波投射法与低应变法的技术优越性、技术原理、应用实例、应用特点等有清晰、全面的了解,以便能够高效的运用到桩基的质量安全检测中。不仅使超声波投射法与低应变法这两种检测方法得到发展,同时桩基的相关技术都能得到积极、健康、稳步的发展。

参考文献

超声波的基本原理范文第2篇

关键词:超声波、污泥处理、环境卫生、低强度

中图分类号:S141.6 文献标识码:A 文章编号:

1引言

污泥处理处置方法很多,但各种方法均存在弊端,如焚烧法成本较高;海洋倾倒对海洋生态环境影响;厌氧消化时间长,处理过程慢等缺点。广泛采用的污泥处置方法由于各自存在的问题给污水处理带来了沉重的负担。污泥处置已从过去仅仅作为污水处理的一个单元发展成了在污水处理厂设计、运行中不得不优先考虑的重要环节。有必要对污泥处理的途径提出一些新的思路和方法。新开发的超声波处理方法,兼有各种方法的优点,污泥分解速度快,适用范围广,可与其他处理技术结合使用。

2、超声波处理技术基本概述

作为一个研究热点,超声波处理污泥日益受到人们关注。

超声波处理的作用机制分为机械机制、热学机制和空化机制,其中空化作用更容易在20~40 kHz的频率范围内发生。研究表明,超声波作用频率在41~3217kHz范围内的剩余污泥预处理,得出低频41 kHz超声波对污泥分解是最有效的。专家指出:超声波预处理污泥对环境有益而不是有害。

超声波作用对污泥中生物体的影响与超声作用的频率、声强、时间以及生物体对超声波的承受能力有关。在合适参数的超声作用下,可以促进生物体代谢,然而过高能量可能抑制生物体生长,甚至使其分解。

高强度超声波可对生物体产生不利影响,其原因主要是由于瞬态空化产生水力剪切力对细胞壁和细胞膜的机械破坏作用,实验证实超声空化产生的自由基一定程度上可导致微生物死亡。因此,高强度超声波具有显著的破坏作用,对生物体产生不可逆的变化。

低强度超声波作用时,产生细胞原浆微流,改变细胞内溶物的空间位置,这种变化决定了超声波对细胞的刺激作用。细胞原浆微流又可引起细胞半透膜的弥散过程和膜内外电位发生改变。现已发现,低强度的超声波作用可刺激细胞内的蛋白复合物生长合成过程。实验表明,低强度超声波并不破碎细胞壁,只是打散了絮体结构,加快了水解的速度。

低强度超声波处理是基于输人的超声波只破碎污泥微粒之间的紧密连接,减小絮体尺寸至10的数量级,从而改善微生物细胞膜的通透性和水解作用,强化液一固体系传质,从而加速微生物代谢的污泥处理方法。这与当今大多数着眼在直接破碎细胞壁和细胞膜释放生物固体内的有机物至液相不同,而是在较容易发生空化作用的20~40kHz频率范围内,输人不能完全破碎污泥絮体和细胞壁,但能改善传质和刺激微生物代谢的超声能量,强化微生物内源呼吸过程,达到污泥减量的目的。

3、超声波设备的组成

超声波反应器,主要由电磁发生器、转换器和振子组成。电磁发生器根据设 定的超声波频率,产生相应的电磁振荡,转换器将这一电磁振荡转换成机械振动,由振子送入污泥,在污泥中形成超声波场。由于振子是浸在污泥中的,而超声波是在整个反应空间分布的,因此振子也处在有“热点”分布的极端物理条件下。为避免振子过速磨损,必须采用高性能材料,如钛合金。

4、超声波技术在国外处理污泥的应用实例

德国巴姆堡市污水厂原设计能力30000m3/d ,包括近一半的工业废水。由于管网扩充和改造等原因,现在实际来水量是40000m3/d ,每天的污泥量相应增加,导致原有三个污泥罐容积不够(发酵时间是25天)。经过讨论,有关机构建议新建造一个容积为3000立方米的污泥罐,以保证污泥的停留时间。建造这个污泥罐的投资将达330万欧元再加上安装费用等。经过方案比较,厂方决定购买三台超声波污泥反应器对污泥进行预处理。一期两台运行3个月后,沼气产量增加30%,污泥停留时间从25天降到18天,从而满足了在不建造新的污泥罐的情况下保证消化深度的要求。由此可知,需要进行超声处理的只是其中的一小股污泥,一般取剩余污泥的30%左右。从运行成本的角度考虑,也不必将其中的微生物细胞全部击破,而只是一小部分,因为被击破的微生物细胞释放出的酶等物质可以使整个水解过程加速。

