首页 > 文章中心 > 空气质量标准

空气质量标准

空气质量标准

空气质量标准范文第1篇

针对20世纪以来国内外环境空气质量标准的新进展,着重分析了美国、欧盟、世界卫生组织(WHO)、日本

>> 有感于《环境空气质量标准》的修订 关于全面实施《环境空气质量标准》(GB3095―2012)的几点思考 关于室内空气质量标准及检测方法的思考 环境空气质量评价方法研究 环境空气质量新标准下的空气理化检验教学改革 中美城市空气质量信息公开平台对比研究 “京Ⅴ”标准为北京空气质量加分 车内空气质量强制性标准 空气质量年均值标准用于短期评价的研究 北仑区环境空气质量特征及原因分析 全国环境空气质量现状与趋势 浅谈加强环境空气质量自动监测管理 永安市环境空气质量预报方法研究及应用 开封市环境空气质量近十年变化趋势研究 天津市东丽区环境空气质量监管研究 资阳市环境空气质量现状分析及防治对策研究 蓟县环境空气质量调查分析与对策研究 清镇市环境空气质量监测优化布点研究 城市环境空气质量自动监测优化布点研究 EXCEL在空气质量指数计算及环境空气质量分析中的应用 常见问题解答 当前所在位置:l.

[14] U S EPA.National ambient air quality standards (NAAQS)[EB/OL].[2012-02-23]..

[15] World Health Organization.Air quality guidelines-global update 2005[R].Bonn:WHO Regional Office for Europe,2005.

[16] Environmental quality standards in Japan:air quality [EB/OL].[2012 -02-23]..

[17] 贾海红,王祖武,张瑞荣.关于PM2.5的综述[J].污染防治技术,2003,16(4):136-137.

[18] 腾恩江,吴国平,胡伟.环境空气PM2.5监测分析质量保证及其评价[J].中国环境监测,1999,15(2):36-38.

[19] 廖永丰,王五一,张莉.城市NOx人体健康风险评估的GIS应用研究[J].地理科学进展,2007,26(4):44-46.

[20] U S EPA.Air quality criteria for ozone and related photochemical oxidants[R],Washington D C:WHO,2006.

[21] U S EPA.National ambient air quality standards for ozone final rule[R].Washington D C:WHO,2008.

[22] WHO.Air quality guidelines for Europe[R].Washington D C:WHO,2000.

[23] U S EPA.National ambient air quality standards for lead final rule[R].Washington D C:WHO,2008.

[24] 胡必彬.欧盟关于环境空气中几项污染物质量标准制定方法[J].环境科学与管理,2005,30(3):24-26.

[25] 国务院办公厅.关于推进大气污染联防联控工作改善区域空气质量指导意见的通知(〔2010〕33号)[EB/OL].[2012-6-20]..

空气质量标准范文第2篇

关键词 地下铁道车辆,空调客车,空气参数

目前地铁车辆空调系统设计过程中,没有现成经验可以遵循,尤其缺乏车内空气参数的相关标准,给地铁车辆空调系统设计带来一定难度。这样容易造成车内温、湿度等参数设计不合理,无法满足乘客的热舒适性要求。车内通风效果差、低浓度污染物长期存在以及低劣的室内空气品质,严重威胁乘客的身体健康。如不重视车内空气环境品质的综合研究并制定相关标准,必然会出现与病态建筑综合症类似的严重问题。本文就地铁空调客车车内空气参数标准涉及的内容和相关问题进行探讨。

1  室内环境品质评价指标

1. 1  室内热环境评价指标

热环境是对人的热损失影响的环境特性。热舒适是人对热环境满意与否的表示。热环境是客观存在的;而热舒适是人的主观感觉。

国际标准组织的标准iso 7730 以丹麦fanger 教授的pmv(predicted mean vote) 模型为基础,运用pmv -ppd ( predicted percentage of dissatisfied) 指标来描述和评价热环境。pmv -ppd 指标综合了影响人体热感觉的6 个因素,即:空气温度、湿度、平均辐射温度、空气流速、衣服热阻和活动强度。目前,这些指标已经成为主要的热环境评价指标。

