首页 > 文章中心 > 移动接收技术

移动接收技术

移动接收技术

移动接收技术范文第1篇

论文摘要:广播电视信号传输和播出手段主要有微波、卫星、光缆3种,本文简述了的广播电视移动接收的制式及技术。

科学技术的飞速发展给各行各业带来了挑战和机遇,随着广播事业的不断发展和进步,移动接收成为发展方向之一。广播电视虽然有很长的历史,但移动接收的进展却不尽人意。即使是调频广播,在汽车高速行驶中的接收也往往遇到困难。电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到解决,所以广播电视的移动接收引起广电界的重视。

一、移动电视

移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响。移动和便携的独特优势使该系统能满足现代信息社会“信息到人”的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

二、移动接收制式

众所周知,地面数字电视广播系统目前有多种制式,除了国外正在使用的几种标准外,还有我国自己提出的若干种制式。这些制式总体上可以分为单载波方式和多载波方式两类,美国用的ATSC是单载波的,欧洲的DVB-T是多载波的。国外主要有三种数字电视地面广播标准:欧洲的DVB-T(DigitalVideoBroadcasting-Terrestrial)、美国的ATSC(AdvancedTelevisionSystemsCommittee)和日本的ISDB-T(IntegratedServicesDigitalBroadcastingTerrestrial)(综合业务数字广播)。

ATSC采用的是单载波调制方式(VSB),抗多径干扰和抗多谱勒效应能力差,难以建立单频网和进行移动接收。ISDB-T虽然支持单频网和移动接收的应用要求,但是该技术应用较少。从世界各地对数字电视地面广播标准的采用情况来看,DVB-T标准较ATSC和ISDB-T更具优势。DVB-T是欧洲DVB系列标准中较新的一个标准(此外还有有线数字电视标准DVB-C,以及卫星数字电视标准DVB-S),也是最复杂的DVB传输系统。此标准是1998年2月批准通过的。DVB-T标准的核心是MPEG-2数字视音频压缩编码,采用编码正交频分复用COFDM(CodedOrthogonalFrequencyDivisionMultiplexing)调制方式,适用于大范围多发射机的8k载波方式。为高清晰度电视(HDTV)信号传输提供大于20Mbps的净荷码率,支持简单天线室内固定接收。为标准清晰度电视(SDTV)信号传输提供大于5Mbps的净荷码率,并能在车速移动条件下支持移动接收。具有单频组网能力。目前采用DVB-T标准的国家和地区有德国、西班牙、挪威等欧洲国家及澳大利亚、新加坡等其它国家。其中新加坡和德国等国将移动接收和手持设备作为主要方向。欧洲的DVB-T标准最初是为便携和固定接收而设计,它采用的是COFDM(编码正交频分复用)多载波调制方式,其调制参数(如星座图、编码率、保护间隔等)可调,可提供120种常规模式和1200种分级模式。随后,针对DVB-T(DigitalvideobroadcastingTerrestrial)在移动接收中的不足,人们提出了一种DVB-H的制式专门用于移动接收,而原有的数字音频广播(DAB)也发展到播出多媒体。DVB-H(Digitalvideobroadcastinghandheld),通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。该标准是欧洲的数字电视标准DVB-T的扩展应用。和DVB-T相比,DVB-H终端具有功耗更低、移动接收和抗干扰性更强的特点,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收信号。也可以说DVB-H标准依托DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等手持便携设备能够在固定和移动状态下稳定地接收广播电视信号。DVB-H采用时分数字多媒体广播带宽、以脉冲方式发送各频道的数据。一般情况下,除接收所需频道的数据外,调谐器电路在其它时间均处于关闭状态,因此可有效减少耗电。DVB-H的基本商业要求是用电池供电的小的屏幕移动终端。它应该能够在手提式的,移动的和室内的环境中,使用单一天线接收多媒体业务。目前看来,数字移动电视非数字电视地面广播莫属。中国我国地面数字电视传输标准于2006年8月18日颁布(GB20600-2006),并自2007年8月1日起正式实施(国标地面数字电视标准简称为DTMB-DigitalTerrestrialMultimediaBroadcasting。较早时也称为DMBTH)。DMB-TH采用了PN序列填充的时域同步正交频分复用(TDS-OFDM)多载波调制技术,这种独特的先进技术有机地将信号在时域和频域的传输结合起来,在频域传送有效载荷,在时域通过扩频技术传送控制信号以便进行同步、信道估计,实现快速码字捕获和稳健的同步跟踪性能。DMB-TH具有自主知识产权,能较好地支持移动接收,高清数字电视广播,单频组网。

三、小结

广播电视的移动接收作为当前的技术热点,尽管它的市场前景和受众分析还有待进一步的研究,但它的技术还在发展中。它还有着信号衰落、多普勒效应、覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题,所以要说哪一种制式最适合移动接收还为时尚早,因为每种制式都会根据市场的需要及时改进其技术,从而改善其移动接收的性能。

参考文献:

[1]都研美,刘峰.浅谈数字电视地面广播技术[J].广西轻工业,2007(05).