5、超声波技术的其它效益

5.1、二氧化碳排放权考虑

假设将全国的污水厂污泥经过超声波处理并发酵,可节省一半的污泥罐容积和建造投资,每年产生沼气20亿立方米,可产生5×1016焦耳的能量。用来发电,可以满足一个装机容量60万千瓦的发电厂的需求,而要维持这个热电厂每年需要标准煤近200万吨,排放600多万吨二氧化碳。

5.2、环境卫生效益

超声波处理污泥提高其发酵速度的一个关键因素是污泥中的微生物细胞壁被击破后,酶被释放,后者加速了其余细胞壁的破坏速度。同样,这一机理对有害病菌也适用。传统的污泥发酵罐可以杀灭大多数病菌,但有些顽固的病菌,如结核病菌,是不能被杀死的。而细胞酶的释放,有望解决这一难题。从而使污泥处理不但是污水处理的重要环节,同时是切断病原传播途径的重要环节。

6、超声与其他技术联合应用

国内外对污泥超声破解技术的研究主要集中在污泥破解后固体物质物化、生化特征的变化情况及对加速后续厌氧消化进程或污泥减量的影响。对于大量污泥的处理,超声技术可作为一种预处理技术与其他处理技术联合使用。研究表明,超声与碱解联合破解污泥效果,实验得出投碱和超声波同时作用污泥处理效果更高。超声与其他方法如厌氧、好氧处理,污泥的厌氧处理的联用,然而对于每一种应用,超声能量输入和细胞分解程度及厌氧消化时间都有优化组合。据有关报道,德国利用超声波进行污泥减量已进入实际应用阶段,而国内在这方面的研究基本上处于初步实验研究阶段,仍需进一步争取进入实用阶段。

7、展望

由于污泥成分的复杂性及影响超声处理的因素多面性,因此,超声处理污泥是一个极其复杂的过程,尤其机理仍有待于进一步研究,污泥破解技术还有待进一步发展、完善。目前,超声波应用于污泥处理其减量化存在的主要问题是超声处理运行参数的优化、超声效率有待提高以及超声反应器的合理设计等。同时应注意与污水处理工艺的合理组合,这样才能发挥超声波的特点,并为其在实际工程的应用打下基础。

今后要做的工作是:

1.进一步研究超声处理污泥的机理和影响因素;

2.不同频率相互作用下的超声处理效果;

3.不同反应器中声场的研究;

4.超声波技术与其他技术联合应用;

5.解决超声处理从实验室走向实际应用中存在的超声反应器的材料、设计、功耗、处理效果、经济成本等关键性问题。

参考文献:

超声波的基本原理范文第3篇

【关键词】超声波 传感器 疾病诊断 测距系统 液位测量

一、超声波传感器概述

(一)超声波。

声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动频率次数很高,超出了人耳听觉的上限,人们将这种听不到的声波叫做超声波。超声波是一种在弹性介质中的机械震荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰退。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性——超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性——当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波平率很高,所以超声波与一般声波相比,它的功率是非常大的,空化作用-当超声波在液体中传播时,由于液体威力的剧烈振动,会在液体内部产生小空洞,这些小空洞迅速膨胀和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上玩个大气压的压强。微粒间产生几千到上玩个大气压的压强。微粒间这种剧烈的相互作用,回事液体的文都骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。

超声波的特点:(1)超声波在传播时,方向性强,能易于集中;(2)超声波能在各种不同媒体中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。

(二)超声波传感器。

超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为手段,必须产生超声波和接受超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。

超声波探头主要由压电晶片组成,既可以发射超声波,也可以接受超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转换成机械震荡而产生超声波,同时它接受到超声波时,也能转换成电能,所以它可以分成发送器和接收器。有的超声波传感器由发送传感器(或称波发送器)、接受传感器(或称波接收器)、控制部分与电源组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接受波产生机械振动,将其变换成电能量,作为传感接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。

二、超声波传感器的应用

(一)超声波距离传感器技术的应用。

超声波传感器包括三个部分:超声换能器,处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接受到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声,如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发射器和接收器,但一个超声波传感器也可具有发射和接受声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声波振动转换成电信号。