1. 2  室内空气品质评价指标

在美国暖通空调工程师协会(ashrae) 标准ashrae62 -1989r 中,首次提出了“ 可接受的室内空气品质”的概念,并将其定义为“ 空调空间中绝大部分人(80 % 或以上) 没有对室内空气表示不满意, 并且空气中没有已知的污染物浓度达到了可能对人体健康产生严重威胁的浓度”。

随着对室内空气品质研究的深入,室内空气的内涵不断扩展。目前,室内空气中发现所含污染物种类繁多,对空气品质的影响各不相同,因此选取的各项评价指标必须具有代表性而避免重复。除新风量是最基本也是最重要的指标外,一般还推荐一氧化碳、二氧化碳、可吸入性微粒(ip) 、二氧化硫、甲醛、室内细菌总数、温度、相对湿度、风速等12 个指标。

1. 3  室内气流组织评价指标

室内气流组织是指气流的流型与分布特性。室内空气龄、新鲜空气的利用率、室内的换气效率、空气的排污效率等指标可用来反映所选择的气流组织是否恰当。

合理的气流组织,不仅可以将新鲜空气按质按量送到工作区,还可以及时将污染物排出,提高室内空气品质。由于对室内气流组织问题的重要性认识较晚,因而至今尚未形成统一的标准。一般认为,室内气流组织的评价指标至少应包括室内空气龄、新鲜空气的利用率、室内的换气效率和空气的排污效率、空气流速、质点空气变化率等。其中室内的换气效率、室内的排污效率是从排除污染物的角度对气流组织进行评价的指标。

1. 4  综合评价

从热环境和室内空气品质的定义出发,不应将室内环境品质仅仅等同于一系列污染控制指标,并简单地判断这些指标是否合格;而应采用主观评价和客观评价相结合的方法,对室内空气环境品质进行综合分析。

2  地铁空调客车车内空气参数选取

过去,室内空气参数标准主要以温、湿度为指标的热舒适性为主,涉及空气品质的也只有二氧化碳含量、含尘量、新风量,对其它低浓度污染体的认识不够。随着空气品质的深入研究及对低浓度污染物认识的加深,发现其对人体身心健康有很大影响。因而在制订地铁空调客车车内空气参数标准时,要考虑将这些低浓度污染物控制在卫生标准允许的范围内。

地铁空调客车车内空气参数可根据建筑空调室内空气参数研究成果,从地铁车辆的实际情况出发,结合热环境、空气品质、气流组织等三方面评价的各项指标来选取。

2. 1  热舒适性指标

(1) 温度

温度是影响人体热舒适性的重要指标。有效温度(et3 ) 是一个等效的干球温度。et3 值把真实环境下的空气温度、相对湿度和平均辐射温度规整为一个温度参数,使具有不同空气温度、相对湿度和平均辐射温度的环境能用一个et3 值相互比较。它综合评价室内的热环境的状况。

(2) 相对湿度

对静坐者的舒适性来说,湿度对人体热舒适性的影响不大。虽在有效温度指标也包含了湿度的作用,但由于湿度对呼吸的健康、霉菌的生长和其它与湿度有关的现象有很大的影响,因此将湿度又单独作为一个指标。

(3) 空气流速

空气流速是车内热舒适性的重要指标,也是车内空气参数的一项重要指标。大量研究表明,空气流速对人的热舒适感有很大的影响。气流速度增大时,会提高对流换热系数及湿交换系数,使对流散热和水分蒸发散热随之增强,加剧人的冷感。气流速度过小,且衰减快,风吹不到地面,容易造成车内垂直温差过大,有头凉脚热的感觉。

2. 2  空气品质指标

(1) 新风量

新风量是车内空气品质的一项重要基本指标, 其作用是调节车内空气质量,使车内环境中的各种污染物浓度保持在卫生标准所容许的浓度值以下。人们对新风的研究已从仅仅注重其“ 量”转变到更关注其“质”的问题上来,强调新风的利用效率和新鲜程度。传统观念认为,新风仅是为清除人体所产生的生物污染。而ashrae62 -1989r 中认为用以确定新风量的污染物来自人体和室内气体污染源两方面,对最小新风量提出了新的、更严格的要求。因此,在空气参数标准对新风量的要求仍不能忽视。