移动接收技术范文第2篇

【论文摘要】:网络技术迅猛发展,广播电视朝着移动接收方向发展。现阶段,广播的移动接收算是在一定程度上解决了,但是电视的移动接收问题要比广播的移动接收困难得多,移动接收所遇到的问题之一就是衰落。移动接收中的关键技术是OFDM,OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。还有地面数字电视广播系统的多种制式问题,各种制式都有它的优点和缺点。解决了这些问题,应该就解决了移动电视的接收问题。

随着数字网络技术的迅猛发展,无线传播领域正在引发一场深刻的技术革命,就在这一两年间,无线数字媒体的类型骤然丰富,除传统媒体之外,手机电视、车载移动电视,楼宇分类电视,多媒体信息亭、地铁多媒体信息系统等新兴媒体纷纷涌现,移动接收是个热点,尤其是广播电视的移动接收,成为发展方向之一。现阶段,广播的移动接收算是在一定程度上解决了。但是电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到很好解决。但我觉得,已经快接近目标。

一、数字电视地面广播(DTTB)

在现代通信中,通信传输手段主要是光纤、卫星、数字微波等,加上地面无线电视广播电视发射构成信息主体。目前在我国数字电视按信号传输方式可以分为地面无线传输数字电视、卫星传输数字电视、有线传输数字电视三类。而移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响;数字电视地面广播通过电视台制高点天线发射无线电波,覆盖电视用户,用户通过接收天线和电视机收看电视节目,主要的受众也是针对本地区的。完善的数字电视地面广播系统所具备的蜂窝单频网功能,不仅提高了频谱的利用率,而且可应用与宽带无线接入市场;而移动和便携的独特优势使该系统能满足现代信息社会"信息到人"的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

二、移动接收所遇到的主要问题

移动接收采用的方式是无线数字信号发射、地面接收。因此,移动接收所遇到的问题之一就是衰落,这是所有无线通信系统都会遇到的问题。对于固定接收可以采用分集接收等方法予以克服,但对于移动接收而言分集接收的方法显然不实用,因此衰落问题尤为突出。电波在沿地表传播中会受到各种阻碍物的反射、散射和吸收,实际到达收信天线处的电波除了来自发射天线的直接波外,还存在来自各种物体(包括地面)的反射波和散射波。反射波和散射波在收信天线处形成干涉场,此外,在移动通信中,还存在因移动台(天线)的快速移动而划过颠簸的波节和波幅的驻播现象及由于多普勒效应而造成的相移,凡此种种原因,就使得实际移动台接收到的场强在振幅和相位上均随时随地在急骤变化,使信号很不稳定,这就是无线电波的衰落现象。衰落的严重程度通常随频率或路径长度的增加而增大。目前还无法对衰落进行精确的预测,但区分绕射衰落和多径衰落两种不同类型的衰落是十分重要的。前者为慢衰落,短期信号中值电平在长期中的起伏;后者为快衰落,即瞬时信号电平在短期中的起伏。这两种衰落的表现和影响是不同的。另外,与其他无线通信系统不同的是,移动接收的关键点是移动。因此,移动接收还存在一个其他无线通信不会遇到的问题,这就是多普勒效应。

在日常生活中,我们会注意到远处迎面驶来发出警报声的警车在离你越近时,汽笛声的音调越高。从警车到达你所在位置开始,音调开始降低,而当警车离开你后,听到的音调会越来越低,这种现象就称为多普勒效应。奥地利物理学家多普勒是这样解释这种现象的:朝你驶来的警车发出的声波对你而言稍微压缩从而相对集中,这时你听到的声音波长短于该声源静止时的波,而短波音调是高的。相反,离你而去的声源的声波稍微扩散,这时你听到的波长比该声源静止时的波长长,长波音调是低的,这样的效应对电磁波同样适用。比如一个趋近我们的天线发出的信号,它的频率高于该天线相对于我们静止时的频率,波长相对变短;相反,一个离我们远去的天线发出的信号,其频率则会低于该天线在相对我们静止时相对于我们的频率,波长相对变长。同时波长的位移量与天线的运动速度存在正比关系,即速度越快,则波长移动越大。以上现象就是多普勒效应(Doppler)。系统方面,移动接收还要考虑覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题。从基本原理考虑,模拟广播电视信号是不宜实现移动接收的。为了解决移动接收中遇到的问题,广播电视信号必须首先实现数字化。利用数字技术无线接收,可有效解决以上问题。只要在信号有效覆盖范围内,所有移动交通工具,只要配有接收设备,都可以接收数字移动电视信号。

三、移动接收中的关键技术--OFDM

OFDM是正交频分复用(Orthogonal Frequency Division Multiplexing)的缩写,是在严重电磁干扰的通信环境下保证数据稳定完整传输的技术措施。OFDM的基本原理是:高速信息数据流通过串/并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。主要技术特点如下:1) 可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;2) 通过各子载波的联合编码,具有很强的抗衰落能力;3) 各子信道的正交调制和解调可通过离散傅利叶反变换和离散傅利叶变换实现;OFDM能够有效地对抗衰落和多普勒现象带来的负面影响,使受到干扰的信号能够可靠地接收。OFDM码率低,又加入了时间保护间隔,具有极强的抗干扰能力。其多径时延小于保护间隔,所以系统不受码间干扰的困扰。在有关移动接收的几种标准的制定过程中,都采用OFDM作为其核心技术。

四、移动接收制式

移动接收技术范文第3篇

数字高清电视(Digital High-Definition Television,简称HDTV)是电视的一场革命。其收视质量大幅度提高,大屏幕画面细腻逼真,并配以5.1声道环绕音响,已接近目前视听娱乐业中顶级质量的电影。凡是观看过数字高清电视演示的人们,都会深信HDTV是每一个家庭在数字信息时代所应该拥有的、真正的“家庭影院”。 当前,数字高清电视(HDTV)在美国、法国、德国和澳大利亚处于快速发展时期。HDTV采用的是MPEG-2 MP@HL,即主类/高级。图像宽高比为16∶9,格式通常是1920×1080像素/帧,信息量是数字标清电视(SDTV)的5倍,因此必须使用支持高传输率的调制模式去传送节目,这对接收机的抗干扰性能要求很高。此外由于移动信道的复杂性,接收到的信号是经过衰落的以及噪音、回声干扰的,信号的载噪比C/I往往很低,接收机还必须克服多普勒(Doppler)效应,这些因素导致了接收机还不能很好地应用于高速的移动环境中。为了解决上述问题,本文提出了一种采用多天线接收方案,实现数字高清信号的最佳接收。

