首页 > 文章中心 > 半导体制造技术

半导体制造技术

半导体制造技术

半导体制造技术范文第1篇

关键词:双语教学;半导体制造技术;CMOS工艺集成

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2017)11-0213-02

随着中国加入WTO及中国改革开放的日趋深化,使得我国对双语复合型人才的需求程度迅速提高。为了培养双语复合型人才,2001年教育部颁发的《关于加强高等学校本科教学工作提高教学质量的若干意见》中对高等院校的本科教学提出了使用英语等外语进行公共课和专业课教学的要求[1]。“双语教学”的英文是“bilingual teaching”。《朗曼应用语言学词典》给出的定义是“The use of a second or foreign language in school for the teaching of content subjects”,即能在W校里使用第二语言或外语进行各门学科的教学[2]。

《半导体制造技术》是电子科学与技术专业的主干课程,系统介绍了集成电路芯片的制造工艺及工艺原理,详细描述了集成电路制造的全过程。学生在初步掌握硅材料制备、氧化、淀积、光刻、刻蚀、离子注入、金属化、化学机械平坦化等工艺及其设备的基础上,掌握CMOS、双极集成电路的工艺集成及测试封装等。

一、《半导体制造技术之CMOS工艺集成》双语教学存在的问题

《半导体制造技术》涉及电子、机械、材料、制造、物理、化学等多种学科,其理论性和实践性均较强,且内容更新快,在这样的课程中开展双语教学必定会遇到一些问题。

1.学生英语听、说、阅读能力有待提高。《半导体制造技术之CMOS工艺集成》双语课的授课对象是大三学生。经过两年多的大学本科教育,大三的学生虽然具备了一定的专业基础知识,大多数学生过了国家英语四级考试,而少部分学生过了国家英语六级考试,但学生的听、说、读、写训练也仅限于围绕《大学英语》课程及应试来进行,致使学生们并没有将这些技能应用于专业知识的学习。学生们没有接触过专业英语,英语专业词汇掌握得少之又少,也缺乏英语专业论文阅读的经验,专业论文的写作更无从谈起。《半导体制造技术之CMOS工艺集成》课程内容广泛,知识点多。双语教学中要求学生在英语环境中听、读并掌握这些专业知识点有相当的难度。

2.双语教学师资短缺。双语教学教师不仅要有过硬的教学能力和系统的专业知识,还要有精深的专业英语和流利的英语口语功底。这样不仅让学生系统掌握了专业知识,而且能运用外语熟练进行专业交流,使他们的整体素质得以提高。近年来虽国内外交流日益频繁,但就我校的情况而言聘请的国外专家学者、海归博士等多从事经济、金融等领域,还没有从事电子科学相关领域的外聘的国外学者和海归博士。双语教学的任务主要由有过旅美经历的、有丰富的专业课教学经验的高级教师来负责。但具备这样条件的教师数量也非常有限,不能形成团队协作。

3.教材及教学方法的选择。《半导体制造技术》国内外教材很多,各教材侧重点不同,有的偏重于科学研究,有的偏重于工程实践;内容各不尽相同;难易程度各不相同;受者群也各不相同。从良莠不齐的众多教材中选择合适的教材是至关重要的。选择什么样的教学方法也是要重点思考的,以最大程度地提高学生的专业知识和专业英语读、说、写能力。

二、《半导体制造技术之CMOS工艺集成》双语教学实践

本文第一作者于2013年夏季小学期开设《半导体制造技术之CMOS工艺集成》双语课,授课对象为电子科学与技术专业三年级本科生。此时三年级本科生已经学过了《半导体工艺》,掌握了《半导体制造技术》的基本概念、工艺原理及流程。在此基础上开设《半导体制造技术之CMOS工艺集成》双语教学既能巩固相关的专业知识,也能掌握专业英语的听、说、阅读能力。

1.教材。综合考虑各种因素,本课程选择的教材是英文版的《硅超大规模集成电路工艺技术:理论、实践与模型》,作者James D.Plummer等,由电子工业出版社出版。该教材内容由浅入深,写作简单明了易于理解,适于大专院校电子专业高年级学生使用。考虑到学生的英语水平及授课时间的限制,双语教学仅选择该教材的第二章《CMOS工艺集成――CMOS反相器制造工艺流程》。辅助教材为中文版的《芯片制造――半导体工艺制程实用教程》(第五版),作者Peter Van Zant,韩郑生等译,由电子工业出版社出版。

2.教学方法。考虑到学生的实际情况,本双语课程采用英文教材,英文版书,中英文授课的模式。课前要求学生充分预习。课堂上教师对基础英语中常见的重点词汇、固定搭配、句式结构等进行适当讲述,在此基础上重点讲解专业词汇及科技文献常用的表达方式。通过举例归纳总结词汇的专业性及日常应用中的差异及科技文献与通俗小说等写作手法的不同。让学生们参与教学,由学生先用英文通读一段再用中文来讲解,再由老师进行讲解总结。同时每次课都会利用一定的时间给学生播放Intel和斯坦福等多家机构联合出品的《Silicon Run》,该套视频是微电子行业的经典纪录片,其详细讲述了硅集成电路(IC)工艺制程中的各单项工艺,如晶圆的制备、氧化、光刻、淀积、离子注入、刻蚀、金属化、封装等等。让学生们生动形象地了解实际生产线上各工艺的同时,也能练习听力,课后还能跟读,一举三得。待到学生听、说、读英语的能力提高了,教学模式最终会过渡到英文教材,英文版书,英语授课。

3.教学反馈。课程结束前对教学效果进行的调查问卷显示[3],80%的学生认为本课程教学有助于提高自己的专业英语水平,对阅读专业英文论文及著作起到了抛砖引玉的作用。学生们认为教学中的视频在提高听力的同时,让他们更真切地了解了实际生产线上器件、集成电路的制造过程。