(二)超声波传感器在医学上的应用。

超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。

(三)超声波传感器在测量液位的应用。

超声波测量液位的基本原理是:有超声波探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位的高度。超声波测量方法有很多其它法方不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其影应时间短可以方便的实习无滞后的实时测量。

(四)超声波传感器在测距系统中的应用。

超声波测距大致有以下方法:1.取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;2.测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,固被测距离为s=1/2vt。如果被测精度要求很高,则应通过温度补偿的方法加以校正。超声波距离适用于高精度的中长距离测量。

三、小结

文章主要从超声波与可听声波相比所具有的特性出发讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用,但是,超声波传感器也有自身的不足,比如发射问题,噪声问题的等等,因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。

参考文献:

[1]单片机原理及其接口技术,清华大学出版社.

[2]栗桂凤,周东辉.基于超声波传感器的机器人环境探测系统,2005(04)

超声波的基本原理范文第4篇

关键词:vb;动画仿真系统;高职;超声检测

目前,高职课堂教学面临着课程学时减少、难度增大、学生文化基础薄弱、缺乏学习兴趣等困难。如何提高课堂教学质量,创新教学方法,是值得深入研究的重要课题。

超声检测是无损检测方向一门十分重要的课程,需要学生在理论基础与操作能力上有透彻的理解和娴熟的应用。由于超声检测的部分理论知识枯燥艰深,课堂教学难以让学生建立感性认识,不容易激发学生的学习兴趣。若建立实验室平台则耗时、耗材。如果对这些重要知识点借助计算机进行仿真教学,不仅方便经济,还可以通过修改参数、变换模型,让学生随时观察到系统模型各变量变化的全过程。这样就使学生的学习过程由感性到理性,学生将更深刻地理解超声检测技术。可以此为基础,调动学生进行模拟仿真学习的积极性与参与性,逐步实施基于工作过程的自主学习型高技能人才培养模式。

目前,可以实现仿真的软件很多,基于vb来编写教学仿真系统相对而言直观、灵活。下面笔者将以a型脉冲反射式超声波探伤、超声波倾斜入射到异质界面的反射和折射以及超声纵波声场三个知识点为例,介绍vb在超声检测教学中的仿真应用。

a型脉冲反射式超声波探伤

(一)基本原理

在一定重复频率的同步脉冲信号触发下,发射电路以相同的重复频率产生高频高压脉冲信号,该信号激励换能器以相同的重复频率发射同频率的超声波。这种超声波传导于工件中,遇到不连续性(包括工件底面)后产生反射,该反射回波被换能器接收并转换为电信号,经接收、放大后传至显示器的垂直偏转板产生垂直偏转。与此同时,在同步信号的触发下,时基电路以相同的重复频率产生时基信号,给显示器的水平偏转板产生时基扫描线。这样,接收信号的波形便显示于示波屏,根据示波屏上显示信号的位置、高度和特征,可判断不连续性的位置、大小和性质。

(二)仿真系统

探伤平台仿真系统涉及信号发送、超声波工件探伤和接收信号显示三大部分,如图1所示。信号发送部分包括同步信号、时基电路和发射信号三个演示框。探伤平台部分用蓝色实体方框表示被测工件,红色实体方框表示换能器(探头),黄色实体方框表示工件内部缺陷,探头接收到激励信号产生超声波,传播到工件内部进行探伤,同时探头经接收电路将微弱的反射信号进行放大处理在显示器部分演示出来,让缺陷回波信号位置随缺陷埋深的变化而变化。演示平台上还设置了频率、幅值等调节参数,通过这些参数的变化,学生可以更深刻地理解超声检测原理。

