首页 > 文章中心 > 土建设计

土建设计

土建设计

土建设计范文第1篇

关键词:浅析;建筑;混凝土;结构设计

建筑结构设计规范是国内结构设计的法规,是建筑结构做到技术先进、安全适用、经济合理的指导文件。为了更好的遵循这一法规,对结构设计规范应该熟悉,更应该正确理解,保证土建结构设计质量。

1 结构材料选择

1.1混凝土结构设计规范

在设计工作中,在对混凝土的强度等级的理解与应用存在以下两方面的问题与争议:

1.1.1规范4.1.2条规定:钢筋混凝土结构的混凝土强度等级不应低于C15。与此条相呼应在4.1.3条和4.1.4条中不再列入了C10混凝土的强度标准值、设计值。这里存在一个对上述规范条文的正确理解与应用的问题,这就是作为基础垫层的素混凝土是否可以采用C10混凝土,是否也必须采用C15混凝土。对这一问题存在很广泛的争议。在某些工程中对基础垫层的混凝土采用C10后,不仅有的监理公司的监理人员对此置疑,甚至有的图纸审查人员也表示反对,都认为这违反了规范的要求,要求改正为C15。混凝土垫层采用C10等级的混凝土,如改为C15级混凝土没有必要而且增加造价造成经济上的浪费。分歧的原因是置疑的人员没有正确理解规范的条文,因为规范的4.1.2条是指钢筋混凝土结构的混凝土强度等级不应低于C15,而作为垫层的混凝土是素混凝土不属于钢筋混凝土,垫层混凝土的作用是保护地基土在施工中不扰动,同时为基础的施工创造有利的工作条件,C10混凝土完全可以达到。

1.1.2规范4.1.4条例表规定了各个强度等级的混凝土的轴心抗压强度设计值。其中有一个注释,因是用小字表达常被设计人员忽视,这个注是指当轴心受压及偏心受压构件的截面长边或直径小于300mm,则表中的混凝土强度设计值应乘以系数0.8。该注释是不能忽视的,因为当构件的截面尺寸越小,混凝土构件的缺陷带来的强度损失越大。

1.2 砌体结构设计规范(GB 50003-2011)

在砌体结构设计规范中,对结构材料选择的规定方面容易忽视的主要是第6.2.2条对地面以下或防潮层以下的砌体、潮湿房间的墙,所用材料的最低强度等级提出的要求,其目的是为了保证结构的耐久性。例如对于地基土很潮湿的砌体,砖至少要求MU15,砂浆必须是水泥砂浆而且不低于M7.5。但在实践中很多设计人员单从砌体的强度要求出发采用MU10砖、M5水泥砂浆。这是违背规范要求的,应予改正以保证结构的耐久性。此外,上述这一要求不仅针对地面以下砌体,还针对地面以上的潮湿房间,例如卫生间等。

2 结构构造要求

2.1砌体结构伸缩缝的最大间距

在建筑设计中,为了防止或减轻房屋在正常使用条件下,由于温差和砌体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。在砌体结构设计规范(GB 50003-2011)中第6.3.1条规定了砌体房屋伸缩缝的最大间距,例如钢筋混凝土屋盖当屋面设有保温层或隔热层时,伸缩缝的最大间距为50m。我国很多房屋长度在40m~50m的砌体房屋,按上述规定没有设置伸缩缝,但不少房屋还是出现了温度裂缝,有的甚至比较严重。原因在于设计人员没有全面理解该规范条文。首先该规定是针对烧结普通砖的,对于目前墙体改革中新使用的混凝土砌块等房屋,该规范已强调由于混凝土有干缩性,应该将伸缩缝的最大间距乘以0.8系数,也就是说应将伸缩缝的最大间距调整为50m×0.8=40m。其次该规范在注释中还强调了对于白天和夜晚温差较大地区,伸缩缝的最大间距应予以适当减小,因此,对于我国昼夜温差较大的地区来说,应适当减小伸缩缝的最大间距,使用烧结普通砖的上述砌体房屋,伸缩缝的最大间距应降为45m,使用混凝土砌块的上述房屋,伸缩缝的最大间距应降为35m。按调整后的伸缩缝的最大间距设计的砌体房屋再辅以其它措施后,很少再出现温度裂缝了。

