首页 > 文章中心 > 半导体制造技术

半导体制造技术范文精选

前言:在撰写半导体制造技术的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。

半导体制造技术

半导体制造技术范文第1篇

改革开放以来,经过大规模引进消化和90年代的重点建设,目前我国半导体产业已具备了一定的规模和基础,包括已稳定生产的7个芯片生产骨干厂、20多个封装企业,几十家具有规模的设计企业以及若干个关键材料及专用设备仪器制造厂组成的产业群体,大体集中于京津、沪苏浙、粤闽三地。

我国历年对半导体产业的总投入约260亿元人民币(含126亿元外资)。现有集成电路生产技术主要来源于国外技术转让,其中相当部分集成电路前道工序和封装厂是与美、日、韩公司合资设立。其中三资企业的销售额约占总销售额的88%(1998年)。民营的集成电路企业开始萌芽。

设计:集成电路的设计汇集电路、器件、物理、工艺、算法、系统等不同技术领域的背景,是最尖端的技术之一。我国目前以各种形态存在的集成电路设计公司、设计中心等约80个,工程师队伍还不足3000人。2000年,集成电路设计业销售额超过300万元的企业有20多家,其中超过1000万的约10家。超过1亿的4家(华大、矽科、大唐微电子和士兰公司)。总销售额10亿元左右。年平均设计300种左右(其中不到200种形成批量)。

现主要利用外商提供的EDA工具,运用门阵列、标准单元,全定制等多种方法进行设计。并开始采用基于机构级的高层次设计技术、VHDL,和可测性设计技术等先进设计方法。设计最高水平为0.25微米,700万元件,3层金属布线,主线设计线宽0.8-1.5微米,双层布线。[1]目前,我国在通信类集成电路设计有一定的突破。自行设计开发的熊猫2000系列CAD软件系统已开发成功并正在推广。这个系统的开发成功,使我国继美国、欧共体、日本之后,第四个成为能够开发大型的集成电路设计软件系统的国家。目前逻辑电路、数字电路100万门左右的产品已可以用此设计。

前工序制造:1990年代以来,国家通过投资实施“908”、“909”工程,形成了国家控股的骨干生产企业。其中,中日合资、中方控股的华虹NEC(8英寸硅片,0.35-0.25微米,月投片2万片),总投资10亿美元,以18个月的国际标准速度建成,99年9月试投片,现已达产。该工程使我国芯片制造进入世界主流技术水平,增强了国内外产业界对我国半导体产业能力的信心。

在前8家生产企业中,三资企业占6家,总投资7.15亿美元,外方4.69亿美元,占66%.目前芯片生产技术多为6英寸硅片、0.8-1.5微米特征尺寸。7个主干企业生产线的月投片量已超过17万片,其中6~8英寸圆片的产量占33%以上。

目前这些企业生产经营情况良好。2000年,七个骨干企业总销售额达到56亿元人民币,利润7.5亿元,利润率达到13%.同年全国电子信息产业总销售额5800亿元人民币,利润380亿,利润率6.5%.

封装:由于中国是目前集成电路消费大国,同时国内劳动力、土地资源价格相对便宜,许多国外大型集成电路生产企业在中国建立了合资或独资集成电路封装厂。

国内现有封装企业规模都不大,而且所用芯片、框架、模塑料等也主要靠进口,因此大量的集成电路封装产品也只是简单加工,技术上与国际封装水平相差较远。主要以DIP为主,SOP、SOT、BGA、PPGA等封装方式国内基本属于空白。

集成电路封装业在整个产业链中技术含量最低,投入也相对较少(与芯片制造之比一般为10:1)。我国目前集成电路年封装量,仅占世界当年产量的1.8%~2.5%,封装的集成电路仅占年进口或消耗量的13%~14.4%,即中国所用85%以上的集成电路都是成品进口。

2000年,我国集成电路封装业的销售收入超过130亿元,其中销售收入超过1亿元的14家,全年封装电路近45亿块,其中年封装量超过5亿块的5家。

材料、设备、仪器:围绕6英寸芯片生产线使用的主要材料(硅单晶、塑封料、金丝、化学试剂、特种气体等)、部分设备(单晶炉、外延炉、扩散炉、CVD、蒸发台、匀胶显影设备、注塑机等)、仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)、部分仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)国内已能提供。

芯片制造设备,我国只具备部分浅层次设计制造能力,如电子45所已有能力制造0.5微米光刻机等。

半导体分立器件:2000年,全年分立器件的销售额60亿,产量341亿只。

供需情况和近期发展形势

20世纪90年代,我国集成电路产业呈加速发展趋势,年均增长率在30%以上。2000年,我国集成电路产量达到58.8亿块,总产值约200亿人民币(其中设计业10亿,芯片制造56亿,封装130亿)。如果加上半导体分立器件,总产值达到260亿元。预计2001年,集成电路产量可达70亿块。

2000年,全球半导体销售额达到1950亿美元,我国半导体生产从价值量上看,占世界半导体生产的1.6%(含封装、设计产值),从加工数量看占全世界份额不足1%(美国占32%,日本占23%)。