多天线接收的硬件设计

1、多天线硬件框图设计

在移动接收的情况下,接收信号电平永远是变化的,而解调器必须依然能够提取可用的信号。为了克服信号的衰落、“重影”、多普勒效应、多径效应等问题,我们采用专为分集接收设计的新一代改进后的套片DM354和高灵敏度的锁相环PL316,使用高性能的双重AGC控制电路,用多天线实现分集信号的最佳合成。多天线接收能将来自不同天线的信号进行一致地整合,同时能改善接收信号的信号载噪比C/N,改善的程度则与所使用天线的数量成正比。它将天线所接收的各频率信号整合起来,进而增加信号的功率,同时也透过个别天线整合其它天线的接收信号,降低多重通道的影响,这过程称为“副载波最高比结合”。因为在多重路径环境中,信号经过多个物体产生反射,造成两个天线会接收到不同特征的信号,或是其中一个天线对某些频率的信号接收不清楚。在多天线接收下,可以使信道估值和跟踪功能得到大大改善,同时还改善了多普勒性能,增加了可用的移动速度。多天线接收硬件结构如图1。

多路天线接收的信号经过射频跟踪滤波器、RF可调放大器后,与本振PLL混频输出中频信号。中频范围可通过本振调节,典型的中频有4.57MHz,36.167MHz和43.5MHz等,可依据具体的应用环境而定。中频信号IF从PL316输出后依次进入中频滤波器、中频可调放大器及平衡转换电路后平衡输出两路信号用于解调器的平衡输入。其中中频滤波器的目的是为了滤除信号频带以外的噪声。

中频信号双端平衡输入至A/D转换电路(ADC)。ADC工作于抽样频率Fsamp下,负责将中频模拟信号转换为10bit的数字信号。其中A/D采样时钟不受压控晶振(VCXO)控制,而是由可编程PLL锁相环产生,采样时钟偏移由采样时钟同步部分估计得到。A/D转换后的数据一路经基带变换成FFT所需要的复信号送至解调器COFDM信号解调部分,另一路送至解调器的AGC控制部分。

2、双重AGC控制电路分析

为了提高接收机的移动性能,我们必须严格控制AGC电路。我们发现双重AGC电路性能优于单路中频AGC反馈性能。下面阐述一下双重AGC电路调试过程。正确的双重AGC控制曲线如图2所示。图中,实线代表中频增益AGC变化曲线,虚线代表射频增益AGC变化曲线,横轴代表输入的信号功率,纵轴代表AGC控制增益电平。可见,随着输入信号强度的增大,中频AGC以一定的增益幅度对中频信号进行衰减,直至中频衰减起点门限IF_THRESH。而后中频AGC控制曲线趋于饱和,钳位于中频增益最小值IF_LIMIT。在中频AGC对输入信号进行衰减的过程中,当输入信号强度达到射频衰减起点门限RF_THRESH之前,射频增益AGC一直处于饱和状态,钳位于射频增益最大值RF_LIMIT。当输入信号强度达到射频衰减起点门限RF_THRESH之后,射频AGC开始工作,并以一定的增益幅度对PL316射频信号进行衰减。两条AGC控制曲线的增益幅度分别取决于中频及射频的增益斜率寄存器IF_SLOPE和RF_SLOPE。

(1)双重AGC控制电路调试步骤如下:

① 开AGC环路滤波电路,对RF/IF AGC电路进行控制;

② 将IF AGC增益设置为最小值;

③ 输入RF信号,调整RF AGC输出电压,使之达到较合理的值;

④ 将信号1~5dB的步进增益递减,使解调器的ADC输入比较稳定的信号;

⑤ 直到RF AGC对输入信号电平没有影响,保证ADC有较稳定的输入,再增大IF AGC的反馈放大增益,分析记录RF AGC及IF AGC输出的比值;

⑥ 重复④、⑤步骤,直到RF AGC及IF AGC都没有办法处理输入信号电平,此时的电平就是系统的灵敏度。

(2) 通过上述步骤,可以描绘出双重AGC的控制曲线,通过修改AGC电路和调整AGC相关寄存器,可以使双重AGC的控制曲线达到最佳状态。无论AGC参数如何调整,都必须满足以下两个条件:

① 射频增益门限RF_THRESH不小于中频增益门限IF_THRESH。如果射频增益门限RF_THRESH大于射频增益门限IF_THRESH,则AGC控制曲线变成图3所示的情况。由图3可见,虽然AGC的控制电路在射频输入信号低于中频增益门限IF_THRESH或高于射频增益门限RF_THRESH时,都能起到对ADC输入信号强度进行AGC控制,但是也必须注意到,当射频输入信号强度介于中频增益门限IF_THRESH和高于射频增益门限RF_THRESH之间时,无论输入的信号强度如何变化,AGC电路都起不到自动控制信号增益的作用,即AGC电路失效,无法使ADC输入获得稳定值,这是在调整AGC电路过程中所必须注意的问题。