2.2混凝土结构中钢筋的混凝土保护层厚度

现行混凝结构设计规范(GB 50010-2012)中,比89规范更加重视对混凝土耐久的要求,而混凝土结构的耐久性与混凝土保护层的厚度是密切相关的,因此现行规范比原规范对混凝土保护层的厚度要求有所增加。例如在一类环境柱的混凝土保护层的厚度由25mm增加到30mm。特别对于基础,混凝土保护层的厚度增加得更多,因为基础与水有接触,所处环境更为不利。但在设计实践中往往有些设计人员忽略了这一变化,因而不能满足混凝土耐久的要求,造成混凝土质量下降。

3 结构荷载取值

3.1屋面可变荷载的取值和分布

并非在屋面全跨布置可变荷载产生的内力一定最大,往往在半跨布置可变荷载时结构可能更为不利。因此对于屋架和拱壳屋面除了全跨布置可变荷载时做出计算外,还应考虑半跨布置可变荷载,并做出相应的计算,然后按最不利的情况进行设计。对屋面可变荷载的取值应十分谨慎,特别是对于屋架和拱壳屋面,因为这类屋面荷载的分布对结构的内力很敏感。例如积雪荷载应按全跨均匀分布、不均匀分布,半跨均匀分布的几种情况进行设计,这样才能保证屋面结构的安全。

3.2 基础设计时的荷载取值

在建筑地基基础设计规范(GB 50007-2012)中第3.0.4条明确做出了以下规定:计算地基变形时,传至基础底面上的荷载效应应按正常使用极限状态下荷载效应的永久值组合,不应计入风荷载和地震作用。计算挡土墙土压力、地基或斜坡稳定及滑坡推力时,荷载效应应按承载能力极限状态下荷载效应的基本组合,分项系数均为1.0。按地基承载力确定基础底面积及埋深或按单桩承载力确定桩数时,传至基础或承台底面上的荷载效应应按正常使用极限状态下荷载效应的标准组合。在设计实践中上述的各方面经常有设计人员没有正确执行。

3.2.1计算地基变形时将荷载取值错误地取为荷载设计值而不是荷载的准永久组合值。由于荷载的设计值大约为荷载准永久组合值的1.4~1.6倍,因此这一错误取值造成的影响更多,常常使原本地基变形不超过限值,错误的判断为地基的变形不满足设计要求。错误地将基础加深或将基础的底面积扩大,造成很大的浪费。

3.2.2在确定基础底面积或确定桩数时,荷载取值错误地取为荷载的设计值而不是荷载的标准值,由于荷载的设计值大约为荷载标准值的1.25倍左右。因此这一错误将导致约20%的浪费,对整栋建筑而言,这一浪费是相当大的。

3.2.3计算挡土墙的土压力、地基或斜坡的稳定时,荷载的取值错误地将永久荷载的分项系数取1.2,将可变荷载的分项系数取1.4,而忽视了规范别说明了的分项系数均为1.0的规定。

4 结束语

在结构设计工作实践中部分结构设计人员对现行结构设计规范缺乏正确理解或常有疏忽,给工程带来安全隐患或者增加不必要的造价。在建构筑物的设计中,结构设计关系到建筑结构的安全、耐久、适用和经济等多个方面,因而结构设计工作是十分重要的。

参考文献:

[1]砌体结构设计规范.GB 50003-2007.中国建筑工业出版社.2007.

土建设计范文第2篇

关键词:土建结构;设计;规范

Abstract: This paper mainly discusses the design process in civil and structural engineering material selection, structural requirements, load and other aspects, analyzes the common violations structure design specification, and studies how to correctly understand and implement the relevant structural design specification.

Keywords: civil engineering; design; specification

中图分类号:V552+.4文献标识码A 文章编号

在建构筑物的设计中,结构设计关系到建筑结构的安全、耐久、适用和经济等多个方面,因而结构设计工作是十分重要的。在结构设计工作实践中发现部分结构设计人员对现行结构设计规范缺乏正确理解或常有疏忽,给工程带来安全隐患或者增加不必要的造价。

1 结构材料选择

1.1砌体结构设计规范(GB 50003-2001)

规范对结构材料选择的规定方面容易忽视的主要是第6.2.2条对地面以下或防潮层以下的砌体、潮湿房间的墙,所用材料的最低强度等级提出的要求,其目的是为了保证结构的耐久性。例如对于地基土很潮湿的砌体,砖至少要求MU15,砂浆必须是水泥砂浆而且不低于M7.5。但在实践中很多设计人员单从砌体的强度要求出发采用MU10砖、M5水泥砂浆。这是违背规范要求的,应予改正以保证结构的耐久性。此外,上述这一要求不仅针对地面以下砌体,还针对地面以上的潮湿房间,例如卫生间等。

1.2 混凝土结构设计规范(GB 50010-2002)