三、对开展《半导体制造技术之CMOS工艺集成》双语教学的几点建议

通过几年的《半导体制造技术之CMOS工艺集成》双语教学实践,针对当前的不足进行了有益的探索,对开展双语教学有几点建议仅供探讨。

1.在授课中意识到很多学生对英语心理上存在恐惧感,限制了他们学习的积极性,同时许多学生误认为专业英语的学习是重点,而忽略了专业英语只是教学工具,利用这个工具或媒介掌握专业知识才是根本。只有克服对英语的恐惧感,对双语教学有正确认识才能达到预期效果。

2.针对双语教学师资缺乏的情况,学校应依据“引进来,送出去”的原t,在大力加强外国专家学者、海归博士引进工作的同时,可在校内组织专门的培训,或者通过送到外校学习的形式提升教师讲授双语课的综合能力。如果有条件聘请国外相关领域的知名专家学者、海归博士与本校教师组成双语课教学团队不失为非常好的解决办法。

3.双语教学应循序渐进,不能操之过急。双语教学不能一蹴而就,防止一味硬灌和被动接受。应循序渐进,因地制宜,因材施教。教师与学生应相互配合,相互信任,充分发挥各自的积极性和主动性,从双语的教与学中获得知识,收获快乐。

四、结束语

双语教学是培养复合型人才必不可少的手段。虽然国内的双语教学开展了十多年也取得了长足的进步,但仍有诸多问题需要探讨。本文介绍了《半导体制造技术之CMOS工艺集成》双语教学的教学实践并提出了相关的建议,以便完善今后的双语教学实践。

参考文献:

[1]徐晓娟,屈健,梁亚秋.材料科学基础课程双语教学的调查与分析[J].硅谷,2010,(1).

[2]黄海艳.大学双语教学的目标研究[J].郑州航空工业管理学院学报(社会科学版),2006,25(5).

[3]桑应朋,李悒东,邬俊.操作系统课程双语教学时间与探讨[J].教育教学论坛,2016,(19).

Discussion on Bilingual Teaching in Semiconductor Fabrication Technology-CMOS Process Integration

LV Pina,QIU Weia,YUE Cheng-junb

(a. Physics School,Liaoning University;

b. College of Information,Liaoning University,Shenyang 110036,China)

半导体制造技术范文第2篇

SEMI中国自1988年在中国开展业务,一直致力于促进中国泛半导体产业的成长。SEMI每年3月在上海举办的SEMICON China、SOLARCON China 及FPD China联展,也已发展成为全球最大的泛半导体产业交流盛会。正值SEMICON China落户中国25周年,已然成为每一位半导体从业者争相出席的全球最大半导体旗舰展。SEMICON China、SOLARCON China、FPD China旗舰展览享誉全球,日前已得到美国商务部贸易展览会(TFC)认证,这意味着全球对中国这一快速增长的市场的期望及认可。

SEMICON China 2013――中国半导体产业旗舰展览

进一步突破传统半导体设备及制造,打造全产业链,并继续结合中国半导体产业特点和发展趋势,设立主题专区:IC设计、制造及应用专区、二手设备及一站式服务系统专区、LED制造专区、TSV专区和MEMS专区。 同时,打造同期高端论坛,覆盖IC设计制造、先进汽车电子、二手设备及零部件等、MEMS、3DIC等。

SOLARCON China 2013――中国光伏技术第一展,光伏产业风向标

全球光伏产业链中的材料、设备、组件、逆变器、支架、电站项目开发、工程服务等单项技术冠军企业,将齐聚SOLARCON China 2013展会。活动同期将聚集MWT、IBC等最具产业化前景技术的配套设备、材料、技术服务商,以及银浆、EVA、背板等关键附材厂商。同期配套专场技术研讨会,可获得技术升级一站式服务,质量与成本的新平衡点在SOLARCON可以找到!

FPD China 2013――中国平板显示行业标志性活动

全球领先设备材料供应商、主要面板制造商和中国领先终端品牌云集,融合产业热点的OLED专区、持续高增长的触摸屏专区以及引领产业方向的下一代显示专区,三大主题专区覆盖平板显示、触控上中下游全产业链,FPD China 2013是融入中国显示、触控产业的第一站!

半导体制造技术范文第3篇

关键词:半导体照明;产业集群;协同创新;技术路线图

世纪之交,美国、日本、欧盟、韩国、台湾等国家和地区相继推出了半导体照明国家或地区发展计划,大力培育和发展本国或本地区的半导体照明产业。在微观层面,以美国GE、荷兰PHILP、德国OSRAM三大世界照明生产巨头为代表的跨国公司,纷纷与上游半导体公司合作组建半导体照明公司,积极创造竞争优势,并正在中国抢占专利制高点,对我国的半导体技术发展形成了合围之势。因此,长三角作为中国半导体照明产业化的重要基地,有责任形成产业联盟,通过产业集群协同创新,共同应对跨国公司的竞争。

长江三角洲地区的LED产业集中在上海,江苏的南京、扬州和无锡,以及浙江的杭州等地区,开始呈现向园区聚集的发展趋势,且整个半导体照明产业链的投资都比较活跃。2007年,长三角的半导体照明产业规模约占国内总体规模的40%左右。截至2007年,在中国半导体照明联盟的73家会员中,长三角地区的半导体照明企业和机构有26家,占总数的三分之一。同时,长三角拥有中国六大半导体照明基地中的上海基地和扬州基地。其中,上海已经在半导体芯片制造和封装应用等方面呈现出良好的产业发展态势,并形成了比较完整的产业链和企业群;江苏在LED封装及应用方面已经初具规模;宁波具有良好的产业基础和经济区位优势,是国内主要的特种照明灯具生产基地,发展潜力巨大。