从需求方面看,据信息产业部有关人员介绍,2000年,国内集成电路总销售量240亿块,1200亿人民币。业内普遍估计,今后10年,半导体的国内需求仍将以20%的速率递增,估计2005年,我国集成电路国内市场的需求约为300亿块、800亿元人民币;2010年,达到700亿块、2100亿元人民币。

从近几年统计数字分析看,国内生产芯片(包括外商独资企业的生产和在国内封装的进口芯片)占国内需求量的20%~25%,但国内生产部分的80%为出口,按此计算,我国集成电路产业的自给率仅4%~5%.但是,有两个因素影响了对芯片生产自给率的准确估计。首先是我国集成电路的产品销售有很大一部分通过外贸渠道出口转内销,据信息产业部估计,出口转内销约占出口量的一半。如此推算,国内半导体生产满足国内市场的实际比重在12%~15%.实际上,国内生产的芯片质量已过关,主要是缺乏市场信任度,而销售渠道又往往掌握在三资企业外方手中。

但芯片走私的因素,可能又使自给率12%~15%的估计过分夸大。台湾合晶科技公司蔡南雄指出:官方统计,1997年中国大陆进口集成电路和分立器件约50亿美元,但当年集成电路进口实际用汇达95.5亿美元。[2]近几年大力打击走私,这一因素的作用可能有所减弱。但无论如何,我国现有半导体产业远远落后于国内需求的迅速增长则是不争的事实。

由于核心部件自给能力低,我国的电子信息产业成了高级组装业。著名的联想集团,计算机国内市场占有率是老大,利润率仅3%.我国电子信息制造业连年高速增长,真正发财的却是外国芯片厂商。

由此,进入1990年代以来,我国集成电路进口迅速增长。1994~1997年,集成电路进口金额年均递增22.6%;97年进口金额为36.48亿美元,96.06亿块。[3]1999年,我国集成电路进口75.34亿美元,出口(含进料、来料加工)18.89亿美元。

2000年6月,国家《软件产业和集成电路产业的发展的若干政策》(国发18号文件)。在国家发展规划和产业政策的鼓舞下,各地政府纷纷出台微电子产业规划,其中上海和北京为中心的两个半导体产业集中区,优惠力度较大,投资形势也最令人鼓舞。目前累计已开工建设待投产的项目,投资总额达50亿美元,超过我国累计投资额的1.5倍,未来2-3年这几条线都将投入量产。

天津摩托罗拉:外商独资企业,总投资18亿美元,在建。2001年5月试投产,计划11月量产。

上海中芯:1/3国内资金,2/3台资(第三国注册)。投资14亿美元。2001年11月将在上海试投产。

上海宏立:预计2002年一季度投入试运行,16亿美元。

北京讯创:6寸线,投资2亿美元。

友旺:在杭州投资一条6寸线,10亿人民币左右,已打桩。

目前我国半导体产业和国际水平的差距

总体上说,我国微电子技术力量薄弱,创新能力差,半导体产业规模小,市场占有率低,处于国际产业体系的中下端。

从芯片制造技术看,和国际先进水平的差距至少是2代。[4]尽管华虹现已能生产0.25微米SDRAM,接近国际先进水平(技术的主导权目前基本上还在外方手中),国内主流产品仍以0.8-1.5微米中低端低价值产品为主。其中80%~90%为专用集成电路,其余为中小规模通用电路。占IC市场总份额66%的CPU和存储器芯片,我国无力自给。

我国微电子科技水平与国外的差距,至少是10年。[5]现有科技力量分散,科技与产业界联系不紧密。产业内各重要环节(基础行业、设计、制造工艺、封装),尚未掌握足以跨国公司对等合作的关键技术专利。

半导体基础(支撑)行业落后:目前硅材料已有能力自给,各项原料在不同程度上可以满足国内要求(材料半数国产化,关键材料仍需进口)。

但如上所述,几乎所有尖端设备,我们自己都不能设计制造,基本依赖进口。业内认为我国半导体基础行业和国际水平差距约20年。

一般地说,西方对我引进设备放松的程度和时机,取决于我国自身的技术进展,所以我国半导体设备技术的进步,成为争取引进先进设备的筹码(尽管代价高昂)。如没有这方面的工作,设备引进受到限制,连参与设备工艺的国际联合研制的资格也没有(韩台可以参与)。

已引进的先进生产线,经营控制权不在我手中,妨碍电路设计和工艺自主研发现有较先进的集成电路生产线(包括华虹NEC、首钢NEC),其技术、市场和管理尚未掌握在中国人手中。其原因是“自己人”管理,亏损面太大。现有骨干企业不是合资就是将生产线承包给外人,技术和经营的重大决策权多在外方代表手中。经营模式还没有跳出“两头在外”模式。

这也说明,我国现有国有企业经济管理机制,尽管有了很大进步,但还没有真正适应高科技产业对管理的苛刻要求,高级技术人才和营销人才更是缺乏。

“某厂…最赔钱的×号厂房,包出去了。这也怪了。台湾人也没有带多少资金技术,还是原来的设备和技术,就赢利。

“我问承包人,人还是我们的人,厂房技术还是我们的,为什么你们一来就行了?他说”体制改变了“。我问体制改了什么,是工资高了?也不是。他们几个人就是搞市场。咱们中国市场之大,是虚的。让人家占领的。