规范的4.1.1~4.1.8是针对混凝土材料的条文,4.2.1~4.2.4是针对钢筋材料的条文。在设计工作中,在对混凝土的强度等级的理解与应用存在以下两方面的问题与争议:

1.2.1 规范4.1.2条规定:钢筋混凝土结构的混凝土强度等级不应低于C15。与此条相呼应在4.1.3条和4.1.4条中不再列入了C10混凝土的强度标准值、设计值。这里存在一个对上述规范条文的正确理解与应用的问题,这就是作为基础垫层的素混凝土是否可以采用C10混凝土,是否也必须采用C15混凝土。对这一问题存在很广泛的争议。在某些工程中对基础垫层的混凝土采用C10后,不仅有的监理公司的监理人员对此置疑,甚至有的图纸审查人员也表示反对,都认为这违反了规范的要求,要求改正为C15。混凝土垫层采用C10等级的混凝土,如改为C15级混凝土没有必要而且增加造价造成经济上的浪费。分歧的原因是置疑的人员没有正确理解规范的条文,因为规范的4.1.2条是指钢筋混凝土结构的混凝土强度等级不应低于C15,而作为垫层的混凝土是素混凝土不属于钢筋混凝土,垫层混凝土的作用是保护地基土在施工中不扰动,同时为基础的施工创造有利的工作条件,C10混凝土完全可以达到这一目的。

1.2.2 规范4.1.4条例表规定了各个强度等级的混凝土的轴心抗压强度设计值。其中有一个注释,因是用小字表达常被设计人员忽视,这个注是指当轴心受压及偏心受压构件的截面长边或直径小于300mm,则表中的混凝土强度设计值应乘以系数0.8。该注释是不能忽视的,因为当构件的截面尺寸越小,混凝土构件的缺陷带来的强度损失越大。

2 结构构造要求

2.1 混凝土结构中钢筋的混凝土保护层厚度

现行混凝结构设计规范(GB 50010-2002)中,比89规范更加重视对混凝土耐久的要求,而混凝土结构的耐久性与混凝土保护层的厚度是密切相关的,因此现行规范比原规范对混凝土保护层的厚度要求有所增加。例如在一类环境柱的混凝土保护层的厚度由25mm增加到30mm。特别对于基础,混凝土保护层的厚度增加得更多,因为基础与水有接触,所处环境更为不利。但在设计实践中往往有些设计人员忽略了这一变化,因而不能满足混凝土耐久性的要求。

2.2砌体结构伸缩缝的最大间距

在建筑设计中,为了防止或减轻房屋在正常使用条件下,由于温差和砌体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。在砌体结构设计规范(GB 50003-2001)中第6.3.1条规定了砌体房屋伸缩缝的最大间距,例如钢筋混凝土屋盖当屋面设有保温层或隔热层时,伸缩缝的最大间距为50m。我国很多房屋长度在40m~50m的砌体房屋,按上述规定没有设置伸缩缝,但不少房屋还是出现了温度裂缝,有的甚至比较严重。原因在于设计人员没有全面理解该规范条文。首先该规定是针对烧结普通砖的,对于目前墙体改革中新使用的混凝土砌块等房屋,该规范已强调由于混凝土有干缩性,应该将伸缩缝的最大间距乘以0.8系数,也就是说应将伸缩缝的最大间距调整为50m×0.8=40m。其次该规范在注释中还强调了对于白天和夜晚温差较大地区,伸缩缝的最大间距应予以适当减小,因此,对于我国昼夜温差较大的地区来说,应适当减小伸缩缝的最大间距,使用烧结普通砖的上述砌体房屋,伸缩缝的最大间距应降为45m,使用混凝土砌块的上述房屋,伸缩缝的最大间距应降为35m。按调整后的伸缩缝的最大间距设计的砌体房屋再辅以其它措施后,很少再出现温度裂缝了。

3 结构荷载取值

3.1 基础设计时的荷载取值

在建筑地基基础设计规范(GB 50007-2002)中第3.0.4条明确做出了以下规定:计算地基变形时,传至基础底面上的荷载效应应按正常使用极限状态下荷载效应的准永久值组合,不应计入风荷载和地震作用。计算挡土墙土压力、地基或斜坡稳定及滑坡推力时,荷载效应应按承载能力极限状态下荷载效应的基本组合,分项系数均为1.0。按地基承载力确定基础底面积及埋深或按单桩承载力确定桩数时,传至基础或承台底面上的荷载效应应按正常使用极限状态下荷载效应的标准组合。在设计实践中上述的各方面经常有设计人员没有正确执行。