(2) 二氧化碳(co2)

co2 是车内污染物的主要成分,它由人呼出, 其发生量与人数及活动量有关。人们在呼出co2 的同时,身体其他部分也不断排出污染物,如汗的分解产物及其它挥发气体(异味产生的主要因素) 。在以人为主要污染源的场合,co2 浓度的高低基本上能完全反映人体污染物散发的情况。因此co2 浓度指标可以作为车内异味(主要是人体体味) 或其它有害物质的污染程度的评价指标,也是可以反映室内通风情况的评价指标,是判断空调列车污染程度最主要的参数之一。

(3) 一氧化碳(co)

co 作为主要的燃烧产物,往往被作为室内环境烟雾的评价指标。ashrae62 -1989r 认为, 只要室内出现环境烟草烟雾( ets) ,就不能达到可接受的室内空气品质。据此,一旦车内有吸烟现象发生,地铁空调客车车内空气品质肯定达不到要求。因此将co 选为车内空气参数的目的是防止co 浓度过高而危害人的健康。

(4) 可吸入性微粒(ip)

地铁在隧道内运行,运行中因电刷、闸瓦制动产生的粉末及隧道内灰尘,必然会通过各种渠道进入车内。人员的庞杂及其上下流动性较大,对车内尘埃浓度有很大的影响。再加烟雾中含有大量的烟尘微粒,使可吸入性微粒也成为车内空气品质必要的衡量指标。

(5) 挥发性有机化合物(voc)

地铁车辆为保证车体气密性及车内装饰和节能的要求,车内使用了大量的装饰材料和保温材料。这些材料释放的voc , 造成车内污染物的增加,影响室内空气品质。voc 的浓度过高会直接刺激人们的嗅觉和其它器官。其主要代表物质为甲醛。在空气参数标准中应将甲醛作为一项控制标准。

(6) 二氧化硫(so2)

室内空气中含有的so2 成分主要来自室外大气污染渗透和吸烟产生的烟雾之中,虽然so2 浓度不是很高,但由于其危害性较大,也将其选取为空气品质指标之一。

(7) 空气微生物

客车内空气中细菌的来源很多,必须选定一个指标来反映空气微生物的污染情况。室内空气细菌学的评价指标技术一般多采用细菌总数。我国仿照日本采用层降菌法,以菌落数判断空气清洁程度。

(8) 空气负氧离子

根据人体卫生要求,在每立方米的空间负氧离子含量不少于400 个,否则人就会感到不适。当负氧离子浓度达到一定程度, 可降低车内的漂尘、co2 含量、细菌数目等,也可消除悬浮的微生物、车内有害气体、霉菌,并抑制细菌滋生,改善车内的空气品质。考虑到空调客车人员密度极大的特殊情况,有必要将其作为衡量车内空气品质的指标之一。

2. 3  气流组织指标

换气次数是一项传统的通风设计参数。室内空气龄定量反映了室内空气的新鲜程度,可以综合衡量车内的通风换气效果。地铁空调客车虽然车内限界低、空间狭小、人员多且站立,但车辆到站频繁、车门多且宽、开关门频繁、乘客停留时间短,因此只要保证一定换气次数就可获得较好的通风换气效果,无须具体地研究空气龄等指标。

3  地铁空调客车的特殊性

3. 1  地铁车辆与铁道车辆

地铁车辆从某种程度上可视为“ 移动的建筑物”,与地面铁路客车有许多相似之处。地面铁路客车车内空气参数标准经过长期研究,积累了丰富的成果,也为地铁空调客车车内空气参数标准的研究提供了经验。但地铁车辆空调与地面铁道车辆空调在运行条件和舒适性要求方面有很大差别,因而两者的车内空气参数标准也应有所区别。

3. 2  地铁车辆运行特点

地铁空调客车虽然室内空间狭小、人员密度大,但运行区间短、乘客逗留时间短、上下乘客相对多,乘客对车内温、湿度感受十分明显,但对空气品质敏感程度相对较低。可见,乘客对车内热舒适性的温、湿度的指标要求较高,对车内空气品质的要求相对低一些。因此,建议车内空气参数标准中仍然以热舒适性指标为主,而空气品质中某些指标可适当降低,其中co2 含量和含尘量标准可以适当放宽。