“10多年前我在美国参观,他们的工厂成品率是90%多,我们研究室4K最高时成品率50%多,当时这个成绩,全国轰动。我参观时问,你们有什么诀窍做到90%多?美国人说没有什么诀窍,就是经常换主管,新主管要超过上一任,又提高一步。主管到了线里,就是general,…说炒就炒。咱们国家行吗?我们这些领导都是孙子…半导体的生产求非常严格的纪律。没有这个东西绝对不行。你想100多道工艺,每一道差1%,成品率就是零。所以这个体制,说了半天没有说出来,一是市场,一是管理。”[6]但无论如何,我们半导体产业的“管理”和“市场”这两大门坎,是必须跨过去的。深化国企改革、发挥非国有经济的竞争优势,在半导体领域同样适用。

由于没有技术和经营控制权,导致我们的半导体产业遇到两方面困难。首先,国内单位自行设计的专用电路上线生产,必须取得生产厂家的外方同意,有的被迫转向海外代工,又多一道海关的麻烦;关系国家机密的芯片更无法在现有先进生产线加工(或者是外方以“军品”为名拒绝加工,或者是我方不放心)。

其次,妨碍了产学研结合、自主设计和研发工艺设备。例如中国科学院微电子中心已达到0.25微米工艺的中试水平,但因先进工厂的经营权不在自己手中,无法将自有工艺研究成果应用于大线试生产。

工艺技术是集成电路制造的关键技术。如果我方没有自主设计工艺的技术能力,即使买了先进生产线也无法控制。目前合资企业中,中方职工可以掌握在线的若干产品的工艺技术,但无法自主开展工艺技术研究。5年后我方将接管华虹NEC,也面临自己的工艺技术能否顶上去的问题。工艺科研领域目前所处的困境如不能及时摆脱,则仅有的研究力量也会逐渐萎缩,如果不重视工艺技术能力的成长,我们就无法掌握芯片自主设计生产能力。

设计行业处于幼稚阶段由于专业电路市场广阔,目前国内各种类型的设计公司逐渐增加。但企业普遍规模偏小、技术水平较低,缺乏自主开发能力。

由于缺乏技术的积累,我国还远没有形成具有自主知识产权的IP库,与国外超大规模IC的模块化设计和S0C技术差距甚远。设计软件基本用外国软件,即使设计出来,也往往因加工企业IP库的不兼容而遭拒绝。

集成电路的设计与加工技术是相互依存的。因为我国微细加工工艺水平落后,人才缺乏,目前不具备设计先进电路的水平,更没有具备设计CPU及大容量存储器的水平。也有的客户眼睛向外,不愿意在国内加工,但到国外加工还要受欺负。尽管我们花了100%的制版费,板图也拿不回来。

超大规模集成电路的设计,难度最大的是系统设计和系统集成的能力,最需要的人才是系统设计的领头人,这是我国最缺的人力资源。国内现有人才多数是设计后道的能力,做系统的能力差。国内现有环境,培养这样的人才比较难。

国内的设计制造行业,就单个企业来说很难开发需要高技术含量的超前性、引导性产品。多数民营中小企业只能跟在别人后面走仿制道路(所谓反向设计)。反向设计只能适应万门以下电路的设计开发。故目前还无法与国外先进设计公司竞争。

缺乏市场信任度由于总体技术水平低,市场多年被外国产品占领,自己的供给能力还没有赢得国内市场的信任,以致出现外商一手向国内IC厂定货,再转手卖给国内用户的现象。这是当前外(台)商大举在国内投资集成电路生产线的客观背景。

国内设计、制造的产品往往受到比国外产品更严格的挑剔,要打开市场需要更多的时间和精力,这就难免被国外同行抢先。半导体市场瞬息万变,竞争十分残酷,而我国对自己的半导体产业,似取过分自由放任态度,几乎完全暴露在国际竞争中。有必要对有关政策上给以重新评估。

我国电子整机厂多为组装厂,自己设计开发芯片的极少,由于多头引进,整机品种繁多,规格不一,批量较小,成本高。另外,象汽车电子、新一代“信息家电”等产品市场很大,但需要高水平且配套的芯片产品,而我国单个电路设计企业无力完成,设计和生产能力还尚待磨合。如欲进军这方面的市场,需要高层有明确的市场战略和行业级的协调。我国微电子行业目前因技术能力所限,可适应市场领域还比较狭窄,又面临着国际市场的巨大压力。要争得技术和资本的积累期和机会,必须有政府的组织作用。

还没有形成完整的产业体系从整体看,我国半导体产业还没有形成有机联系的生态群,或刚刚处于萌芽状态,产业内各环节上下游间互补性薄弱。目前少数先进生产能力,置于跨国公司的全球制造~营销体系内,外(台)商做OEM接单,来大陆工厂生产,国内芯片厂商被动打工。国家体制内的科研力量和现有生产体系的结合渠道不顺畅,国内科技型中小型民营(设计)企业和大型制造企业的互补关系正在建立中。