3.1.1 计算地基变形时将荷载取值错误地取为荷载设计值而不是荷载的准永久组合值。由于荷载的设计值大约为荷载准永久组合值的1.4~1.6倍,因此这一错误取值造成的影响更多,常常使原本地基变形不超过限值,错误的判断为地基的变形不满足设计要求。错误地将基础加深或将基础的底面积扩大,造成很大的浪费。

3.1.2 在确定基础底面积或确定桩数时,荷载取值错误地取为荷载的设计值而不是荷载的标准值,由于荷载的设计值大约为荷载标准值的1.25倍左右。因此这一错误将导致约20%的浪费,对整栋建筑而言,这一浪费是相当大的。

3.1.3 计算挡土墙的土压力、地基或斜坡的稳定时,荷载的取值错误地将永久荷载的分项系数取1.2,将可变荷载的分项系数取1.4,而忽视了规范别说明了的分项系数均为1.0的规定。

3.2 屋面可变荷载的取值和分布

并非在屋面全跨布置可变荷载产生的内力一定最大,往往在半跨布置可变荷载时结构可能更为不利。因此对于屋架和拱壳屋面除了全跨布置可变荷载时做出计算外,还应考虑半跨布置可变荷载,并做出相应的计算,然后按最不利的情况进行设计。对屋面可变荷载的取值应十分谨慎,特别是对于屋架和拱壳屋面,因为这类屋面荷载的分布对结构的内力很敏感。例如积雪荷载应按全跨均匀分布、不均匀分布,半跨均匀分布的几种情况进行设计,这样才能保证屋面结构的安全。

4 结束语

建筑结构设计规范是国内结构设计的法规,是建筑结构做到技术先进、安全适用、经济合理的指导文件。为了更好的遵循这一法规,对结构设计规范应该熟悉,更应该正确理解。

参考文献

[1]混凝土结构设计规范.GB 50010-2002.中国建筑工业出版社.2002.

土建设计范文第3篇

[关键词]:220kV变电站;软土地基; 技术分析

[Abstract]: This paper through the analysis of soft soil engineering properties of an area, combined with the actual case of 220kV substation, the substation in soft soil foundation treatment technology.

Keyword]:220kV substation; soft soil foundation; technical analysis

中图分类号:TU471.8文献标识码:A文章编号:

1 软弱土的工程特征

软弱土主要包括淤泥、淤泥质土、人工填土及松散砂土等,本文主要讨论某地区的淤泥、淤泥质土及松散砂土的处理。

某地区淤泥、淤泥质土一般都处于饱和、流塑状态,并含贝壳细沙且厚度在10~30m。其淤泥层,一般未见我国其它沿海软土地区所存在的上部常年“硬壳层”,而是存在厚度不一的细砂层或人工填土(杂填土、冲填土)。淤泥及淤泥质土抗剪强度低,固结系数小,又没有“硬壳层”的应力分散作用,下卧软弱淤泥的地基,其承载力低、稳定性差、变形大且不均。地震发生时,淤泥因抗剪强度极低而发生震陷。松散砂土一般处于饱和状态,其松散性使其在荷载作用下具有高压缩性的特点。地震作用下,孔隙水压力骤然增大,土体颗粒将处于悬浮状态而产生液化。

综上所述,某地区的软弱土具有厚度大、高压缩性、高灵敏度、低渗透性、固结系数小、抗剪强度低等工程特性。若不做处理,地基承载力低、变形大且不均,在遇到地震作用时,往往会发生不同程度的液化、震陷等事故,在这种软土地基上建设,必须采取工程措施避免事故发生。据统计,某市主城区可供建设的用地总量中91.2%需要采用不同的地基处理措施方可建设。

2 变电站建设的特点

按规范要求,电压等级为110kV的变电站,其场地设计标高应高于50年一遇的洪水位标高;电压等级为220kV及500kV的变电站,其场地设计标高应高于100年一遇的洪水位标高。同时还要高于历史最高内涝水位。沿海受风浪影响时还要考虑50年一遇的风浪高及0.5m的安全超高。因此,很多变电站的场地都要比周边要高,需要堆填大量土方。

由于电力设施的重要性,一旦变电站发生较大面积的不均匀沉降或地震引发地基液化、震陷,将对整个城市造成巨大损失。因此,变电站的地基稳定性显得非常重要。

3 真空联合堆载预压法介绍

针对上述变电站建设的特点、某地区软弱土的分布、工程特征及地震活动频繁的情况,本文提出并建议在某地区推广采用真空联合堆载预压法对变电站进行地基处理。相对于预压堆载法,由于真空和堆载的加固效果可以叠加,该方法具有时间较短、安全性高、节省土方、固结度高等特点。目前,我国在港口、高速公路等领域已有较多成功应用。