1 长三角区域半导体照明产业集群协同创新的现状及问题

1.1 协同创新现状

1.1.1 组建战略联盟,实现共同发展江苏奥雷光电(镇江)已形成了从大功率高亮度LED外延片和芯片制造―器件封装一应用三个领域的产业布局,无论从技术实力还是产业布局上都已处于国内领先地位。2005年江苏奥雷光电与上海宇体光电合作,在大功率高亮度LED外延和芯片进行研发和生产,并已签订协议,拟组建宇奥光电集团公司,共同发展LED芯片产业。

1.1.2 依托跨区产学研联盟,建立企业技术中心江苏日月(盐城建湖)照明公司、伯乐达集团(盐城)、盐城豪迈照明科技公司,分别与清华大学、北京大学、复旦大学建立长期合作关系,形成一定规模的封装应用生产线。此外,扬州市开发区先后引进清华大学、南京大学、中科院、中国电子科技集团公司等国内一流高等院校、科研单位落户,合作建立了扬州一南京大学光电研究院、中科院半导体研究中心、江苏省半导体照明工程技术研究中心、江苏省半导体照明检验中心、扬州一南京大学半导体照明研究院、扬州半导体照明和太阳能光伏应用研究与检验中心等研发机构10多家。

1.2 存在的主要问题

近几年,虽然长三角的LED产业发展较快,但由于均缺乏高新技术和知识产权体系作支撑,目前仍在低附加值领域徘徊,LED照明产业存在的问题主要表现在五个方面:

第一,在产品的应用开发上,低水平重复,缺少具有产业支撑度的龙头企业和企业集团。企业产业规模小,不能引领产业链的延伸和产业集聚。产业整合不够,绝大部分企业还是混战于低端市场,缺乏规范和约束,过度竞争导致在一定程度上影响到行业整体声誉,另外对封装前沿技术的研发广度和深度不足也需要引起足够重视。

第二,标准评价体系尚未建立,检测方法与手段缺乏,市场不能有效规范,市场竞争无序,产业管理部门需要加强合作。后应用领域本土市场规模巨大,但无标准、无规范的现象更加严重,产业高度分散,器件应用随心所欲,因设计、生产、安装不规范导致应用产品早期失效的现象比比皆是,给半导体照明产业的健康发展已经带来一定损害。

第三,基础性研究与产业化人才缺乏,结构不合理,核心装备与配套材料国产化的问题急需解决。

第四,行业发展缺少必要的政策支持,政府对半导体照明产业的扶持力度有待加强。

第五,缺乏长三角半导体照明联盟和合作平台,交流信息不充分,也是阻碍长三角产业聚集的重要原因。

1.3 产生问题的主要原因

1.3.1 缺乏产学研联合创新,影响自主创新能力的提升长三角地区在半导体照明产业领域还没有很好的形成产学研联合创新局面,表现在研究室、实验中心和各企业间各自为战,没有形成实质意义上的产业联盟。造成长三角地区半导体照明领域产学研联合创新缺乏的原因有:一是合作的积极性不高,高校、研究所更加关注这一领域的基础研究,例如照明材料的研究,而它又很难在短时间内获得突破,企业则是关注应用研究:二是高校、研究所管理机制与产学研合作要求不一致,高校教师的职称评定与论文挂钩,而企业更强调技术的应用开发;三是知识产权以及合作创新的成果归属问题目前国家还没有明确的规定,致使在合作过程中时有发生知识产权的纠纷问题。

1.3.2 企业规模偏小,标准建设滞后,产业集中度不高,阻碍了产业的集群发展长三角地区从事半导体照明的企业规模相对偏小,都是新成立的企业,资金薄弱,企业管理也相对薄弱,竞争不规范,今后很难在国际上规模竞争,至今还没有看到长三角地区有一家半导体照明企业上市融资。并且,中小企业融资难,也是制约长三角地区半导体照明企业规模不大的重要原因。此外,缺乏有影响力和有实力的企业制定技术标准,造成半导体照明行业没有统一的标准。短期看。没有统一的标准,将使半导体照明领域的竞争陷于无序状态。长期看,缺乏标准,必将使长三角地区的半导体照明产业在国际竞争中处于不利地位。

1.3.3 各地行政壁垒的存在,阻碍了产业链的有效整合上下游产业有机结合,专业化协作和分工是产业健康发展和成熟的标志,因为半导体照明产业的上下游产业的技术关联度相对较高,范围经济的属性较强。但由于行政壁垒的客观存在,长三角地区各个城市在制定半导体产业发展规划时,很少站在长三角的角度来考虑,在发展选择上几乎雷同。这样使企业集中在比较专业的领域,很少有企业能够在产业链条上进行垂直整合,没有一家企业形成了包括“衬底―延―芯片―封装―应用产品”的完整LED产业链,而长三角地区至今没有极具规模的封装厂。而以国外的发展经验来看,基本上都是走产业链垂直整合的发展道路,如美国的GELCORE的公司。

2 长三角区域半导体照明产业集群协同创

新的对策建议

2.1 发展战略

2.1.1 做强做大的集群发展战略 培育长三角的半导体照明产业的龙头企业,培养一批品牌企业。龙头企业是产业集群的支撑,产业集群的发展,必须要有龙头企业的牵动和带动。在培育龙头企业上,长三角各地政府要对获得全国驰名商标、中国品牌产品等的优势半导体照明企业实施重奖,并通过项目投资、土地、贷款上的政策,鼓励一些相关大企业集团通过收购、控股等资本运作方式进入半导体照明领域。同时积极引进和培育关联性大、带动性强的大企业,鼓励龙头企业提高核心竞争力,发挥其辐射、示范、信息扩散和销售网络的产业龙头作用;重点扶持关键性核心企业的技术自主创新项目,提升龙头企业带动力和产业集群竞争力。通过又强又大的龙头企业带动,在其周围聚集一大批配套企业,最终形成产业的集群发展。