②.射频输出增益必须始终大于中频输出增益。射频输出增益大于中频输出增益可以保证中频放大器的输入端有足够的信号强度,从而使电路板上其它中频信号对中频放大器的影响降到最低。

多天线接收的软件设计

1、调谐器软件结构设计

前端调谐器的软件结构如图4所示:

调谐器软件结构设计采用多层软件架构技术,这样有利于扩充调谐器模块的功能和保证调谐器模块的独立性,大大增加程序设计的灵活性,可以更方便地对多个调谐器进行控制和管理。

① 调谐器应用程序(TUNER Application):是最上层的应用程序,只要包括手动搜索、自动搜索、盲扫、调谐进程控制等操作;② 调谐器API(TUNER API):是前端控制接口函数,封装所有对调谐器模块的访问和控制函数,主要包括调谐器状态读取、信号强度和质量读取、调谐控制等等;③ 设备驱动程序安装器(Device Driver Installer):在调谐器初始化的时候,通过设备句柄对调谐器设备进行安装操作;④ 地面设备管理器(Terrestrial Device Manager):是上层API与驱动的接口,主要用于对调谐器设备管理操作,包括TUNER_Init初始化、TUNER_Term结束、TUNER_Open设备打开、TUNER_Close设备关闭等操作;⑤ 调谐器驱动:是调谐器模块的主体,包括信道解调解码器(Demodulator)和锁相环PLL的驱动函数;⑥ I/O管理器主要完成对I2C总线I/O读写控制和调测I/O的控制。

2、调谐器软件算法设计

虽然运营商会在多个频点上发送信号流而每一个频点上又有多个节目,但对于用户而言,他不需要知道这些频道参数,用户所要做的就是进行一次盲扫,接收机会自动在每个频点上扫描,把每个频点上的节目信息都存储下来,在这之后,用户就可以像操作模拟电视一样选择不同的节目观看,但实际上这些节目很可能处在不同频点的不同流中。实现这一点依靠的就是一个快速、准确的盲扫机制。盲扫是接收机不可或缺的一项重要功能。

目前在欧洲,DVB-T信号的发送频段定义在474MHz至858MHz上,频道带宽为8MHz.频道的划分延续了模拟电视的标准,474MHz至858MHz对应于21-69频道,共有49个频道,试想如果平均每一个频道发送4个节目,那么总共就将有将近200个节目,这将是非常可观的。

由于本系统有多个前端调谐器,在段扫描设计上面有着很大的灵活性,可以线性扫描、也可以Zig-Zig扫描、还可以从中间往两边扫,甚至可以一个调谐器从小往大的方向扫,另一个从大往小的方向扫。但是比较好的算法有如下三种:① 两个调谐器调谐频率一样,采用线性扫描(SCANLINER);② 两个调谐器调谐频率一样,采用Zig-Zig扫描(SCANZIG_ZIG);③ 两个调谐器调谐频率不一样,采用从两端往中间扫,我们称它为多天线扫描(SCANDIVERSITY)。第一种做法比较简单,这里没有给出图形说明,后面两种算法如图5 所示。

(1)为了让三种算法兼容,必须考虑三个问题: 第一个扫描点频率设置;下一个扫描点频率设置;程序退出判断。下面一一分析:

图6-7

① 第一个扫描点频率设置

如果算法是Zig-Zig扫描,第一个扫描点频率为中心频率;如果是线性扫描,第一个扫描点频率为起始频率;如果是多天线扫描,调谐器1第一个扫描点频率为起始频率,调谐器2第一个扫描点频率为停止频率。

② 下一个扫描点频率设置

如果算法是Zig-Zig扫描,下一个扫描点频率是按Zig-Zig扫描路线的下一个接点;如果是线性扫描,下一个扫描点频率为当前频率加上步进频率;如果是多天线扫描,调谐器1下一个扫描点频率为当前频率加上步进频率,调谐器2下一个扫描点频率为当前频率减去步进频率。

③ 程序退出判断

程序规定无论是线性扫描还是Zig-Zig扫描算法,出口频率必须大于起始频率。因此这两种算法都以如下条件退出段扫描程序:当前频率大于停止频率。对于多天线扫描算法,两调谐器扫描频率相遇(也即i调谐器1起始频率 > i调谐器2起始频率)为程序退出判断。

(2)上面阐述了段扫描的三种不同算法以及其实现,下面对三种算法进行比较:

① 线性扫描速度最慢,但是准确性最高,不会出现漏扫情况。

② Zig-Zig扫描速度比线性扫描快,但是有时会出现漏扫, 原因是下一接点的扫描频率和上一接点扫描频率有时相差很大,容易造成调谐器失锁,为了让调谐器锁定,必须重新捕捉新的载波信息。

③ 多天线扫描是扫描速度最快的算法,但也最容易漏扫,原因是两个调谐器工作频率不一样,不利于信号的锁定。

因此扫描速度和扫描结果是一对矛盾,可以依实际的信号情况选择不同的算法。

实验结果与结论

完成软件和硬件设计和调试后,我们制作了一个目标测试板。该测试目的在于比较单天线与多天线在TU6移动信道中不同的抗干扰性能。图6为接收机在FFT模式8K,调制方式64QAM,编码率2/3,保护间隔1/32,TU6移动信道下的测试数据,其中横坐标为多普勒频率,纵坐标为门限值。