“集成电路设计与生产都需要有很强的队伍,能够根据国内整机的需要设计出产品,按照我们的工艺规则来生产。他的设计拿过来我们能做,做好了能够测试,测试以后能够用到整机单位去应用。这条路要把它走通。另外还有一批人能够打开市场。其他的暂时可以慢一点。”[7]所以,目前我国微电子领域与国际水平的差距,并非单项技术的差距,而是包括各环节在内的系统性的差距。单从技术和资金要素来看,“908”“909”工程的实践,可以说是试图以类似韩国的大规模投资来实现生产技术的“跨越”。但实践证明,单项发展,不足以带动一个科技-产业系统的整体进步。不仅要克服资金、人才、市场的瓶颈,也要克服体制、政策的瓶颈,非此不能吸引人才,不能调动各方面的积极性。

我国半导体产业发展的现有条件

经过20年的发展和积累,特别是近年来我国电子信息产业的高速发展,半导体产业在我国经济、国防建设中的重要地位,以及加快发展的必要性,已基本形成共识。应该说,我国已经在多方面具备了微电子大发展所必须的条件。

首先是经过多年的引进和国家大规模投资,已形成一定产业基础,初步形成从设计、前工序到后封装的产业轮廓。广义电子产业布局呈现向京津地区、华东地区和深穗地区集中的态势,已经形成了几个区域性半导体产业群落。这对信息知识的交流,技术的扩散,新机会的创造,以及吸引海外高级人才、都十分重要。

技术引进和国内科研工作的长期积累,也具备了自主研发的基础。“909”工程初步成功,说明投资机制有了巨大进步,直接鼓励了外商投资中国大陆的热情。尤其在通讯领域,国内以企业为主导的研发机制取得了可喜发展。

其次,国内投资环境大幅度改善。尤其是沿海经济发达地区,市场经济初见轮廓,法制和政策环境日益改善,人才和资金集中,信息基础设施完备,各种类型的民营企业已开始显现其经营管理能力,已有问鼎高效益高风险的微电子领域的苗头,各种类型的设计公司正在兴起。

近两年来,海外半导体产业界已经对我国大陆的半导体业投资环境表示了极大兴趣。外(台)商对大陆的半导体投资热,虽然并不能使我们在短期内掌握技术市场控制权(甚至可能对我人才产生逆向吸附作用),但有助于形成、壮大产业群,有助于冲破西方设备、技术封锁。长远看是利大于弊。

人才优势。国内软件人才潜力巨大,而软件设计和芯片设计是相通的。这是集成电路设计业的有力后盾。

再次是随着国内电子产品制造业的飞速发展,半导体产业市场潜力巨大。1990年代,我国电子产品制造业产值年均增长速度约27%,1999年为4300亿元人民币,2000年达5800亿(总产值1万亿)。其中,PC机和外部设备年增率平均40%以上,某些产品的产量已名列世界前茅;互联网用户和网络业务的年增率超过300%;公用固定通讯交换设备平均每年新增2000万线,预计2005年总量将超过3亿线;手机用户数每年增长1500-2000万户,2001年已突破1亿户。各类IC卡的需求量也猛增。据信息产业部预计,我国电子产品制造业未来5年平均增长率将超过15%(一般电子工业增长率比GDP增长率高1倍)。预计2005年,信息制造业的市场总规模达到2万亿。

最后是国家对半导体产业十分重视。官方人士多次表示:要想根本改变我国的电子信息产业目前落后状况,需要“十五”计划中,把推进超大规模集成电路的产业化作为加速发展信息产业的第一位的重点领域。并相应制定了产业优惠政策。这些政策将随着产业的发展逐步落实并进一步完善。

注释:

[1]陈文华,1998年。

[2]《产业论坛》1998年第18期。

[3]陈文华,1998年。

[4]《关于加快我国微电子产业发展的建议》,工程科技与发展战略报告集,2000年。

[5]叶甜春,2000年。

[6]吴德馨院士访谈录,2001年3月。

半导体制造技术范文第2篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体制造技术范文第3篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配

异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。超级秘书网

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体制造技术范文第4篇

【关键词】电子封装;课程设置;实习基地;实验平台

随着电子技术的迅速发展,越来越多的电子器件应用到许多领域中,也带动了相关行业的飞速发展。尤其是随着物联网技术的进步,各式各样的传感器构成了智能网络的基础。封装技术作为电子产品领域中的关键技术之一,具有举足轻重的作用。电子封装是将利用半导体加工方法制备出的微元件、电路等用特定的封装材料保护起来,形成机械保护并进行电学信号传输,从而构成微系统及工作环境的制造技术。由于电子封装专业在半导体制程中属于后道工序,其前道和半导体制备芯片相关联,后道和器件的使用息息相关,所以其涵盖的内容非常多,牵涉到材料、化学、电子、机械等学科,尤其许多新型传感器的出现,对电子封装专业提出了更高的要求。近些年来,电子封装对器件的可靠性评价、性能测试等领域也开始有所扩展和延伸。作为一门较新的专业,电子封装专业建设和本科生培养处于探索性阶段。目前国内高校的电子封装专业大多起源于材料学院,尤以焊接技术、金属材料专业居多。如哈尔滨工业大学、上海交通大学、南京航空航天大学等。但是电子封装专业作为一门全新的学科和专业,在信息技术飞速发展的今天,其本科生教育培养模式需要与时俱进,才能够跟上当今时代的发展。江苏科技大学电子与封装专业借鉴了国内其他高校在电子封装专业方面的建设,同时根据自身的特点,结合长三角地区半导体行业蓬勃发展的优势,对电子封装专业本科生培养及专业建设进行一些有益的探索。因此,本文从电子封装专业的多学科交叉及工程化应用较强等方面的特点出发,通过课程设置、实习基地建设和实验平台搭建,从封装专业的理论学习,到实际专业封装生产线的感性认知,再到封装设备的实践操作,构建电子封装专业的本科教学理论-认知-实践的系统性模式。