2.1.2 协作融合创新发展战略一是加强长三角的科技和经济部门积极与上海世博局开展协调和合作,在世博会展览区一些照明、装饰、装备。采用政府采购的方式,建立半导体照明示范区。二是加强半导体照明产业链内部之间的整合和协作,形成合理分工体系。三是加强与第三产业融合,形成专业化的半导体照明市场。

2.1.3 技术标准发展战略“一流企业做标准、二流企业做技术、三流企业做产品”。作为规范国际秩序的依据和准则,标准成为企业竞争的制高点,同时,标准也不再仅仅是技术和经济层面的问题,而上升到政治层面,国际上一些国家经常利用标准来保护本国的产业。因此,在半导体照明产品还缺乏国际公认的技术标准背景下,长三角地区完全可以在培育龙头企业的同时,积极参与国家层面的半导体照明技术标准体系建设,为我国未来半导体照明产业发展在国际上获得更多的话语权。

2.2 路径选择

根据长三角地区半导体照明产业发展的现状特点、存在的问题以及半导体照明技术发展趋势,制定长三角区域半导体照明产业集群演化关键技术创新路线图,见图1。创新路径分三步走:

第一步,加强要素交流,通过引进发达地区的生产设备,建立半导体照明产品的企业,生产半导体照明的应用产品。但是,引进不是简单的引进。把技术和设备引进之后必须继之以消化、吸收和创新。同样的设备,别人制造出了一流产品,我们做不出来,原因很简单,我们没有掌握引进的设备,没有掌握工艺技术。同时,这个阶段的创新主要是集中在半导体照明下游产品的研发上。此外,在半导体的上游技术也要加强,为后续创新打下基础。

第二步,加强产业资源整合,通过市场机制推动有实力的企业兼并。国外都是大公司在发展半导体照明技术,他们的技术与研发资金雄厚,而国内的半导体照明企业规模偏小,市场竞争混乱,不利于产业技术创新的增强和产业的健康发展。因此,国家可以出台一系列的鼓励政策,在长三角等市场经济较为发达的地区,鼓励一些大型上市公司,通过资本运作,来兼并相关半导体照明企业,加强在产业链上的垂直整合,加强半导体照明中游产品研发,强化半导体照明技术的集成创新。

第三步,加大融合与协同创新,在产业层次上做到有所为有所不为。从技术路线角度考虑,国内可以分几个梯队进行研究,第一梯队主要围绕国际上主流的技术路线去走,在主要技术路线上创造新的知识产权。而第二或第三梯队就要研究国外也没有实现批量生产的新方法,走出国际三种技术路线的包围。例如开发直接发白光的芯片,开发受激发后直接发白光的白光荧光粉。从产业链角度考虑,长三角应当重点发展封装和应用技术,但上游技术领域也不能放弃。

2.3 发展对策

2.3.1 建立专利诉讼预警机制,增强企业的应诉能力 由于长三角地区的半导体照明企业的规模相对较小,还没有引起国外半导体照明大公司的注意。但到了上海2010年举办世界工业博览会之后,半导体照明产业可能做大后,国内企业由于缺乏半导体照明的核心专利技术,导致被诉讼的概率会更高。因此,长三角应该建立一个产业联盟,建立专利诉讼的预警机制,以应对长三角的半导体照明企业在遭遇国外专利诉讼而处于的不利地位,做到未雨绸缪,变被动为主动。一是要建立该领域国外专利诉讼的信息共享机制,成立专家顾问中心,聘请各领域专家对联盟成员提供指导,为联盟的对外交涉提供咨询,及时发出预警信息。二是诉讼经验的共享机制,一旦遭到,而可作到有备而来。

2.3.2 合纵连横,形成专利联盟 随着半导体照明产业国际竞争加剧。国外一些知名企业纷纷组建战略联盟,采取专利相互授权,共同打击专利侵权行为。因此,在国外大公司采取专利相互授权的联合包围的策略之时,长三角乃至国内的企业也要采取合纵连横和建立联盟的反突围的策略,众人拾柴火焰高,共同抵御国外大公司的专利包围,寻找突破口。所谓合纵,就是要联合长三角地区半导体照明产业的上中下游的企业,采取交叉授权,建立专利战略联盟,形成专利池效应。所谓连横,就是要长三角地区半导体照明产业同一产业链上企业,采取相互授权的方式,增加彼此的专利拥有数量,增强专利拥有的质量,这样一旦有企业在国内或国外遭到专利诉讼,可以增加谈判的筹码,同时可分担高昂的律师费,互通信息,减少单独应诉带来的风险。

2.3.3 联合制定技术标准。促进产业集群发展长三角地区的半导体照明技术和产业在国家中具有一定地位,应该在标准之中有所作为,联合起来,制定标准。主要工作有:尽快完善测试方法、试验方法等基础标准:器件标准应与已有的半导体器件标准协调:研究、制定较成熟产品门类,如芯片的通用规范;对于尚不成熟的产品,应密切关注、研究,适时制定标准;注意产业链上中下游之间的协调;部门之间、行业之间强强联手,共同合作;积极参与国际标准的制定,适时提出国际标准提案。

半导体制造技术范文第4篇

改革开放以来,经过大规模引进消化和90年代的重点建设,目前我国半导体产业已具备了一定的规模和基础,包括已稳定生产的7个芯片生产骨干厂、20多个封装企业,几十家具有规模的设计企业以及若干个关键材料及专用设备仪器制造厂组成的产业群体,大体集中于京津、沪苏浙、粤闽三地。