移动接收技术范文第4篇

关 键 词 :数字电视地面广播 (DTTB) 、移动电视、 DVB-T 、 DVB-H

数字电视正在用活生生的事实,将诸多的不可能变成可能,并最终将让所有的人都理解数字电视的真实。 数字电视不仅仅是一种新发明,不仅仅创造了一个新市场、提供了一种新工具,而且还会对传统的各个领域产生冲击。也就是说,数字电视不仅仅是你是否使用的问题,而是它将改变人和企业的命运。 今 天,数字电视正逐步成为现实,这一进程必将是可视用户终端的革命。这次革命性的跃进,不仅刷新电视媒介的概念,更将极大地改变我们的生活方式。

数字电视时代,电视本身也是数据的一种。数字电视地面广播(DTTB)的应用将会带动除电视以外的其他业务,首先数字电视出现在移动交通工具上, 随着移动电视的面世,传统的电视覆盖理论被打破了!电视将无所不在! 中国数字电视地面广播( DTTB)已经进入了实施阶段,同时开创 了传统无线电视的一种全新应用:移动接收。 随着该业务被大众接受,又逐步扩大到移动载体。随着电池容量和视频压缩技术的发展,从车载发展到个人手持终端。随着终端产品的发展,其他业务又将得到发展。数字电视地面广播( DTTB )技术在更大程度上给传统的收看电视方式带来新的变化,孕育着创造一个新的移动电视市场的机遇,其应用前景将更加深远。

一.数字电视地面广播 ( DTTB : Digital Television Terrestrial Broadcasting )

在现代通信中,通信传输手段主要是光纤、卫星、数字微波等,加上地面无线电广播电视发射构成信息传输主体。 目前在我国数字电视按信号传输方式可以分为地面无线传输数字电视(地面数字电视)、卫星传输数字电视(卫星数字电视)、有线传输数字电视(有线数字电视)三类。而移动电视是数字电视地面广播的重要应用。 数字电视地面广播 在应用需求上要求实现移动和便携接收的功能 ,使整个技术系统的要求最高。它具备无线数字系统所共有的优点;较之卫星接收,有实现容易、价格低廉的特点;较之有线接收;不易受城市施工建设、自然灾害、战争等因素造成的断网影响; 数字电视地面广播通过电视台制高点天线发射无线电波,覆盖电视用户,用户通过接收天线和电视机收看电视节目,主要的受众也是针对本地区的。 完善的数字电视地面广播( DTTB)系统所具备的蜂窝单频网功能,不仅提高了频谱的利用率,而且可应用与宽带无线接入市场;而移动和便携的独特优势使该系统能满足现代信息社会“信息到人”的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

地面数字电视可以做到便携接收和移动接收,可以供私人轿车、出租车后座、长途客车和火车乘客观看,还可以供手机等便携机用户观看。按接收方式可分为固定接收,车载移动接收和便携接收。固定接收接有固定天线,电视机不能随便搬移,一般来说接收条件经调整后不再变化;便携接收是可以将接收机装入衣袋,在户外低速移动接收。移动接收,指车载高速移动接收。我们日常接触最多的是传统的固定接收的电视,下面我们就对车载移动电视和手机电视进行详细的介绍。

1 、 车载移动电视

所谓移动电视就是通过无线数字信号发射、地面数字设备接收的方法进行电视节目的播放和接收。在数字电视技术的支持下,交通工具在时速 120 公里以下的移动状态中,能够稳定、清晰地接收到电视节目 , 主要针对公交、地铁、出租等交通工具上的移动人流 。这种 在数字技术支持下,人们在运动状态中可以收看电视节目的方式被称为 " 移动电视 " ,下图就是出现在汽车中的移动电视。学术界、传媒界已经开始将 “ 移动电视(移动多媒体) ” 称为区别于传统媒体和网络媒体的 “ 第五大媒体 ” 。

我们传统的电视必须坐在某个固定的地方观看。在信息激增的时代,由于人们对信息量的要求和实时性的要求增加,把电视提供给移动人群这一市场被发掘出来。

移动电视的应用首先在新加坡开始,在全新加坡建设了 8 个数字电视( DTV )发射站,于 2001 年 2 月 14 日开始在 1500 辆公共汽车上为 150 万人次的乘客提供移动电视服务。由于采用了数字电视( DTV )技术,图像清晰,实时性强,通过一年多的运行,特别是通过 2002 年中的世界杯足球比赛报道,逐步被人们所接受,给移动电视的商业发展带来了曙光。

2002 年,在我国的上海正式推出以公交车辆为主要载体的移动电视商用系统及其相关服务,目前是中国首个、全球第二个普及移动电视的城市。这标志着在中国数字电视地面广播( DTTB )已经进入了实施阶段,同时开创了传统无线电电视业务的有效模式。也许,移动电视是目前唯一能够看到的地面数字电视。

数字电视地面广播( DTTB )的成功试验也为移动电视商业化运作提供了基础。上海是继新加坡之后世界上第二个提供移动电视业务的城市,上海每天有 500 万人次通过公交线路出行,而平均每人在公交车上大约需花费 40 分钟时间。上海拥有 2 万辆公交车、 4 万辆出租车,其他移动车辆和移动人口难以统计,这是一个未开发和潜在的市场。鉴于上海现有的播出和发射环境以及光缆路由等