3. 3  空气流速

空气流速不仅是室内热舒适性的重要指标,也是室内空气参数的一项重要指标。地铁客车室内限界低、空间狭小,顶高仅为2. 1 m 左右,且乘客人员多(定员为6 人/m2 ,严重超员时可达8 人/m2 ,多数人处于站立状态),因此不能直接把风送到地板上,会有头凉足热的感觉。此外,由于工作区离送风口较近,给送、回风带来一定难度:若送风的平均风速低,乘客就会感到不凉爽,且由于风速低、衰减快而排风困难,容易造成送风短路(即风刚出送风口未经人体热交换就会从回风口又回到机组);若风速过高,由于出风口温度低(仅15~20 ℃),又会使人有吹冷风的感觉。因而,地铁客车室内的空气流速指标应充分考虑上述影响因素,与建筑空调及铁路客车标准有较大区别。道内的空气主要是通过隧道通风设备摄取的地面空气,在通风过程中可能出现二次污染,其“ 质”有所下降。

3. 4  新风问题

同时地铁运行时产生大量灰尘,也将污染受地铁车辆限界影响,制冷机组的选型受到限隧道内的空气。在地铁车辆的新风问题上,不仅要制,一定程度上限制了车内新风量的摄取。新风清注重“量”,更要注重“质”的要求。特别是地铁客车洁度近年也受到人们的关注,在地铁空调客车内新新风量受到各种限制时, 新风利用率更加显得重风的质量也应该引起重视。特别是地铁车辆在隧要。道内运行,客车吸入的新风是隧道内的空气。

参 考 文 献

1  ashrae standard 62 -1989r : ventilation for acceptable indoor air quality. 1989

2  abdou o a , losch h g. the impact of the building indoor environment on occupant productivity -recent of indoor air quality. ashrae trans , 1994 : 902

3  persily a k. evaluating building iaq and ventilation with indoor carbon dioxide. ashrae trans , 1997 : 193

4  沈晋明. 室内污染物与室内空气品质评价. 通风除尘,1995 ,24(4) :10

5  李先庭,杨建荣,王欣. 室内空气品质研究现况与发展. 暖通空调,2000 ,30(3) :36~40

空气质量标准范文第3篇

关键词 统计分析;聚类;MATLAB;空气质量

中图分类号TP39 文献标识码A 文章编号 1674-6708(2014)121-0145-02

近年来,中国很多城市经常出现雾霾天气,“PM2.5”也成为人们的热议话题,空气质量问题日益受到人们的关注。空气的污染严重危害人们的身心健康,为降低和减少污染,需要对影响空气污染的因素进行监测和统计分析,从中找到导致空气污染的主要污染物项目,以便于有针对性的找到污染根源,从而更好地治理空气污染问题。

1 空气质量指数计算方法

2012年国家新的环境空气质量标准[3],同时,国家环境保护部了《环境空气质量指数(AQI)技术规定(试行)》[4],空气质量指数(AQI)分级计算参与评价的污染物在过去参与评价的污染物仅为二氧化硫(SO2)、二氧化氮(NO2)和粒径小于等于10?m可吸入颗粒物(PM10)等三项的标准上,增加了粒径小于等于2.5?m的颗粒物(PM2.5)、一氧化碳(CO)和臭氧(O3)等项目。

根据过去24小时一个城市所有监测站点的各项污染物浓度算术平均值计算该城市的日AQI,反映这个城市过去一天的空气质量状况。

AQI范围为0~500,导致AQI>50的污染物为首要污染物,首要污染物可以为多项;导致AQI>100的污染物为超标污染物。AQI值越大,说明空气受污染的程度越高,对人体的健康危害也就越大。

2 合肥市空气质量数据分析

分析合肥市空气质量及影响因子,是对合肥市的AQI指数和参与评价空气质量的污染物的监测数据进行分析,数据来源http:///,其中包含日AQI和各项污染物的日平均实测浓度值。实验使用MATLAB工具进行,实验数据选取的时间段从2013年11月1日至2014年4月30日共181天,数据项为日AQI和6个污染物日平均浓度值,共181组,表示为:DATA=(aqi,attr)181×7,其中第一列aqi为每天的日AQI值,attr为181×6的矩阵,各列依次为6个污染物PM2.5、PM10、CO、NO2、SO2、O3的181天日平均浓度值。