我国历年对半导体产业的总投入约260亿元人民币(含126亿元外资)。现有集成电路生产技术主要来源于国外技术转让,其中相当部分集成电路前道工序和封装厂是与美、日、韩公司合资设立。其中三资企业的销售额约占总销售额的88%(1998年)。民营的集成电路企业开始萌芽。

设计:集成电路的设计汇集电路、器件、物理、工艺、算法、系统等不同技术领域的背景,是最尖端的技术之一。我国目前以各种形态存在的集成电路设计公司、设计中心等约80个,工程师队伍还不足3000人。2000年,集成电路设计业销售额超过300万元的企业有20多家,其中超过1000万的约10家。超过1亿的4家(华大、矽科、大唐微电子和士兰公司)。总销售额10亿元左右。年平均设计300种左右(其中不到200种形成批量)。

现主要利用外商提供的EDA工具,运用门阵列、标准单元,全定制等多种方法进行设计。并开始采用基于机构级的高层次设计技术、VHDL,和可测性设计技术等先进设计方法。设计最高水平为0.25微米,700万元件,3层金属布线,主线设计线宽0.8-1.5微米,双层布线。[1]目前,我国在通信类集成电路设计有一定的突破。自行设计开发的熊猫2000系列CAD软件系统已开发成功并正在推广。这个系统的开发成功,使我国继美国、欧共体、日本之后,第四个成为能够开发大型的集成电路设计软件系统的国家。目前逻辑电路、数字电路100万门左右的产品已可以用此设计。

前工序制造:1990年代以来,国家通过投资实施“908”、“909”工程,形成了国家控股的骨干生产企业。其中,中日合资、中方控股的华虹NEC(8英寸硅片,0.35-0.25微米,月投片2万片),总投资10亿美元,以18个月的国际标准速度建成,99年9月试投片,现已达产。该工程使我国芯片制造进入世界主流技术水平,增强了国内外产业界对我国半导体产业能力的信心。

在前8家生产企业中,三资企业占6家,总投资7.15亿美元,外方4.69亿美元,占66%.目前芯片生产技术多为6英寸硅片、0.8-1.5微米特征尺寸。7个主干企业生产线的月投片量已超过17万片,其中6~8英寸圆片的产量占33%以上。

目前这些企业生产经营情况良好。2000年,七个骨干企业总销售额达到56亿元人民币,利润7.5亿元,利润率达到13%.同年全国电子信息产业总销售额5800亿元人民币,利润380亿,利润率6.5%.

封装:由于中国是目前集成电路消费大国,同时国内劳动力、土地资源价格相对便宜,许多国外大型集成电路生产企业在中国建立了合资或独资集成电路封装厂。

国内现有封装企业规模都不大,而且所用芯片、框架、模塑料等也主要靠进口,因此大量的集成电路封装产品也只是简单加工,技术上与国际封装水平相差较远。主要以DIP为主,SOP、SOT、BGA、PPGA等封装方式国内基本属于空白。

集成电路封装业在整个产业链中技术含量最低,投入也相对较少(与芯片制造之比一般为10:1)。我国目前集成电路年封装量,仅占世界当年产量的1.8%~2.5%,封装的集成电路仅占年进口或消耗量的13%~14.4%,即中国所用85%以上的集成电路都是成品进口。

2000年,我国集成电路封装业的销售收入超过130亿元,其中销售收入超过1亿元的14家,全年封装电路近45亿块,其中年封装量超过5亿块的5家。

材料、设备、仪器:围绕6英寸芯片生产线使用的主要材料(硅单晶、塑封料、金丝、化学试剂、特种气体等)、部分设备(单晶炉、外延炉、扩散炉、CVD、蒸发台、匀胶显影设备、注塑机等)、仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)、部分仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)国内已能提供。

芯片制造设备,我国只具备部分浅层次设计制造能力,如电子45所已有能力制造0.5微米光刻机等。

半导体分立器件:2000年,全年分立器件的销售额60亿,产量341亿只。

供需情况和近期发展形势

20世纪90年代,我国集成电路产业呈加速发展趋势,年均增长率在30%以上。2000年,我国集成电路产量达到58.8亿块,总产值约200亿人民币(其中设计业10亿,芯片制造56亿,封装130亿)。如果加上半导体分立器件,总产值达到260亿元。预计2001年,集成电路产量可达70亿块。

2000年,全球半导体销售额达到1950亿美元,我国半导体生产从价值量上看,占世界半导体生产的1.6%(含封装、设计产值),从加工数量看占全世界份额不足1%(美国占32%,日本占23%)。

从需求方面看,据信息产业部有关人员介绍,2000年,国内集成电路总销售量240亿块,1200亿人民币。业内普遍估计,今后10年,半导体的国内需求仍将以20%的速率递增,估计2005年,我国集成电路国内市场的需求约为300亿块、800亿元人民币;2010年,达到700亿块、2100亿元人民币。

从近几年统计数字分析看,国内生产芯片(包括外商独资企业的生产和在国内封装的进口芯片)占国内需求量的20%~25%,但国内生产部分的80%为出口,按此计算,我国集成电路产业的自给率仅4%~5%.但是,有两个因素影响了对芯片生产自给率的准确估计。首先是我国集成电路的产品销售有很大一部分通过外贸渠道出口转内销,据信息产业部估计,出口转内销约占出口量的一半。如此推算,国内半导体生产满足国内市场的实际比重在12%~15%.实际上,国内生产的芯片质量已过关,主要是缺乏市场信任度,而销售渠道又往往掌握在三资企业外方手中。

但芯片走私的因素,可能又使自给率12%~15%的估计过分夸大。台湾合晶科技公司蔡南雄指出:官方统计,1997年中国大陆进口集成电路和分立器件约50亿美元,但当年集成电路进口实际用汇达95.5亿美元。[2]近几年大力打击走私,这一因素的作用可能有所减弱。但无论如何,我国现有半导体产业远远落后于国内需求的迅速增长则是不争的事实。