该方法是通过在场地周边土体设置密封墙及在场地表面铺设密封膜,使整个场地处于密封状态。再在场地内部设置沙井或塑料排水板等排水体,利用真空泵并通过排水体实施抽真空作业,同时在场地上部按要求进行堆填土方作业。在堆载重压及抽真空双重作用下,软弱土体空隙内的水体及气体被强制排出,土体得到压缩及固结,抗剪强度得到提高、液化沉陷得到全部消除。确保整个场地地基的物理力学性质能满足变电站正常安全运行的要求。

4 工程实例

某220kV变电站工程采用真空-堆载联合预压法进行软土地基处理并取得了成功,工程概况如下:

站址场地内大部分面积为鱼塘、沟渠,一部分面积为荒地。鱼塘底面高程约0.40m,荒地地面高程约1.500m。场地设计标高为4.10m,填土厚度为2.6~3.7m(未计固结沉降下沉深度)。场地下存在深厚软土地基土层,自上向下分述如下:

(1)人工填土层(层号①):灰黄色,松散,主要由粘性土组成,含少量的砂和植物根系,层厚0.40~4.50m;

(2)粉砂层(层号②):灰色,饱和,松散,主要由石英、长石颗粒组成,局部含多量粘性土及贝壳,层厚0.60~4.90m;

(3)淤泥层(层号③):灰黑色,饱和,流塑,含多量贝壳碎片,夹有薄层松散的粉砂,底部混粉细砂,有腥臭味。该层在整个场地均有分布,层厚10.00~27.50m;

(4)中砂层(层号④):灰白色,饱和,松散,主要由石英、长石颗粒组成,混多量粘性土,局部变相为粉砂;

(5)粉质粘土层(层号⑤):灰黄色,湿,可塑,局部软塑,上部混少量中、细砂颗粒,含贝壳,层厚1.20~19.00m;

(6)中砂层(层号⑥):灰白色,灰黄色,饱和,稍密,主要由石英、长石颗粒组成,混较多粘粒,级配一般。

场地上部软弱土层为人工填土层、粉砂层、淤泥层及中砂层,其物理性质见表1及表2。

表1 软弱土层物理性质

表2淤泥层固结系数

注:P0表示初始条件下土体所受压力。

本工程首先将场地平整至1.50m,场地内部按1.2m×1.2m间距打设塑料排水板至标高-10.0m(不打穿淤泥层),上铺真空膜;在站区四周施打泥浆搅拌桩作为密封墙,然后开始抽真空;在真空度达到要求并稳定后,开始分阶段堆填土方,加载曲线见图1。抽真空要求每台真空泵控制的面积在1000m2~1200m2,膜内真空度保持在650mmHg以上,经过3个月的真空联合堆载预压,地表沉降曲线见图2。

图1 加载曲线图

图2 地表平均沉降曲线图

从地表沉降我们可以看出,随着真空联合堆载预压的进行,地表下沉逐渐趋于缓和,到达3个月时,最后5日的沉降量维持在3mm/d以下,表明地基沉降基本稳定。按规范要求,采用三点法对地表沉降数据计算实际固结度,得到结果是:场地地基的最终平均沉降量758.7mm,地基实测平均沉降量为695.9mm,地基在真空联合堆载预压处理下的残余沉降约为62.0mm,地基的整体固结度约为91.7%,满足设计90%固结度的要求。

5 结论

某地区的深厚软土地基及频繁的地震活动使变电站的地基处理显得相当困难,而真空联合堆载预压法对软土地基的处理具有时间较短、安全性高、节省土方、固结度高等特点,使其安全性、经济性在地区的变电站建设中尤为突出。

参 考 文 献

[1]DL/T 5218-2005. 220kV~500kV变电所设计技术规程[S]. 北京:中华人民共和国国家发展和改革委员会, 2005

[2]叶观宝. 地基加固新技术(第2版)[M].北京:机械工业出版社,1999,12

土建设计范文第4篇

【关键词】:建筑 结构 安全性 分析

中图分类号:TP316.7 文献标识码:A 文章编号:1003-8809(2010)-08-0180-01

0 引言

结构安全性是结构防止破坏倒塌的能力,是结构工程最重要的质量指标。结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建工程法规和技术标准(规范、规程、条例等)的合理设置及运用相关联。

1 我国结构设计规范的安全设置水准?