一、课程设置

由于电子封装专业是一门典型的交叉学科,牵涉到的基础学科较多,因此在课程设置方面既要考虑到其知识专业性,又要考虑到其知识综合性。江苏科技大学立足于长三角区域,针对目前电子封装技术专业存在较大的人才供需矛盾(据统计我国每年对电子封装专业本科层次的人才需求超过7万人),以半导体材料和器件制备为基础,结合电子元器件的设计与模拟,对电子元件的封装材料、封装工艺、封装设计等方面进行基础教育,培养电子封装及其相关领域中工艺开发、材料改进、仪器研制等方面的专业工程技术人员。在专业课设置上,涵盖从器件的原理、封装的工艺和可靠性测试方面等,具体有以下7门专业必修课。半导体器件物理、微连接原理、电子封装材料、封装结构与工艺、电子封装可靠性、封装热管理。在选修课程的设置上重视电子封装专业中的基础理论、实际应用、动手能力、思维开拓方面的培养,对目前迅速发展的封装领域中的知识进行了综合性的构建,从理论到实际,从工艺到应用,设置了10门专业选修课,包括微加工工艺、MEMS器件与封装技术、电子设计自动化、集成电路设计、微电子制造及封装设备、表面组装技术、微波与射频电路、电磁兼容技术、先进封装技术、有限元技术及在封装中的应用。江苏科技大学电子封装专业的课程体系设置,一方面体现了电子封装专业的综合化、专业化的特点,另一方面突出了实践性和理论性结合的特色。尤其在现代化的教育体系下,既要突出学生的专业性特点,又要兼顾学生的知识综合性,同时还需对目前学生的动手能力和实践能力进行专业化培养。尤其对于半导体及信息技术专业方面日新月异的发展,开设了“先进封装技术”课程,对目前晶圆级封装、三维封装等目前较为新颖的封装模式进行关注,及时反映封装领域的最新动态。

二、实习基地

电子封装专业不仅对理论知识有深入的了解,对实践能力也有更高的要求。尤其是电子信息工业的迅速发展,对人才掌握的知识综合性要求越来越高。目前,电子封装专业不仅仅是对其本身所涉及的封装设计、封装工艺、封装材料等方面,而且随着封装工业方面的发展,尤其是晶圆级封装技术的发展,很多封装工艺和微加工工艺高度融合在一起。所以对于从事电子封装领域的工程技术人员、研究人员,不仅要掌握封装相关的理论基础,还要求对加工工艺实践的掌握。从工科院校的人才培养角度出发,目前国际教育界公认实践才是工科专业教育的根本,必须在理论教育的基础上,让学生到相关专业工程实践中去实践学习,在实际解决问题的过程中掌握相关的专业知识。江苏科技大学目前积极建立与电子封装企业的合作,通过到企业的见习与实践,让学生对课堂讲授的基础知识有更深层次的认识,同时通过企业技术人员直接参与实践教学环节,加深学生对封装领域中的工艺、设备等方面的认知。并且,江苏科技大学与江阴长电、苏州捷研芯、苏州纳米城等单位建立长期稳定的实训和见习基地,采取与这些企业单位实际生产接轨的流水线式实习安排,在实习期间让每个学生负责生产制造过程中某一项工序,并定期进行轮换工作,如前道工艺中的光刻、溅射、刻蚀等微加工工艺,同时对后续的封装工艺如切片、邦定、贴装和封装等具体工艺的实训,保证学生在学校学习理论知识的同时,也能掌握一定的实际封装方面的技能。江苏科技大学地处长三角地区,长三角地区(上海、江苏、浙江)以上海为核心,半导体及信息产业在长三角地区中占有重要地位,是国内集成电路、传感器制造和封测技术最先进产能集中地区。其中,中芯国际在上海拥有8吋及12吋晶圆厂;台积电在上海松江拥有8吋厂,并已决定在南京兴建12吋厂;联电则以收购方式取得苏州和舰8吋厂经营权;力晶与合肥市政府合资兴建12吋厂。学校与相关的企业联合建立实习、实训和见习基地,一方面可以使理论教学与实践相结合,提高学生的知识实际应用能力;另一方面,可以让企业的一些研发型设备可以充分利用,实习资源共享,提高设备的利用率。此外,通过学生在企业中的实习,让学生掌握更多实践知识的同时,也让企业在学生实习期间考察他们的能力,为企业在未来招聘人才提供更多的选择。