由于核心部件自给能力低,我国的电子信息产业成了高级组装业。著名的联想集团,计算机国内市场占有率是老大,利润率仅3%.我国电子信息制造业连年高速增长,真正发财的却是外国芯片厂商。

由此,进入1990年代以来,我国集成电路进口迅速增长。1994~1997年,集成电路进口金额年均递增22.6%;97年进口金额为36.48亿美元,96.06亿块。[3]1999年,我国集成电路进口75.34亿美元,出口(含进料、来料加工)18.89亿美元。

2000年6月,国家《软件产业和集成电路产业的发展的若干政策》(国发18号文件)。在国家发展规划和产业政策的鼓舞下,各地政府纷纷出台微电子产业规划,其中上海和北京为中心的两个半导体产业集中区,优惠力度较大,投资形势也最令人鼓舞。目前累计已开工建设待投产的项目,投资总额达50亿美元,超过我国累计投资额的1.5倍,未来2-3年这几条线都将投入量产。

天津摩托罗拉:外商独资企业,总投资18亿美元,在建。2001年5月试投产,计划11月量产。

上海中芯:1/3国内资金,2/3台资(第三国注册)。投资14亿美元。2001年11月将在上海试投产。

上海宏立:预计2002年一季度投入试运行,16亿美元。

北京讯创:6寸线,投资2亿美元。

友旺:在杭州投资一条6寸线,10亿人民币左右,已打桩。

目前我国半导体产业和国际水平的差距

总体上说,我国微电子技术力量薄弱,创新能力差,半导体产业规模小,市场占有率低,处于国际产业体系的中下端。

从芯片制造技术看,和国际先进水平的差距至少是2代。[4]尽管华虹现已能生产0.25微米SDRAM,接近国际先进水平(技术的主导权目前基本上还在外方手中),国内主流产品仍以0.8-1.5微米中低端低价值产品为主。其中80%~90%为专用集成电路,其余为中小规模通用电路。占IC市场总份额66%的CPU和存储器芯片,我国无力自给。

我国微电子科技水平与国外的差距,至少是10年。[5]现有科技力量分散,科技与产业界联系不紧密。产业内各重要环节(基础行业、设计、制造工艺、封装),尚未掌握足以跨国公司对等合作的关键技术专利。

半导体基础(支撑)行业落后:目前硅材料已有能力自给,各项原料在不同程度上可以满足国内要求(材料半数国产化,关键材料仍需进口)。

但如上所述,几乎所有尖端设备,我们自己都不能设计制造,基本依赖进口。业内认为我国半导体基础行业和国际水平差距约20年。

一般地说,西方对我引进设备放松的程度和时机,取决于我国自身的技术进展,所以我国半导体设备技术的进步,成为争取引进先进设备的筹码(尽管代价高昂)。如没有这方面的工作,设备引进受到限制,连参与设备工艺的国际联合研制的资格也没有(韩台可以参与)。

已引进的先进生产线,经营控制权不在我手中,妨碍电路设计和工艺自主研发现有较先进的集成电路生产线(包括华虹NEC、首钢NEC),其技术、市场和管理尚未掌握在中国人手中。其原因是“自己人”管理,亏损面太大。现有骨干企业不是合资就是将生产线承包给外人,技术和经营的重大决策权多在外方代表手中。经营模式还没有跳出“两头在外”模式。

这也说明,我国现有国有企业经济管理机制,尽管有了很大进步,但还没有真正适应高科技产业对管理的苛刻要求,高级技术人才和营销人才更是缺乏。

“某厂…最赔钱的×号厂房,包出去了。这也怪了。台湾人也没有带多少资金技术,还是原来的设备和技术,就赢利。

“我问承包人,人还是我们的人,厂房技术还是我们的,为什么你们一来就行了?他说”体制改变了“。我问体制改了什么,是工资高了?也不是。他们几个人就是搞市场。咱们中国市场之大,是虚的。让人家占领的。

“10多年前我在美国参观,他们的工厂成品率是90%多,我们研究室4K最高时成品率50%多,当时这个成绩,全国轰动。我参观时问,你们有什么诀窍做到90%多?美国人说没有什么诀窍,就是经常换主管,新主管要超过上一任,又提高一步。主管到了线里,就是general,…说炒就炒。咱们国家行吗?我们这些领导都是孙子…半导体的生产求非常严格的纪律。没有这个东西绝对不行。你想100多道工艺,每一道差1%,成品率就是零。所以这个体制,说了半天没有说出来,一是市场,一是管理。”[6]但无论如何,我们半导体产业的“管理”和“市场”这两大门坎,是必须跨过去的。深化国企改革、发挥非国有经济的竞争优势,在半导体领域同样适用。

由于没有技术和经营控制权,导致我们的半导体产业遇到两方面困难。首先,国内单位自行设计的专用电路上线生产,必须取得生产厂家的外方同意,有的被迫转向海外代工,又多一道海关的麻烦;关系国家机密的芯片更无法在现有先进生产线加工(或者是外方以“军品”为名拒绝加工,或者是我方不放心)。

其次,妨碍了产学研结合、自主设计和研发工艺设备。例如中国科学院微电子中心已达到0.25微米工艺的中试水平,但因先进工厂的经营权不在自己手中,无法将自有工艺研究成果应用于大线试生产。

工艺技术是集成电路制造的关键技术。如果我方没有自主设计工艺的技术能力,即使买了先进生产线也无法控制。目前合资企业中,中方职工可以掌握在线的若干产品的工艺技术,但无法自主开展工艺技术研究。5年后我方将接管华虹NEC,也面临自己的工艺技术能否顶上去的问题。工艺科研领域目前所处的困境如不能及时摆脱,则仅有的研究力量也会逐渐萎缩,如果不重视工艺技术能力的成长,我们就无法掌握芯片自主设计生产能力。