条件,组建了一个经济实用的数字电视地面广播单频网,覆盖上海市区超过 90% 。 数字电视地面广播的推广主要来自市场。 英国是实施 DVB-T 标准最成功的一个国家,并成功地开通了地面数字电视广播。法国、瑞典、西班牙在实施地面数字广播方面也获得了成功。阿姆斯特丹的电车公交系统已试验了移动 DVB-T 。因为欧洲的数字电视广播业者很久以前就 明白,他们的地面数字电视系统 ( 基于 DVB-T 标准 ) 具有不一般的移动性能。汽车接收 DVB-T 广播信号等早期实验已经证实了 DVB-T 标准适合于便携式电视。目前,世界上有三种数字电视地面广播标准:欧洲的 DVB -T(Digital Video Broadcasting - Terrestrial)、美国的ATSC(Advanced Television Systems Committee)和日本的ISDB-T (Integrated Servic es Digital Broadcasting Terrestrial )(综合业务数字广播)。 DVB-T 是数字电视地面广播系统标准,是 DVB 一系列标准中较新的一个标准,也是最复杂的 DVB 传输系统。此标准是 1998 年 2 月批准通过的,用于地面开路数字电视系统。第一个正式的开路数字电视系统于 1998 年初开始运营。地面数字电视发射的传输容量理论上与有线电视系统相当,本地区覆盖最好。 DVB-T 标准中开路传输的核心是 MPEG - 2 数字视音频压缩编码。采用编码正交频分复用 COFDM ( Coded Orthogonal Frequency Division Multiplexing ) 调制方式,适用于大范围多发射机的 8k载波方式, 在 8MHz带宽内能传送4套电视节目, 为高清晰度电视( HDTV )信号传输提供大于 20Mbps 的净荷码率 , 并能使用简单天线支持室内固定接收;为标准清晰度电视( SDTV )信号传输提供大于 5Mbps 的净荷码率 , 并能在车速移动条件下支持移动接收;具有单频组网能力; 传输质量高,但接收费用也高。

移动电视技术的核心是移动接收,即车载高速移动接收,接收的条件因地貌不断变化而变化,同时因车速的变化还会受到多普勒效应频率变化的影响。接收地点是指由于接收地点离主发射台的距离变化和与其他发射台发射信号间相对关系的变化而引起的接收条件的变化。 移动接收主要解决是动态多径和多普勒频移的问题。因为移动接收 主要受地形地貌,如山、房屋等反射的影响,使到达接收点的信号不止一个。在模拟电视中的反映是重影,在数字接收中,某些特定相位的多径信号将使接收完全失败。在这种情况下,接收好坏不单单依赖于与发射台距离的远近,而且在很大程度上还依赖于接收信号之间的相位。由于上述问题使得地面广播问题复杂化,使接收信道随时间、频率和地点而发生变化。引起不同频率信号衰落的主要原因是多径接收,其结果使信道出现频率选择性。移动接收时,主信号和反射信号到达接收点的角度有可能不同,因多普勒效应,其频率发生了不同的变化,两者的差拍使接收信号的幅度随时间周期变化,其结果使信道出现时间选择性。而由于接收地点的不同和相邻台距离的不同,主信号和其他台信号之间的关系不同而使接收出现地点的选择性。

DVB-T 由于采用 OFDM 调制系统,它首先是将高码率的串行数据流变成 N 个低码率的并行数据流,并对 N 个彼此互不影响(正交)的载波分别进行调制符号码率的降低,实际上是符号周期的增大,使动态多径和多普勒频移造成的码间干扰减小,加上保护间隔的设置,减少了多径对多载波正交特性的影响,使码间干扰进一步减小,从而能很好的支持移动接收。

我国现在正在研究适合自己的数字电视地面广播的标准, 期望在搭建数字电视中有更大的自。 地面数字电视传输标准作为一个基础标准, 涉及的是一个无线系统, 我国明确提出必须满足数字电视广播传输系统应用和产业两个方面的基本需求,并为今后实现扩展功能做好必要的准备。 我国 DTTB 的制定原则是: 1) 传输信息量要大,支持包括高清电视的多媒体广播服务; 2) 抗干扰能力强,在一般室内环境下可接收; 3) 与现有模拟广播电视频道兼容,并有利于频道规划和模拟向数字过渡; 4) 具有灵活性:支持标准高清晰度和高清晰度兼容的电视广播,支持移动接收设备,支持便携接收设备; 5) 具有可扩展性:支持包括互联网的交互数据综合业务,支持广播网络化的发展需要。整体性能指标应优于或相当于相应的国外现有标准的性能。目前已提交了 5 套 DTTB 传输方案,有关部门对 5 套标准进行了比较和测试, 4 月 11 日测试结果已有定论: “ 清华方案 ” 、 “DVB-T” 、 “ 总体组方案 ” 依次是测试和接收效果的优劣顺序。据悉国家有意考虑以清华大学提交的方案为主融合其他方案之长,形成我国的 DTTB 标准。 清华的地面数字多媒体 /电视广播传输标准(DMB-T)方案采用自主原创的时域同步正交频分复用(TDS-OFDM)技术。与国际现有的数字电视地面传输标准比较,具有多项鲜明的应用特点、较好的整体性能。其采用以下几项主要技术:(1)时域同步的正交多载波技术。(2)保护间隔的PN填充技术。(3)快速信道估计技术。(4)前向纠错编码与相位映射相结合的纠错技术。(5)与绝对时间同步的帧结构。(6)系统信息传送。

2、手机电视

电视是最大的媒体,是手机中缺少的最后一个内容,数字移动通信系统的高速发展提高了人们生活空间的移动性,在这个移动世界中 公众也非常渴望让电视进入手机,这样无论身处何地都可以看到自己喜欢的电视节目 如:喜剧、电子报纸、旅游指南、商务电视、游戏、音乐、体育、购物、新闻服务、电子学习、媒体点播和互动式选择等。从而可以为陷入利润危机的电视业带来新的收入。这 不仅将取悦移动运营商,对于设备制造商和广播业者来说,它将使电视变成寿命更长、重量更轻的手持产品。