对结构工程的设计来说,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性与结构的耐久性等几个方面。我国建筑物和桥梁等土建结构的设计规范在这些方面的安全设置水准,总体上要比国外同类规范低得多。

1.1 构件承载能力的安全设置水准?与结构构件安全水准关系最大的二个因素是:①规范规定结构需要承受多大的荷载(荷载标准值)。②规范规定的荷载分项系数与材料强度分项系数的大小,前者是计算确定荷载对结构构件的作用时,将荷载标准值加以放大的一个系数,后者是计算确定结构构件固有的承载能力时,将构件材料的强度标准值加以缩小的一个系数。这些用量值表示的系数体现了结构构件在给定标准荷载作用下的安全度,在安全系数设计方法(如我国的公路桥涵结构设计规范)中称为安全系数,体现了安全储备的需要;而在可靠度设计方法(如我国的建筑结构设计规范)中称为分项系数,体现了一定的名义失效概率或可靠指标。安全系数或分项系数越大,表明安全度越高。

1.2结构的整体牢固性?除了结构构件要有足够承载能力外,结构物还要有整体牢固性。结构的整体牢固性是结构出现某处的局部破坏不至于导致大范围连续破坏倒塌的能力,或者说是结构不应出现与其原因不相称的破坏后果。结构的整体牢固性主要依靠结构能有良好的延性和必要的冗余度,用来对付地震、爆炸等灾害荷载或因人为差错导致的灾难后果,可以减轻灾害损失。唐山地震造成的巨大伤亡与当地房屋结构缺乏整体牢固性有很大关系。

1.3 结构的耐久安全性 我国土建结构的设计与施工规范,重点放在各种荷载作用下的结构强度要求,而对环境因素作用(如干湿、冻融等大气侵蚀以及工程周围水、土中有害化学介质侵蚀)下的耐久性要求则相对考虑较少。混凝土结构因钢筋锈蚀或混凝土腐蚀导致的结构安全事故,其严重程度已远过于因结构构件承载力安全水准设置偏低所带来的危害,所以这个问题必须引起格外重视。我国规范规定的与耐久性有关的一些要求,如保护钢筋免遭锈蚀的混凝土保护层最小厚度和混凝土的最低强度等级,都显著低于国外规范。损害结构承载力的安全性只是耐久性不足的后果之一;提高结构构件承载能力的安全设置水准,在一些情况下也有利于结构的耐久性与结构使用寿命。

2 调整结构安全设置水准的不同见解?

国内近几年来已对建筑结构安全度的设置水准组织过几次讨论,在如何调整的问题上存在较大的意见分歧,这次科技论坛上同样反映了这些不同的见解:?

2.1 认为我国现行规范的安全设置水准是足够的,并已为长期实践所证明,而国外就没有这种经验。我国取得的这一成功经验决不能轻易丢掉,在安全度上不能跟着英美的高标准走;安全度高了是浪费,除个别需调整外,总体上不必变动。?

2.2认为我国规范的安全度设置水准尽管不高,但在全面遵守标准规范有关规定,即在正常设计、正常施工和正常使用的“三正常”条件下,据此建成的上百亿平米的建筑物绝大多数至今仍在安全使用,表明这些规范规定的水准仍然适用;但是理想的“三正常”很难做到,同时为了缩小与先进国际标准的差距以及鉴于可持续发展和提高耐久性的需要,在物质供应条件业已改善的市场经济条件下,结构的安全设置水准应适当提高。这种提高只能适度,因为我国目前尚属发展中国家。

2.3认为我国规范的安全设置水准应该大体与国际水准接近,需要大幅度提高。这是由于随着我国经济发展和生活水平不断提高,土建工程特别是重大基础设施工程出现事故所造成的风险损失后果将愈益严重,而为了提高工程安全程度所需要的经费投入在整个工程(特别是建筑工程)造价中所占的比重现在已愈来愈低,材料供应也十分充裕。过去的低安全水准只是适应了以往短缺型计划经济年代的需要,但决不是没有风险,如果规范的安全水准较高,曾经发生过的有些安全事故本来是可以避免的,而规范的这一缺陷在一定程度上为“三正常”的提法所掩盖。在建的工程要为将来的现代化社会服务,安全性上一定要有高标准。低的安全质量标准在参与将来的国际竞争中也难以被承认,即使结构设计的安全设置水准能够提高到与发达国家一样,由于我们的施工质量总体较差,结构的安全性依然会有差距。