三、实验平台

江苏科技大学电子封装专业针对目前国内半导体及信息产业的迅速发展情况,为了能较好较快地培养电子封装领域比较紧缺的人才,在理论教学的同时,也非常注重实验教学。目前电子封装系在新校区规划了用于实验教学的净化间,主要包括两个部分:一是包括黄光区内的光刻、显影、溅射等半导体器件的前道加工工序;二是包括划片、邦定、回流、键合等封装工艺。前道工序主要包括光刻机、溅射设备和刻蚀设备等,通过实验教学,使学生在操作过程中更能深入了解光刻、溅射等工艺的具体原理和实现步骤,能让学生更好地了解电子器件的制备过程,从而拓宽学生的视野,为学生走向工作岗位奠定良好的理论和实验基础。后道工序主要指封装工艺,设备主要涵盖划片机、金线键合机、金属植球机和回流炉等。通过这些设备的实际操作,可以使学生对封装领域中的零级封装、一级封装有比较深入的认识,可以根据设备的相应功能实现所设计的需求。同时,江苏科技大学根据目前封装领域的高速发展趋势,购置了包括3D打印机、晶圆键合机等较为新型的设备,通过这些设备的具体操作和实际应用,让学生在关注目前封装领域中发展的主要趋势,尤其是目前业界比较关注的晶圆级封装和三维封装,做好这些方面的知识储备,为以后走向工作岗位或者深造奠定良好的基础。

四、结语

电子封装专业作为一个新兴的交叉型专业,近些年来在国内外都有迅速的发展。尤其随着消费电子、汽车电子和物联网等领域的高速增长,作为电子器件中关键技术之一的电子封装技术备受关注,而且专业的电子封装领域人才培养还滞后于封装技术的发展需求。因此,高校的电子封装专业人才培养需要满足市场发展的需求,不仅要关注电子封装专业的多学科交叉及工程化应用较强等方面的特点,而且在教学过程中需要多元化的课程设置,包括器件设计、加工工艺、应用材料、测试方法等方面的理论教学,结合实习基地的实际参观认识和学习,到实验平台整体流程的操作,培养学生的综合性能力,能为电子封装专业输送更多更好的专业人才.

【参考文献】

[1]胡庆贤,董再胜,王凤江等.电子封装技术专业人才培养体系的构建[J].产业与科技论坛,2011,11(10):173~174

[2]简刚,汪蕾,胡庆贤等.微电子封装专业《薄膜材料与工艺》教学探索[J].产业与科技论坛,2014,14(13):154~155

[3]廖秋慧,刘淑梅.微电子封装专业的课程建设与教学实践[J].产业与科技论坛,2013,10(12):178~179

半导体制造技术范文第5篇

GaN、AlN、InN及其合金等材,是作为新材料的GaN系材料。对衬底材料进行评价要就衬底材料综合考虑其因素,寻找到更加合适的衬底是发展GaN基技术的重要目标。评价衬底材料要综合考虑衬底与外延膜的晶格匹配、衬底与外延膜的热膨胀系数匹配、衬底与外延膜的化学稳定性匹配、材料制备的难易程度及成本的高低的因素。InN的外延衬底材料就现在来讲有广泛应用的。自支撑同质外延衬底的研制对发展自主知识产权的氮化物半导体激光器、大功率高亮度半导体照明用LED,以及高功率微波器件等是很重要的。“氮化物衬底材料的评价因素及研究与开发”文稿介绍了氮化物衬底材料的评价因素及研究与开发的部分内容。

氮化物衬底材料与半导体照明的应用前景

GaN是直接带隙的材料,其光跃迁几率比间接带隙的高一个数量级。因此,宽带隙的GaN基半导体在短波长发光二极管、激光器和紫外探测器,以及高温微电子器件方面显示出广阔的应用前景;对环保,其还是很适合于环保的材料体系。

1994年,日本的Nicha公司在GaN/Al2O3上取得突破,1995年,GaN器件第一次实现商品化。1998年,GaN基发光二极管LED市场规模为US$5.0亿,2000年,市场规模扩大至US$13亿。据权威专家的预计,GaN基LED及其所用的Al2O3衬底在国际市场上的市场成长期将达到50年之久。GaN基LED及其所用的Al2O3衬底具有独特的优异物化性能,并且具有长久耐用性。预计,2005年GaN基器件的市场规模将扩大至US$30亿,GaN基器件所用的Al2O3衬底的市场规模将扩大至US$5亿。

半导体照明产业发展分类所示的若干主要阶段,其每个阶段均能形成富有特色的产业链:

(1)第一阶段

第一阶段(特种照明时代,2005年之前),其中有:仪器仪表指示;金色显示、室内外广告;交通灯、信号灯、标致灯、汽车灯;室内长明灯、吊顶灯、变色灯、草坪灯;城市景观美化的建筑轮廓灯、桥梁、高速公路、隧道导引路灯,等等。