数字电视地面广播与移动通信的结合将给人们带来更多新的、引人入胜的业务,它不仅扩展了电视广播内容的种类,而且支持内容的移动接收,这种结合最新的体现就是欧洲 DVB-T 标准的出现。 对采用移动 网络 (手机)和地面广播(电视机)两种接收电视节目方。

式进行比较,可以看出,由于手机电视的屏幕较小,因此每一路电视节目所需的码率较低,对于基于 DVB-T的IP数据广播,每个视频流占用100-384KHz的带宽,于是在一个8MHz带宽的电视频道上可以传送25-80套电视节目。由于移动网络覆盖能力强大,带宽不高,价格较贵,非常适合小文件VOD使用;而地面电视广播每个电视节目需要2-5MHz的带宽,一个8MHz频道只能广播3-4套节目,地面电视广播的优点是没有带宽限制,价格便宜,但不适合VOD,网络覆盖能力也差。它主要使用范围在城市地区,而且仍然有很多盲区,特别是在楼道、地铁、电梯和高楼林立的地方。为了寻求两者结合

的模式,DVB组织制定出了一个地面数字广播网络向便携/手持终端提供多媒体业务的传输标准:DVB-H。它将蜂窝电话网络和地面数字电视广播网络更好的结合,并将用于向所有用户传送视听及多媒体服务。今年2月份DVB-H标准得到了TDVB Technical Module的批准。这标志着DVB成员公司走过了最后一个阶段,接下来就可以利用该标准设计产品和服务。目前正在进行的最大的试验性项目是把广播视频和音频扩展到移动设备。 DVB-H (Digital Video Broadcasting Handheld)标准被认为是DVB-T标准的扩展应用,但是和DVB-T相比,DVB-H终端具有更低的功耗,移动接收和抗干扰性能更为优越,因此该标准适用于移动电话、手持计算机等小型便携设备通过数字电视地面广播网络接收信号。如图4所示,DVB-H标准就是依托目前DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等便携设备能够稳定的接收广播电视信号。

图 4 DVB-H所扮演的角色

虽然 DVB-T已经被证明在固定、移动、便携接收等方面具有非常出众的性能,但如果DVB-T用于手机接收地面DTV信号有三个主要问题:“功耗、性能(特别是在冲动干扰区的性能)及移动网络设计的灵活性。DVB—H项目组给DVB-T增加了一些选项,使广播业者能继续利用它作为DVB-H的基础同时支持手持接收所要求的众多关键特点。

DVB-H的关键新技术

( 1)时间片技术

DVB-H终端采用电池进行供电,由于手机体积小、屏幕小、内置天线,而且由电池供电,所以 电池的使用时间是观看电视主要要解决的问题之一, 因此要求射频接收和信道解调、解码部分的功耗小于 100mW。DVB-H采用最新的时间分片技术,基于时分复用技术,它不但能够有效降低手持终端的平均功耗,并且还是不同网络间实现平稳、无缝业务交换的基础。时间分片技术采用突发方式传送数据,每个突发时间片传送一个业务,在业务传送时间片内该业务将单独占有全部数据带宽,并指出下一个相同业务时间片产生的时刻,这样手持终端能够在指定的时刻接收选定的业务,在业务空闲时间做节能处理,接收机就可以断电,从而降低总的平均 功耗。如图 5 所示,在业务空闲时间前端发射机是一直工作的,在相同业务的两个时间片之间将会传送其他业务数据, DVB-H 信号就是由这样许多的时间片组成的。从接收机的角度而言,接收到的业务数据并非是如传统恒定速率的连续输入方式,数据以离散的方式间隔到达,因此称之为突发传送,如果解码终端要求数据速率较低但必须是恒定码率,接收机可以对接收到的突发数据首先进行缓冲,然后生成速率不变的数据流。

(2)MPE-FEC

由于蜂窝环境下的信道状况多变,因此 DVB-T要在以下3个方面进行改进:移动信道的C/N、多普勒效应和抗脉冲干扰能力。

DVB-H 标准在数据链路层为 IP 数据报增加了 RS ( Reed-Solomon )纠错编码, 用于提高系统的移动和抗脉冲干扰能力, 作为 MPE 的前向纠错编码,校验信息将在指定的 FEC 段中传送,我们称之为 MPE-FEC 。

实验证明即使在非常糟糕的接收环境中,适当的使用 MPE-FEC 仍可以准确无误恢复出 IP 数据。例如在高速、单一天线的情况下,采用 MPE-FEC 的手持终端能够在 DVB-T 环境下接收 8K/16-QAM 甚至是 8K/64-QAM 信号。

(3)4K模式

网络设计应充分考虑移动特性,由于 DVB-H终端在网络内移动时接收天线小巧且单一,因此对于大、中型单频网要有优化设计考虑。

DVB-H 标准在 DVB-T 原有的 2K ( 2048 )和 8K ( 8192 )模式下增加了 4K ( 4096 )模式,通过协调移动接收性能和单频网规模进一步提高网络设计的灵活性。在 DVB-T 系统中, 2K 模式比 8K 模式提供更好的移动接收性能,但是 2K 模式的符号周期和保护间隔非常短,使得 2K 模式仅仅适用于小型单频网。新增加的 4K 模式符号具有较长的周期和保护间隔,能够建造中型单频网,更好地进行网络优化,提高频谱效率,虽然这种优化不如 8K 模式的效率高,但是 4K 模式比 8K 模式的符号周期短,能够更频繁的进行信道估计,提供一个比 8K 更好的移动性能。总之, 4K 模式的性能介于 2K 和 8K 之间,为覆盖范围、频谱效率和移动接收性能的权衡提供了一个额外的选项。