土建设计范文第5篇

关键词:高层建筑 钢结构 混凝土结构 设计

中图分类号: TU208 文献标识码: A

引言

随着建筑水平的提升,建筑工程逐渐朝向高层且复杂的结构发展,这对于建筑材料的选择也有了更高的要求标准。目前,在高层建筑中比较常见的两种结构方式即就是钢结构和混凝土结构。钢结构与混凝土结构在高层建筑中的应用,在很大程度上促进了高层建筑的发展和进步。随着,钢结构设计与混凝土结构设计的广泛应用,它们各自的优势在高层建筑中都有着很好的体现。所以,在高层建筑施工中,要注重钢结构设计与混凝土设计的要点,切实提高其对于高层建筑结构的重要性,促进高层建筑更进一步的发展和进步。

高层建筑钢结构设计

高层钢结构的优缺点

1.1钢结构重量轻、抗震性能好:钢结构是以工厂化生产的钢梁、钢柱为骨架,同时配以轻质墙板建造而成。它与同面积的建筑楼层相比重量可减轻近30%。同时,由于钢材具有较强的延展性,能较好地消除地震波力,防震性能好,尤其适用于高层建筑。

1.2钢结构建筑占地面积小、空间灵活:开放的空间比有承重墙占据的空间更有价值。钢结构房屋的空间灵活性及自由发挥度要比混凝土房屋要强很多。并且钢结构在建筑所需要占用的面积较小,从而实现建筑空间的高效利用,这种建筑施工效果是钢筋混凝土等材料无法实现的。

1.3钢结构住宅的综合效益高:钢结构房屋自重轻,可以减少基础部分的投资。在建筑施工的过程中,钢结构施工工期短,需要人力少,从而为企业节约成本。更为重要的是钢结构在施工的过程中,外界因素所造成的影响费用较小,从而确保工程的顺利开展。

1.4利用率高、环保:在施工过程中,钢结构建筑现场作业量小、无噪声、不污染周围环境,不会产生大量的灰尘以及垃圾废物,且在建筑拆除之后还能够再次的应用,这对于节约型社会的建设具有重要的推动意义。

1.5钢结构房屋的缺点:对建筑物的耐腐蚀性和耐火性要求较高,用钢量稍大,造价偏高。

2、高层钢结构房屋的结构体系

2.1钢框架结构体系

框架结构体系是指,沿房屋的纵向和横向均采用框架作为承重和抵抗侧向力的主要构件所构成的结构体系。由于框架体系能够提供较大的内部使用空间,因而建筑布置灵活。此外,框架的杆件类型少,构造简单,施工周期短。所以,对层数不太多的高层结构来说,框架体系是一种应用比较广泛的结构体系。纯框架结构的抗侧移能力主要决定于柱和梁的抗弯能力,当楼层数较多时要提高结构的抗侧移刚度只有加大梁和柱相的截面。截面过大,就会使框架失去其经济合理性。

2.1框架—支撑框架结构体系

框架—支撑框架结构就是在框架的一跨或几跨沿竖向布置支撑而构成,其中支撑桁架部分起着类似于框架—剪力墙结构中剪力墙的作用。在水平作用下,支撑桁架部分中支撑构件只承受拉、压轴向力,这种结构形式无论是从承载力或变形的角度看,都是十分有效的。与纯框架结构相比,这种结构形式大大提高了结构的抗侧力刚度。支撑在水平荷载作用下所产生的侧移,主要是由其杆件的轴向拉伸或压缩变形引起的。与杆件的剪弯刚度相比较,杆件的轴向变形刚度要大得多。也就是说,支撑的抗侧力刚度相对于框架的抗侧力刚度要大得多。

2.3筒体结构体系

筒体结构体系是在超高层建筑体系中应用较多的一种种,按筒体的位置、数量等分为钢框架—核心筒体结构体系、外框架筒结构体系、筒中筒结构体系和束筒结构体系。

2.3巨型结构体系

巨型结构体系是一种新型的超高层建筑结构体系.是由梁式转换楼层结构发展而形成的巨型结构又称超级结构体系,是由不同于通常梁柱概念的大型构件—巨型梁、巨型柱组成的简单而巨型的主结构和由常规结构构件组成的次结构共向工作的一种结构体系。

3、钢结构设计要点分析

3.1合理的结构选型与结构布置

高层钢结构设计中,常采用钢-混凝土组合结构,在地震烈度高或很不规则的高层中,不应单纯为了经济去选择不利抗震的核心筒加外框的形式。宜选择周边巨型src柱,核心为支撑框架的结构体系。结构的布置要根据体系特征,荷载分布情况及性质等综合考虑。一般的说要刚度均匀,力学模型清晰。尽可能限制大荷载或移动荷载的影响范围,使其以最直接的线路传递到基础。柱间抗侧支撑的分布应均匀。其形心要尽量靠近侧向力(风震)的作用线,否则应考虑结构的扭转。结构的抗侧应有多道防线。 比如有支撑框架结构,柱子至少应能单独承受1/4的总水平力。