(2)第二阶段

第二阶段(照明时代,2005~2010年),其中有:CD、DVD、H-DVD光存储;激光金色显示;娱乐、条型码、打印、图像记录;医用激光;开拓固定照明新领域,衍生出新的照明产业,为通用照明应用打下基础,等等。

(3)第三阶段

第三阶段(通用照明时代,2010年之后),包括以上二个阶段的应用,并且还全面进入通用照明市场,占有30~50%的市场份额。

到达目前为止(处于第一阶段,特种照明时代),已纷纷将中、低功率蓝色发光二极管(LED)、绿色LED、白光LED、蓝紫色LED等实现了量产,走向了商业市场。高功率蓝色发光二极管(LED)、激光二极管(LD)和全波段InN-GaN等,将会引发新的、更加大的商机,例如,光存储、光通讯等。实现高功率蓝色发光二极管(LED)、激光二极管(LD)和全波段InN-GaN实用化,并且达到其商品化,这需要合适的衬底材料。因此,GaN材料及器件发展,需要寻找到与GaN匹配的衬底材料,进一步提高外延膜的质量。

另外,就基础研究和中长期计划考虑,科技发展越来越需要把不同体系的材料结合到一起,即称之为异质结材料。应用协变衬底可以将晶格和热失配的缺陷局限在衬底上,并且为开辟新的材料体系打下基础。已提出了多种协变衬底的制备技术,例如,自支撑衬底、键合和扭曲键合、重位晶格过渡层,以及SOI和VTE衬底技术等。预计,在今后的10~20年中,大尺寸的、协变衬底的制备技术将获得突破,并且广泛应用于大失配异质结材料生长及其相联系的光电子器件制造。

世界各国现在又投入了大量的人力、财力和物力,并且以期望取得GaN基高功率器件的突破,居于此领域的制高点。

氮化物衬底材料的评价因素及研究与开发

GaN、AlN、InN及其合金等材料,是作为新材料的GaN系材料。对衬底材料进行评价,要就衬底材料综合考虑其因素,寻找到更加合适的衬底是作为发展GaN基技术的重要目标。

一、评价衬底材料综合考虑因素

评价衬底材料要综合考虑以下的几个因素:

(1)衬底与外延膜的晶格匹配

衬底材料和外延膜晶格匹配很重要。晶格匹配包含二个内容:

·外延生长面内的晶格匹配,即在生长界面所在平面的某一方向上衬底与外延膜的匹配;

·沿衬底表面法线方向上的匹配。

(2)衬底与外延膜的热膨胀系数匹配

热膨胀系数的匹配也很重要,外延膜与衬底材料在热膨胀系数上相差过大不仅可能使外延膜质量下降,还会在器件工作过程中,由于发热而造成器件的损坏。

(3)衬底与外延膜的化学稳定性匹配

衬底材料需要有相当好的化学稳定性,不能因为与外延膜的化学反应使外延膜质量下降。

(4)材料制备的难易程度及成本的高低

考虑到产业化发展的需要,衬底材料的制备要求简洁,而且其成本不宜很高。

二、InN的外延衬底材料的研究与开发

InN的外延衬底材料就现在来讲有广泛应用的,其中有:InN;α-Al2O3(0001);6H-SiC;MgAl2O4(111);LiAlO2和LiGaO2;MgO;Si;GaAs(111)等。

Ⅲ-Ⅴ族化合物,例如,GaN、AlN、InN,这些材料都有二种结晶形式:一种是立方晶系的闪锌矿结构,而另一种是六方晶系的纤锌矿结构。以蓝光辐射为中心形成研究热点的是纤锌矿结构的氮化镓、氮化铝、氮化铟,而且主要是氮化镓、氮化铝、氮化铟的固溶体。这些材料的禁带是直接跃迁型,因而有很高的量子效率。用氮化镓、氮化铝、氮化铟这三种材料按不同组份和比例生成的固溶体,其禁带宽度可在2.2eV到6.2eV之间变化。这样,用这些固溶体制造发光器件,是光电集成材料和器件发展的方向。

(1)InN和GaN

因为异质外延氮化物薄膜通常带来大量的缺陷,缺陷损害了器件的性能。与GaN一样,如果能在InN上进行同质外延生长,可以大大减少缺陷,那么器件的性能就有巨大的飞跃。

自支撑同质外延GaN,AlN和AlGaN衬底是目前最有可能首先获得实际应用的衬底材料。

(2)蓝宝石(α-Al2O3)和6H-SiC

α-Al2O3单晶,即蓝宝石晶体。(0001)面蓝宝石是目前最常用的InN的外延衬底材料。其匹配方向为:InN(001)//α-Al2O3(001),InN[110]//α-Al2O3[100][11,12]。因为衬底表面在薄膜生长前的氮化中变为AlON,InN绕α-Al2O3(0001)衬底的六面形格子结构旋转30°,这样其失匹配度就比原来的29%稍有减少。虽然(0001)面蓝宝石与InN晶格的失配率高达25%,但是由于其六方对称,熔点为2050℃,最高工作温度可达1900℃,具有良好的高温稳定性和机械力学性能,加之对其研究较多,生产技术较为成熟,而且价格便宜,现在仍然是应用最为广泛的衬底材料。