程序关键部分是超声波激励信号的模拟演示。笔者引用的激励信号为加窗正弦波信号,表达形式为vin(t)=a[h阶梯函数。

部分程序如下:

for i = 0.5 to 8 * pi step pi / 6000

f1(j) = heavi(i * (10 ^ (-6))) - heavi(i * (10 ^ (-6)) - n / (fc * 1000))

f2(j) = 1 - cos(2 * pi * fc * i * (10 ^ (-3)) / n)

f3(j) = sin(2 * pi * fc * i * (10 ^ (-3)))

picture2.drawwidth = 1

picture2.pset ((i * 30 + m * 4 * pi * 80) / frq, amp * 5 * f2(j) * f3(j) * f1(j) * 30 + picture2.height / 2), vbyellow

j = j + 1

next

… …

(三)教学应用

a型脉冲反射式超声波探伤基本工作原理是较难理解的一个知识点。学生很难把同步信号、时基信号、发射信号等概念以及它们之间的联系掌握清楚。为此,教学可安排在实训室进行,一方面,学生自行演示并操作仿真软件方便理解超声检测设备内部的电路运行情况,另一方面,让学生选择检测系统搭建试验平台,同时在超声探伤仪屏幕上观察检测结果。这样,让学生将软硬件结合,动手操作和学习结合,能极好地调动学生的学习兴趣,使学生深入理解超声探伤基本工作原理,为后续实训操作奠定了基础。

超声波倾斜入射到异质界面的反射和折射

(一)基本原理

当超声波在某一介质中以入射角倾斜入射到异质界面时,将会在界面处发生反射、折射和波型转换,即产生反射纵波和反射横波以及折射纵波和折射横波。入射角与反射角之间以及入射角与折射角之间符合施耐尔定律。通过该定律还可以延伸出临界角的概念。

(二)仿真系统

如图2所示,演示平台中包括参数设置和声波传播演示两部分。参数设置涉及两种异质材料和入射角的选择,确定好异质材料,右侧的信息栏中将显示出两种介质的纵波速度与横波速度,有助于学生对材料信息的了解。一旦调节入射角,用直线条表示的超声波随即在平台部分显示出来,借助不同颜色区分入射、反射和折射的纵波与横波,线条的粗细用来表示信号能量的强弱。随着入射角的改变,反射波与折射波角度亦随之发生变化,当条件满足,可以清晰掌握折射角达到90°时波形轨迹的变化,这会使学生对第一临界角和第二临界角的理解更加深入。程序编制过程需要注意的是当入射角达到第一临界角时,在介质2中只有横波而无纵波,此时反射纵波能量加强,当入射角达到第二临界角时,在介质2中既没有横波也没有纵波,反射横波沿界面传播。

(三)教学应用

这部分是超声检测的重要知识点。在传统教学中,学生由于不熟悉超声波传播特性,只能死记公式,无法灵活运用,对临界角的概念理解不清。在教学中,可将仿真软件与练习题相结合,教师先介绍仿真软件的使用,随即让学生进行仿真操作,模拟各种光疏到光密物质、光密到光疏物质的超声波传播情况,观察第一、第二临界角的产生条件与时机,同时结合仿真动画理解斯奈尔公式每个参数的含义,再结合练习题进行公式运用,之后将公式计算结果在仿真软件中进行验证,保证了学生全面掌握超声波传播原理与斯奈尔定律。

超声纵波声场

(一)基本原理

超声换能器向介质中辐射超声波的区域称为声场,通常用声压分布与声场的指向性来描绘。该声压在极大值和极小值间起伏变化,最后一个极大值点处与声源的距离称为近场长度,用n表示,n=d2/4λ。声场能量主要分布在以声轴线为中心的一定角度内,这种声束集中向一个方向辐射的性质称为声场的指向性,用指向角或半扩散角?兹表示,?兹=sin-11.22λ/d。近场长度和半扩散角是描述声场的两个关键要素,而它们的值主要取决于检测频率和探头晶片尺寸。

(二)仿真系统

如图3所示,演示平台包括参数设置和声场演示两部分。晶片尺寸和检测频率通过滚动条调节大小,从而表现出对声场的影响。演示部分分别用不同颜色表示被检工件、探头、声场,其中近场区声场不扩散,而进入远场区声束开始扩散。当分别改变晶片尺寸和检测频率大小时,可以清晰看到声场中近场长度与扩散情况的变化。由于晶片尺寸和检测频率同时决定声场,因此在程序中需要用到大量条件嵌套语句。

部分程序如下:

private sub hscroll1_change()

f = hscroll1.value

'f为晶片尺寸滚动条数值

select case d

'd为检测频率滚动条数值

case 1

select case f

case 1

… …

case 2

… …

end select

end sub

(三)教学应用

晶片尺寸与检测频率对声场与扩散角的影响以及近场的概念是学生必须掌握的重要知识点。知识点的掌握主要还是对公式的理解与记忆。学生通过设置仿真参数,模拟各种声场扩散情况,将仿真动画结果与公式实例分析互相验证,不仅能对各参数的含义有更深入的理解,同时将公式运用到实例能真正实现对声场全面的理解。