3.2合理选择钢结构的构件

在钢结构设计中,设计人员要注意正确选用质量合格的钢材、连接材料和焊接材料。钢结构所用的钢材应该具有抗拉强度、延展强度、伸长度、冷缩度和硫、碳等物质含量的合格证明。在地震频发区,钢材除以上要求以外,还要求它们具有合格的冲击韧性强度。钢结构的钢材主要采用的是 Q235 和Q345,不建议使用等级为 A 的钢材,因为这类钢材的冲击韧性强度和延展性达不到标准。当强度起控制作用时,可选择Q345; 稳定控制时,宜使用Q235。焊接材料的质量直接影响整个钢结构的安全,所以应该根据钢结构的受力性能和焊缝的受力情况,确定焊接材料的等级。

3.3 加强对钢结构设计的技术规范的重视

在钢结构的设计中,要注意做到的是技术要先进、经济要合理、质量要保证,所以技术人员要重视对技术标准和规范的学习,并且要深刻的理解和贯彻,形成一种严格遵循标准和规范的严谨工作习惯。现在的钢结构设计的计算和构造绘图过分依赖电脑,缺乏动手能力的实际操作能力。所以在实际中应该要注意对钢结构的实际掌握。在钢结构设计中还要重视对钢材、连接材料和焊接等材料的应用标准,要在了解相关规定的要求下,提出合理的材料选用和质量要求。

3.4重视节点设计

连接节点的设计是钢结构设计中重要的内容之一。应保证连接节点的安全、耐久及经济的要求。节点应传力简捷、明确、可靠;节点计算的模型应与实际受力情况一致;保证节点连接有足够的强度和刚度,避免由于节点不足而导致整体结构的破坏;采用合理的细部构造使节点连接具有较好的延性。

二、高层建筑混凝土结构设计

1、高层混凝土结构类型

1.1框架结构体系

框架结构体系是由楼板、梁、柱及基础四种承重构件组成。框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。

1.2剪力墙结构体系

剪力墙结构体系建筑是由一系列纵向和横向剪力墙及楼盖组成的空间结构。剪力墙承受竖向荷载及水平荷载的能力都较大。其特点是整体性好,侧向刚度大,水平力作用下侧移小,并且由于没有梁、柱等外露与凸出,便于房间内部布置。缺点是不能提供大空间房屋,结构延性较差。

1.3框架—剪力墙结构体系

在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。

1.4筒体结构体系

随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。

2、高层混凝土结构设计要点

2.1 在设计中重视规范、规程中有关结构概念设计

在结构体系上,应重视结构的选型和平、立面布置的规则性,择优选用抗震和抗风性能好且经济合理的结构体系。结构布置应使结构能抵抗任意方向的地震作用,应使结构沿平面上两个主轴方向具有足够的刚度和抗震能力。结构除需要满足水平方向刚度和抗震能力外,还应具有足够的抗扭刚度和抵抗扭转震动的能力。在一个独立的结构单元内,应避免应力集中的凹角和狭长的缩颈部位;避免在凹角和端部设置楼、电梯间;减少地震作用下的扭转效应。2.2采用合理的结构选型

应尽量避免采用结构不规则的设计方案。在抗震规范与高规中,对结构的总高度都有严格的限制,对于超高问题应特别重视,应严格按照规范要求进行设计。在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙。

2.3结构计算与分析

在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件。对计算结果的合理性、可靠性进行判断是十分必要的,是结构工程师最主要的任务之一。结构整体计算需控制剪重比、刚度比、位移比、周期比等参数。还要注意高层建筑的抗震设计,准确分析个单体、塔楼、裙房的抗震等级。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重构件(如屋顶处的装饰构件),由于高层建筑的地震作用和风荷载均较大,必须严格按照规范中的非结构构件的计算处理措施进行设计。

结束语

总而言之,钢结构设计与混凝土结构设计各有各的特点,在具体的高层建筑施工中要合理进行结构设计的选择,充分发挥各自的优势,从而确保高层建筑施工质量与安全,更大限度的发挥高层建筑本身的功能,为人们生活提供质量保证与安全保障。

参考文献:

[1]苏光能.高层建筑结构设计中混凝土的应用[J].中国新技术新产品,2010(2).