设计行业处于幼稚阶段由于专业电路市场广阔,目前国内各种类型的设计公司逐渐增加。但企业普遍规模偏小、技术水平较低,缺乏自主开发能力。

由于缺乏技术的积累,我国还远没有形成具有自主知识产权的IP库,与国外超大规模IC的模块化设计和S0C技术差距甚远。设计软件基本用外国软件,即使设计出来,也往往因加工企业IP库的不兼容而遭拒绝。

集成电路的设计与加工技术是相互依存的。因为我国微细加工工艺水平落后,人才缺乏,目前不具备设计先进电路的水平,更没有具备设计CPU及大容量存储器的水平。也有的客户眼睛向外,不愿意在国内加工,但到国外加工还要受欺负。尽管我们花了100%的制版费,板图也拿不回来。

超大规模集成电路的设计,难度最大的是系统设计和系统集成的能力,最需要的人才是系统设计的领头人,这是我国最缺的人力资源。国内现有人才多数是设计后道的能力,做系统的能力差。国内现有环境,培养这样的人才比较难。

国内的设计制造行业,就单个企业来说很难开发需要高技术含量的超前性、引导性产品。多数民营中小企业只能跟在别人后面走仿制道路(所谓反向设计)。反向设计只能适应万门以下电路的设计开发。故目前还无法与国外先进设计公司竞争。

缺乏市场信任度由于总体技术水平低,市场多年被外国产品占领,自己的供给能力还没有赢得国内市场的信任,以致出现外商一手向国内IC厂定货,再转手卖给国内用户的现象。这是当前外(台)商大举在国内投资集成电路生产线的客观背景。

国内设计、制造的产品往往受到比国外产品更严格的挑剔,要打开市场需要更多的时间和精力,这就难免被国外同行抢先。半导体市场瞬息万变,竞争十分残酷,而我国对自己的半导体产业,似取过分自由放任态度,几乎完全暴露在国际竞争中。有必要对有关政策上给以重新评估。

我国电子整机厂多为组装厂,自己设计开发芯片的极少,由于多头引进,整机品种繁多,规格不一,批量较小,成本高。另外,象汽车电子、新一代“信息家电”等产品市场很大,但需要高水平且配套的芯片产品,而我国单个电路设计企业无力完成,设计和生产能力还尚待磨合。如欲进军这方面的市场,需要高层有明确的市场战略和行业级的协调。我国微电子行业目前因技术能力所限,可适应市场领域还比较狭窄,又面临着国际市场的巨大压力。要争得技术和资本的积累期和机会,必须有政府的组织作用。

还没有形成完整的产业体系从整体看,我国半导体产业还没有形成有机联系的生态群,或刚刚处于萌芽状态,产业内各环节上下游间互补性薄弱。目前少数先进生产能力,置于跨国公司的全球制造~营销体系内,外(台)商做OEM接单,来大陆工厂生产,国内芯片厂商被动打工。国家体制内的科研力量和现有生产体系的结合渠道不顺畅,国内科技型中小型民营(设计)企业和大型制造企业的互补关系正在建立中。

“集成电路设计与生产都需要有很强的队伍,能够根据国内整机的需要设计出产品,按照我们的工艺规则来生产。他的设计拿过来我们能做,做好了能够测试,测试以后能够用到整机单位去应用。这条路要把它走通。另外还有一批人能够打开市场。其他的暂时可以慢一点。”[7]所以,目前我国微电子领域与国际水平的差距,并非单项技术的差距,而是包括各环节在内的系统性的差距。单从技术和资金要素来看,“908”“909”工程的实践,可以说是试图以类似韩国的大规模投资来实现生产技术的“跨越”。但实践证明,单项发展,不足以带动一个科技-产业系统的整体进步。不仅要克服资金、人才、市场的瓶颈,也要克服体制、政策的瓶颈,非此不能吸引人才,不能调动各方面的积极性。

我国半导体产业发展的现有条件

经过20年的发展和积累,特别是近年来我国电子信息产业的高速发展,半导体产业在我国经济、国防建设中的重要地位,以及加快发展的必要性,已基本形成共识。应该说,我国已经在多方面具备了微电子大发展所必须的条件。

首先是经过多年的引进和国家大规模投资,已形成一定产业基础,初步形成从设计、前工序到后封装的产业轮廓。广义电子产业布局呈现向京津地区、华东地区和深穗地区集中的态势,已经形成了几个区域性半导体产业群落。这对信息知识的交流,技术的扩散,新机会的创造,以及吸引海外高级人才、都十分重要。

技术引进和国内科研工作的长期积累,也具备了自主研发的基础。“909”工程初步成功,说明投资机制有了巨大进步,直接鼓励了外商投资中国大陆的热情。尤其在通讯领域,国内以企业为主导的研发机制取得了可喜发展。

其次,国内投资环境大幅度改善。尤其是沿海经济发达地区,市场经济初见轮廓,法制和政策环境日益改善,人才和资金集中,信息基础设施完备,各种类型的民营企业已开始显现其经营管理能力,已有问鼎高效益高风险的微电子领域的苗头,各种类型的设计公司正在兴起。

近两年来,海外半导体产业界已经对我国大陆的半导体业投资环境表示了极大兴趣。外(台)商对大陆的半导体投资热,虽然并不能使我们在短期内掌握技术市场控制权(甚至可能对我人才产生逆向吸附作用),但有助于形成、壮大产业群,有助于冲破西方设备、技术封锁。长远看是利大于弊。