6H-SiC作为衬底材料应用的广泛程度仅次于蓝宝石。同蓝宝石相比,6H-SiC与InN外延膜的晶格匹配得到改善。此外,6H-SiC具有蓝色发光特性,而且为低阻材料,可以制作电极,这就使器件在包装前对外延膜进行完全测试成为可能,因而增强了6H-SiC作为衬底材料的竞争力。又由于6H-SiC的层状结构易于解理,衬底与外延膜之间可以获得高质量的解理面,这将大大简化器件的结构;但是同时由于其层状结构,在衬底的表面常有给外延膜引入大量的缺陷的台阶出现。

(3)镁铝尖晶石(MgAl2O4)

MgAl2O4晶体,即铝酸镁晶体。MgAl2O4晶体是高熔点(2130℃)、高硬度(莫氏8级)的晶体材料,属面心立方晶系,空间群为Fd3m,晶格常数为0.8085nm。MgAl2O4晶体是优良的传声介质材料,在微波段的声衰减低,用MgAl2O4晶体制作的微波延迟线插入损耗小。MgAl2O4晶体与Si的晶格匹配性能好,其膨胀系数也与Si相近,因而外延Si膜的形变扭曲小,制作的大规模超高速集成电路速度比用蓝宝石制作的速度要快。此外,国外又用MgAl2O4晶体作超导材料,有很好的效果。近年来,对MgAl2O4晶体用于GaN的外延衬底材料研究较多。由于MgAl2O4晶体具有良好的晶格匹配和热膨胀匹配,(111)面MgAl2O4晶体与GaN晶格的失配率为9%,具有优良的热稳定性和化学稳定性,以及良好的机械力学性能等优点,MgAl2O4晶体目前是GaN较为合适的衬底材料之一,已在MgAl2O4基片上成功地外延出高质量的GaN膜,并且已研制成功蓝光LED和LD。此外,MgAl2O4衬底最吸引人之处在于可以通过解理的方法获得激光腔面。

在前面的研究基础上,近来把MgAl2O4晶体用作InN的外延衬底材料的研究也陆续见之于文献报道。其之间的匹配方向为:InN(001)//MgAl2O4(111),InN[110]//MgAl2O4[100],InN绕MgAl2O4(111)衬底的四方、六方形格子结构旋转30°。研究表明(111)面MgAl2O4晶体与InN晶格的失配率为15%,晶格匹配性能要大大优于蓝宝石,(0001)面蓝宝石与InN晶格的失配率高达25%。而且,如果位于顶层氧原子层下面的镁原子占据有效的配位晶格位置,以及氧格位,那么这样可以有希望将晶格失配率进一步降低至7%,这个数字要远远低于蓝宝石。所以MgAl2O4晶体是很有发展潜力的InN的外延衬底材料。

(4)LiAlO2和LiGaO2

以往的研究是把LiAlO2和LiGaO2用作GaN的外延衬底材料。LiAlO2和LiGaO2与GaN的外延膜的失配度相当小,这使得LiAlO2和LiGaO2成为相当合适的GaN的外延衬底材料。同时LiGaO2作为GaN的外延衬底材料,还有其独到的优点:外延生长GaN后,LiGaO2衬底可以被腐蚀,剩下GaN外延膜,这将极大地方便了器件的制作。但是由于LiGaO2晶体中的锂离子很活泼,在普通的外延生长条件下(例如,MOCVD法的化学气氛和生长温度)不能稳定存在,故其单晶作为GaN的外延衬底材料还有待于进一步研究。而且在目前也很少把LiAlO2和LiGaO2用作InN的外延衬底材料。

(5)MgO

MgO晶体属立方晶系,是NaCl型结构,熔点为2800℃。因为MgO晶体在MOCVD气氛中不够稳定,所以对其使用少,特别是对于熔点和生长温度更高的InN薄膜。

(6)GaAs

GaAs(111)也是目前生长InN薄膜的衬底材料。衬底的氮化温度低于700℃时,生长InN薄膜的厚度小于0.05μm时,InN薄膜为立方结构,当生长InN薄膜的厚度超过0.2μm时,立方结构消失,全部转变为六方结构的InN薄膜。InN薄膜在GaAs(111)衬底上的核化方式与在α-Al2O3(001)衬底上的情况有非常大的差别,InN薄膜在GaAs(111)衬底上的核化方式没有在白宝石衬底上生长InN薄膜时出现的柱状、纤维状结构,表面上显现为非常平整。

(7)Si

单晶Si,是应用很广的半导体材料。以Si作为InN衬底材料是很引起注意的,因为有可能将InN基器件与Si器件集成。此外,Si技术在半导体工业中已相当的成熟。可以想象,如果在Si的衬底上能生长出器件质量的InN外延膜,这样则将大大简化InN基器件的制作工艺,减小器件的大小。

(8)ZrB2

相关期刊更多

半导体

省级期刊 审核时间1个月内

天津市科委

半导体光电

北大期刊 审核时间1-3个月

中国电子科技集团有限公司

半导体信息

部级期刊 审核时间1个月内

中国半导体行业协会分立器件专业协会 信息产业部电子第五十五研究所