2.1 数据的数字特征

为了观察数据的大致情形,用函数boxplot(X)作箱形图,如图1所示。由图1箱形图可知,合肥市AQI值的1/4分位数接近100,说明空气污染程度较高,同时观察PM2.5和PM10中位数都在100附近,说明这两个指标对空气污染较重。

2.2 聚类分析

人们在认识事物时首先要区分不同的事物,然后分析事物内部和事物之间的差异。针对事物对象的重要指标或综合特征,聚类分析是根据对象间的相似程度或相异程度将一组数据进行分组,分到同一组的对象具有相似的性质,不同类的对象性质差别很大,然后对这些组数据进行研究。下面对参与评价空气质量的污染物的数据进行聚类分析。

从图1中可以看出,由于数据的计量单位不同,且各列数据的变化很大,为减少不同的指标的标量对实验结果的影响程度太大,使用函数Z=zscore(D)将数据进行标准化,该函数返回D中各列数据与均值间的偏差,并用其标准差标准化。对于列向量V,标准化后的数据Z=(V-mean(V))./std(V)。

使用MATLAB工具箱中的函数对数据聚类分析。

聚类的算法如下:

function ATTR-Cluster(attr)

attrScaled=zscore(attr);%数据标准化

dis=pdist(attrScaled,’Euclid’);%欧式距离

tree=linkage(dis,’method’);%method分别取single/complete/average

TreeCluster=(tree,6);%构造最多6类的构造类

使用函数c=cophenet(tree,dis)计算不同的聚类方法的相干系数,该函数用来度量聚类结果的有效性,对于要求很高的解,c应接近1。计算最短距离法、最长距离法和平均距离法的相干系数分别为0.6746,0.7831和0.7463,在这3种实验方法中,最长距离法是效果最好的一种方法。

3 结论

本文依据AQI技术规定,使用MATLAB工具对合肥市空气质量数据进行了分析,认为合肥市近半年空气污染程度较高,污染物PM2.5、PM10和CO对合肥市空气污染影响程度较高;对参与评价空气质量的污染物的监测数据进行聚类分析,实验结果说明聚类结果与各项污染物的监测值综合评价关系较为密切,能够综合反映合肥市的空气质量状况。数据分析也进一步证明了新的空气质量评价标准增加了3个污染物项目,对于评价空气质量更为科学。

空气质量数据进行分析,可以帮助找到影响空气质量的影响因子,确定导致空气污染的主要污染物项目,但是,环境空气质量除了受这些污染物项目的影响,还受到当地的气候环境变化的影响,这需要更进一步的研究才能有助于解决空气污染治理问题。

参考文献

[1]范金城,梅长林.数据分析[M].北京:科学出版社,2002.

[2]周品,赵新芬.MATLAB数理统计分析[M].北京:国防工业出版社,2009.

空气质量标准范文第4篇

关键词:快堆 燃料棒 氦气容积比 气相色谱

中图分类号:TL352 文献标识码:A 文章编号:1674-098X(2014)03(c)-0195-03

快堆,即快中子增殖反应堆,可将天然铀资源的利用率从压水堆的1%提高到60%~70%,对我国核电发展具有重大战略意义。快堆作为新一代国产核燃料元件制造技术,燃料棒内氦气容积比是影响燃料堆运行的关键因素,因此需要对其内部空间氦气容积比进行检测。

目前,在国际、国内公开发表的文献中尚未见到快堆燃料棒内氦气容积比的检验方法。在快堆燃料棒(以下简称燃料棒)制造工艺过程中,影响燃料棒内氦气容积比的因素主要有:充入氦气之前对燃料棒的处理、氦气的充入过程和燃料棒内氦气的释放过程。燃料棒内可能残留的空气及其他杂质气体以及在充入氦气中的杂质气是影响氦气容积比的主要因素。其中以杂质O2、N2对氦气容积比的影响最大,其他杂质气包括Ne、H2、CO、CH4、CO2和H2O对氦气容积比也有一定的影响。作为一个全新的检测项目,本方法设计、加工了燃料棒穿刺装置,探讨采用气相色谱法测定燃料棒内氦气中杂质组分O2、N2、Ne、H2、CH4、CO、CO2的条件,采用杂质扣除法得出燃料棒内氦气容积比。