本文介绍的基于vb实现的教学仿真已经很好地应用于超声检测课程教学,促进了课堂互动,极大地改善了教学效果,强化了学生对知识理解,得到了一致好评,值得教学一线的教师尝试和持续改进。目前,该超声检测课程已成功申报检测技术及应用专业自主学习型高级能人才培养模式实践研究教育教学研究项目,并已获批深圳职业技术学院校级精品课程。

参考文献:

[1]李立宗.vb程序设计教程[m].天津:南开大学出版社,2009.

[2]李淑华.vb程序设计及应用[m].北京:高等教育出版社,2004.

[3]x lin,f g yuan.diagnostic lamb waves in an integrated piezoelectric sensor/actuator plate: analytical and experimental studies[j].smart mater.struct,2011,(10):907-913.

[4]史亦韦.超声检测[m].北京“机械工业出版社,2005.

超声波的基本原理范文第5篇

油田采出水中含高达1000-2000mg/L的油,8×104~14×104mg/L的矿化度,大量的悬浮固体颗粒(主要是粘土颗粒、砂粒、粉砂等10-100μm的小粒径物质),细菌,胶体,重金属等其他物质;水温通常在40-80℃,且易受酸碱影响而改变PH值,处理难度较大,直接排放会对环境造成影响。目前在原油开采过程中,需注入大量的清水到储油层。如对采出水进行处理并用于回注则可以减少用水量,带来一定的经济效益,减少对环境的危害。

2超滤超声技术在油田废水处理中的应用

2.1膜技术的优势及超滤的基本原理与传统水处理工艺相比,由于膜技术具有高效,用药量少、操作简单、运行维护费用低且不产生副产品等优势而被广泛应用。当含有大、小分子两类溶质的溶液流过膜表面时,溶剂和小分子溶质将透过膜,作为滤出液被收集起来而大分子溶质(如有机胶体等)则作为浓缩液被膜截留下来。在我国用超滤处理油田采出水已获得了较好的效果并可满足回注水的基本要求。

2.2超声波清洗的基本原理超声波是一种频率高达2000赫兹的声波,研究中发现对液体使用足够强的声波可以使其出现空化现象。同时超声波在传播中如遇不同的介质会产生速度差,从而在不同界面上产生剪切力将界面间的附着物剥离,实现动态化清理。另外,超声波不受污染物颗粒大小的影响,从而保证了清洗的效果,同时在运行中可以对频率进行调控,安全可靠,清洗速度较快。

2.3超滤膜结合超声波等工艺的流程设计对于图中的传统工艺我们不再做说明,只对其中的超滤超声系统做简单的介绍。1)超滤膜-超声波组合系统主要是用超声波发生器产生的超声波作为清理超滤膜组件的主要措施,以此简化膜组件,减少冲洗程序。用超声波的空化效果、振动效果对污染物进行清理,同时也可起到杀菌作用,这样可以增强超滤膜的处理效率,延长其使用寿命。2)膜材料的选择在应用中需对采出水的水质进行分析,利用试验确定不同条件下何种膜材料对工艺的适应性强。目前采用纳米A1203改性聚偏氟乙烯超滤膜进行研究的较多。3)超声波装置及超声强度的设定利用不同的换能器可以组合成不同的超声波化学反应器,通常可用的有非变幅辐射式超声波化学反应器或者变幅辐射式超声化学反应器、管道式生化反应器等。在具体的应用中可以采用探头式与管道式反应器结合的方式,以此适应采出水处理的工艺需求。研究发现,超声波频率与空化阈值关系密切,频率越高则阈值越大增加也越快,15KHz时的空化阈值为0.5-2.0atm,可见超声波频率是影响气泡运动的关键。当超声波频率小于气泡谐振时气泡才能消除;当频率超过气泡谐振时气泡出现复杂振动效果,而不消除,因此选择低频率(200KHz)超声波有利于空化的效果。超声波的强度大于液体本身空化阈值时才会产生空化,强度越大则越容易产生空化,在液体中产生的清洁作用也越好。超声强度取决于超声的功率和超声覆盖面积,而这主要取决与换能器的形式与材料,因此在使用中应对其进行试验分析,作出准确选择。