人才优势。国内软件人才潜力巨大,而软件设计和芯片设计是相通的。这是集成电路设计业的有力后盾。

再次是随着国内电子产品制造业的飞速发展,半导体产业市场潜力巨大。1990年代,我国电子产品制造业产值年均增长速度约27%,1999年为4300亿元人民币,2000年达5800亿(总产值1万亿)。其中,PC机和外部设备年增率平均40%以上,某些产品的产量已名列世界前茅;互联网用户和网络业务的年增率超过300%;公用固定通讯交换设备平均每年新增2000万线,预计2005年总量将超过3亿线;手机用户数每年增长1500-2000万户,2001年已突破1亿户。各类IC卡的需求量也猛增。据信息产业部预计,我国电子产品制造业未来5年平均增长率将超过15%(一般电子工业增长率比GDP增长率高1倍)。预计2005年,信息制造业的市场总规模达到2万亿。

最后是国家对半导体产业十分重视。官方人士多次表示:要想根本改变我国的电子信息产业目前落后状况,需要“十五”计划中,把推进超大规模集成电路的产业化作为加速发展信息产业的第一位的重点领域。并相应制定了产业优惠政策。这些政策将随着产业的发展逐步落实并进一步完善。

注释:

[1]陈文华,1998年。

[2]《产业论坛》1998年第18期。

[3]陈文华,1998年。

[4]《关于加快我国微电子产业发展的建议》,工程科技与发展战略报告集,2000年。

[5]叶甜春,2000年。

[6]吴德馨院士访谈录,2001年3月。

半导体制造技术范文第5篇

[关键词]半导体;晶体管;超晶格

中图分类号:O47

文献标识码:A

文章编号:1006-0278(2013)08-185-01

一、半导体物理的发展

(一)半导体物理早期发展阶段

20世纪30年代初,人们将量子理论运用到晶体中来解释其中的电子态。1928年布洛赫提出著名的布洛赫定理,同时发展完善固体的能带理论。1931年威尔逊运用能带理论给出区分导体、半导体与绝缘体的微观判据,由此奠定半导体物理理论基础。到了20世纪40年代,贝尔实验室开始积极进行半导体研究,且组织一批杰出的科学家工作在科学前沿。1947年12月,布拉顿和巴丁宣布点接触晶体管试制的成功。1948年6月,肖克利研制结接触晶体管。这三位科学家做出杰出贡献,使得他们共同获得1956年诺贝尔物理学奖。

晶体管的发明深刻改变人类技术发展的进程与面貌,也是社会工业化发展的必然结果。早在20世纪30年代,生产电子设备的企业希望有一种电子器件能有电子管的功能,但没有电子管里的灯丝,这因为加热灯丝不但消耗能量且要加热时间,这会延长工作启动过程。因此,贝尔实验室研究人员依据半导体整流和检波作用特点,考虑研究半导体能取代电子管的可能性,从而提出关于半导体三极管设想。直到1947,他们经反复实验研制了一种能够代替电子管的固体放大器件,它主要由半导体和两根金属丝进行点接触构成,称之为点接触晶体管。之后,贝尔实验室的结型晶体管与场效应晶体管研究工作成功。20世纪50年代,晶体管重要的应用价值使半导体物理研究蓬勃地展开。到了20世纪60年代,半导体物理发展达到成熟和推广时期,在此基础上迎来微处理器与集成电路的发明,这为信息时代到来铺平道路。1958年,安德森提出局域态理论,开创无序系统研究新局面,这也为非晶态半导体物理奠定基础。1967年,Grove等人对半导体表面物理研究已取得重要进展,并使得Si-MOS集成电路稳定性能得以提高。1969年,江崎与朱兆祥提出通过人工调制能带方式制备半导体超晶格。正是在半导体超晶格研究中,冯·克利青发现整数量子霍尔效应。在1982年,崔琦等发现了分数量子霍尔效应,这一系列物理现象的发现正揭开现代半导体物理发展序幕。

(二)半导体超晶格物理的发展

建立半导体超晶格物理是半导体的能带理论发展的必然。之后,人们对各种规则晶体材料性能有相当认识,从而开创以能带理论作为基础的半导体物理体系,也借助其来解释出现的一系列现象。1969年与1976年的分子束外延和金属有机物化学汽相沉积薄膜生长技术正为半导体科学带来一场革命。随微加工技术的逐步发展,加之超净工作条件的建立,实现了晶体的低速率生长,也使人们能创造高质量的异质结构,同时为新型半导体器件设计及应用奠定技术基础。1969年,江崎和朱兆祥第一次提出“超晶格”概念,这里“超”的意思是在天然的周期性外附加人工周期性。1971年,卓以和利用分子束外延技术生长出第一个超晶格材料。从此拉开了超晶格、量子点、量子线和量子阱等等低维半导体材料研究序幕。

二、半导体物理的启示

综上所述,文章简单地对半导体物理的一个发展历程进行了回顾,并可以从中得到以下几点启示:

(一)半导体物理的发展一直与科学实验与工业技术应用紧密联系

20世纪30年代之前,人们已经制成整流器、检波器、光电探测器等半导体器件,同时在实验中发现金属——半导体的接触材料上一些导电特性,可是无法理解这其中的物理机理。一直到能带理论建立后,基础建立起金属——半导体接触理论。随后,在实验过程中却发现该理论与实验测量是有出入的,又提出半导体表面态理论。正由于考虑到半导体表面态影响,贝尔实验室才能成功研制晶体管,这又促进半导体物理发展。不难发现,半导体物理的发展与实验是离不开的,因新的实验结论推动相应理论的建立,而理论发展又会反过来去指导实验的研究。19世纪30年代法拉第发现电磁感应定律,这为电力的广泛应用奠定理论基础,架起电能和机械能相互转化的桥梁,为第二次工业革命铺路。晶体管的成功研制,大规模与超大规模集成电路出现,导致第三次工业革命。这都是涉及信息技术、新材料技术、新能源技术、空间技术和生物技术等众多领域的一场信息技术革命。