1 实验部分

1.1 仪器与主要材料

气相色谱仪,HP6890型;燃料棒穿刺装置(见图1);真空泵,极限真空度达到10-2Pa;真空计,测量范围(10-1~105)Pa;氦气中O2、N2、Ne、H2、CH4、CO、CO2混合气体标准物质(见表1);注射器:满足取气体积(1~5)mL。

1―燃料棒试样;2―穿刺手柄;3―阀1,直通阀;4―取样口;5―阀2,直通阀;6―标气瓶;7―阀3,直通阀;8―真空计;9―阀4,直通阀;10―压力表;11―真空泵;12―阀5,直通阀。

1.2 试验方法

连接装置各部件,用“氦气中O2、N2、Ne、H2、CH4、CO、CO2混合气体标准物质”吹扫管路后抽真空至真空度优于100 Pa;注入约1.0×105 Pa上述标准气体进入“燃料棒穿刺装置”,用注射器取(0.5~1.5)mL标准气体分析;抽真空至真空度优于100 Pa,操作“穿刺手柄”对样品棒穿孔,待释放平衡后取样分析,扣除杂质含量,即为燃料棒中氦气容积比。

2 结果与讨论

2.1 进样体积的影响

按照试验方法,通入标气“3#标准物质”,分别提取不同体积的标准气体进入气相色谱仪分析,其进样体积与杂质峰面积的关系见表2。

对(表2)中相关数据及线性相关系数[1]分析得出:进样体积为(0.5~3.0)mL、置信度为95%时,O2、N2、Ne、H2、CH4、CO六种组分峰面积随进样体积的变化成线性;CO2进样体积大于2 mL时出峰异常,进样体积为(0.5~1.5)mL、置信度为95%时峰面积随进样体积的变化成线性。

考虑到样品气体总量有限,本试验确定:气体进样体积为1.0 mL。

2.2 泄漏率的影响

由于样品气压力低于大气压,因此必须严格控制装置的泄露率,避免空气进入影响分析。按照试验方法,通入标气“3#标准物质”,通过控制阀获取“燃料棒穿刺装置”不同的泄漏率。在不同泄漏率下,分别取1 mL标准气体分析三次,不同泄露率下三次分析的平均值见表3。

对表3中试验结果使用狄克逊(Dixon)准则[2]判断:在泄漏率(10Pa/30s~10Pa/190s)、置信度95%下,待测气体杂质含量一致;但是当泄漏率增大后,空气会一定程度影响O2和N2的测定。

本试验确定:“燃料棒穿刺装置”的泄漏率优于10 Pa/90 s。

2.3 真空度影响

装置真空度的大小会影响杂质的测定结果。真空度较小时,装置内残留的部分杂质气氛会使测量结果偏高,因此必须严格控制装置的真空度。按照试验方法,通入标气“3#标准物质”,在泄漏率优于10 Pa/90 s下,改变不同的真空度,取1 mL标准气体进行分析,测定结果见表4。

由表4可知:O2、N2、H2、CO2在真空度优于1000 Pa、置信度95%下使用狄克逊(Dixon)准则判断测量结果一致,Ne、CH4、CO在真空度优于10000 Pa测量结果一致。

本试验确定:测量前装置真空度优于100 Pa。

2.4 标准曲线与检出限

在泄漏率优于10Pa/90s、真空度优于100 Pa下,分别取1#~5#标准气体1mL测定不同含量的标准气体,其组分峰面积随含量的变化曲线见图2。按照国家标准(GB 4946-85)《气相色谱法术语》[3]中对于检测限的规定:随单位体积的载气或在单位时间内进入检测器的组分所产生的信号等于基线噪声2倍时的量,气相色谱法通常对定量检测下限的要求是组分响应信号大于10倍基线噪声量。按照此规则得出的检测下限远低于0.1%。

从图2可以看出:Ne、O2、N2、CH4、CO、CO2的含量在0.01%~5.0%范围内、置信度为95%时,峰面积随含量的变化成线性;H2含量在0.11%~5.3%范围内、置信度为95%时,峰面积随含量的变化成线性。

2.5 方法精密度

按照试验方法,在泄漏率优于10 Pa/90 s、真空度优于100 Pa下,取1 mL标准气体分析六次,其中O2、N2和H2采用“4#标准物质”校准,其他杂质采用“5#标准物质”校准,测定结果见表5。

本试验确定:O2、N2、Ne、H2、CH4、CO、CO2杂质的测量范围为0.11%~5.0%,其相对标准偏差分别优于4.0%、5.0%、4.0%、5.0%、2.0%、2.0%、2.0%。

2.6 样品分析

按照试验方法,测量模拟燃料棒内氦气容积比,测量结果见表6。

本试验设计、加工的“燃料棒穿刺装置”满足快堆燃料棒内氦气容积比测量要求;试验测定条件为:“燃料棒穿刺装置”空腔内真空度优于100 Pa,泄漏率应优于10 Pa/90 s,样品分析体积为1mL;本试验确定O2、N2、Ne、H2、CH4、CO、CO2杂质的测量范围为0.11%~5.0%,方法测定的相对标准偏差分别优于:4.0%、5.0%、4.0%、5.0%、2.0%、2.0%、2.0%。

参考文献

[1] 郑用熙.分析化学中的数理统计方法[M].北京:科学出版社.

空气质量标准范文第5篇

国家室内车内环境及环保产品质量监督检验中心是在原国家室内环境与室内环保产品质量监督检验中心基础上成立的,是我国第一家专业从事室内和车内环境质量检测测试的部级检测中心。今年三月又是国家《室内空气质量标准》实施十周年和国家《乘用车内空气质量评价指南》实施一周年,室内和车内环境污染问题的防控问题,备受关注。有效解决室内和车内环境污染问题,能够促进我国房地产和汽车制造产业的健康发展。

国家室内车内环境及环保产品质量监督检验中心宋广生主任介绍,目前室内和车内环境行业发展情况主要有以下几个方面需要大众关注。

室内和车内PM2.5测试评价标准为35μg/m3

我国十年前实施的《室内空气质量标准》中已经规定了可吸入颗粒物(PM10)日平均值150μg/m3,而估计PM2.5的日平均浓度可高达80μg/m3左右。

国家环保部根据我国情况于2012年的《环境空气质量标准》GB3095―2012,规定环境空气中的PM2.5控制浓度一级标准为日平均浓度35μg/m3,与世界卫生组织推荐准则值空气中的PM2.5日平均浓度25μg/m3的标准相近,可以作为室内和车内环境中的PM2.5的测试评价标准。

使用空气净化器是目前解决室内PM2.5污染最有效方法

据测试,具有高效过滤功能的空气净化器可以有效地净化室内和车内环境中的PM2.5污染,据测试高效过滤器可以净化0.3μg以下的颗粒物,净化效率可以达到99.9%。如果是空气净化器里安装了超高效过滤器,净化效率可以达到99.999%。

对于降低空气中PM2.5污染造成的健康影响,在大气环境污染问题短时间内难以解决的情况下,推广使用室内空气净化器净化是最有效的净化室内和车内环境污染的方法之一。

专家正在对车内空调和净化系统改进组织科研

在解决车内环境污染问题方面,中心主要围绕着三个方面开展工作:

一是怎样控制车内空气污染,特别是新车内的空气污染问题。解决新车内空气质量问题已经成为汽车企业提高汽车质量的主要问题之一,国家室内环境与室内环保产品质量监督检验中心的车内空气质量检测实验室成为我国第一个具有部级认证认可的车内空气质量检测实验室。

二是控制汽车内饰件的污染问题。国家室内车内环境及环保产品质检中心在广泛征求大家意见的基础上,制订了《汽车内饰件VOC测试方法技术规范》,同时为汽车企业和汽车内饰件企业开展汽车内饰件VOC测试,为提高车内空气质量创造有利条件。