(4)DVB-H TPS

DVB-H TPS为DVB-H设计专用的传输参数信令, 使接收机能更快地发现 DVB-H 业务,即使在低 C/N 地条件下,解调器仍能快速将其锁定。

用于提高系统同步和业务访问速度。

DVB-H 标准由于采用以上新技术,解决了基于 DVB 数据广播和地面电视标准融合后的两个问题:实现了节省功耗和业务的无缝交互;增加 DVB-T 的模式和参数,使得在室内低速率移动和室外高速率移动的手持终端(特别是手机)都能正常进行业务访问。

二、数字电视地面广播( DTTB)技术的应用前景

自上海宣布开展移动电视试验后,得到了国家有关部门的支持,几个月的运行已经初见成效,很多城市纷纷到上海来参观并跃跃欲试。 现在除了已经在陆上公交系统中试用移动接收,在水路运输中也在试行移动收看,为往来的行人及时提供时政新闻和市场信息。移动接收的含义很广,例如便携式收看,慢移动查询,接收点挪动,在移动着的水、陆交通工具上收看等等。 事实上,数字电视地面广播的开通,是开通了一个宽带的支持移动的数据广播通道,如图 6所示,它不光可以传输电视,把电视也作为一种数据。未来数字电视地面广播的应用将会带动除电视以外的其他业务,借助于数字电视地面广播技术和目前的技术条件,并分析目前的市场情况,首先在公共汽车开展移动电视业务是比较明智的选择,随着该业务被大众接受,将逐步扩大到移动载体。随着电池容量和视频压缩技术的发展,从车载将发展到个人手持终端。 数字电视和数字通讯除了信息所占用的频带宽度和内容不同外,就信息传输基本技术而言两者是相同的,这就为在接收端的所谓的 数字电视地面广播 + 因特网 + 移动通信三者结合即 “三网合一”的收看提供了技术基础, 三网合一的方式应该是将来发展的主流。 其中 数字电视地面广播有着可提供无线的天然优势, DVB-T 标准中的 编码正交频分复用调制 ( COFDM )还有着提供移动接收的优势; 宽带电视可以提供优质的声、像并茂的信息,将来的通信技术也有这种潜力。 如图 6 所示,从网上下载大的文件如图象和声音,尤其是用多点传播时可通过 DVB—T 。在服务器端和客户端都有开关可自动切换。移动电话和数字电视地面广播各发挥所长,应该认为是最佳的配合,达到了优势互补的效果。数字电视地面广播 的特点和应用将会引起人们收视和获得信息的方式变化。

移动接收技术范文第5篇

1.1OFDM(正交频分复用)技术

所谓的OFDM技术指的是将信道分成许多个正交的旁枝信道,从而对高速数据的信号实施转换,变成低速的子数据流,以便信息的传输。总的来说,OFDM技术的频谱利用率较高,相比于串行系统有很大的优势;同时,OFDM技术具有较强的抗衰落能力,并通过多个子载波来传输信息的形式,降低对脉冲噪声的抵抗。OFDM技术采用的是高速数据传输的形式,通过不同的调制机制和信道加载算法来实现信息的高速传播。除此之外,OFDM技术通过循环前缀的方式减少了码间的阻碍,具有很强的抗干扰能力。

1.2SA(智能天线)技术

通常来说,4G移动通信中的SA技术具有很强的抗干扰性和自我调节能力,这种技术在4G移动通信中起着关键性的作用。

1.3SDR(软件无线电)技术

4G移动通信技术的微电子技术是建立在软件无线电的基础之上的,为移动通信提供了更加广阔的平台和方便的通用硬件平台。正是这种优势,吸引了更多的运营方加入进来。

1.4IPv6技术

所谓的IPv6技术指的是在巨大的网络地址中,通过自动配置为设备提供一个全球唯一地址的技术。这种技术具有超高的服务质量,并在提供服务的基础上形成了一个更加完善的系统。同时,这种技术的移动性较强,很多移动通信设备通过此项技术达到了位置变化的同时而不改变质量的效果。

二、4G移动通信技术的发展趋势

2.1交互干扰抑制技术

这种技术的发展是4G移动通信技术得以存在的重要前提。它通过交互的方式降低了移动通信设备之间的阻力,从而提高了通信质量。

2.2多用户识别技术

这种技术通过加大基站的方式扩大了移动电话的覆盖范围和容量,在保证移动通信服务质量的前提下,减少了通信网络的基础设施建设。

2.3可重构性自愈网络技术

一般说来,4G移动通信网络借助智能化的处理器能够解决遇到的问题,而通过这种技术能够及时纠正和发现4G移动通信技术中存在的错误,避免网络故障的发生。

2.4微无线电接收器技术

这种技术最大的优势在于减少了能源损耗。微无线电接收器技术采用的是嵌入式无线电,自CDMA进入中国之后,对无线设备的频率以及对身体的危害等已经逐渐地被国人所知,所以打开市场一个重要方面就是微无线电接收器技术是否成熟:一方面要能够高效的收到信号实现信息传输,另一方面能够做到工作频率较小,减少对人体的伤害。微无线电接收器技术的发展是推动4G移动通信技术进行可持续发展的重要手段。

2.5无线接入网(RAN)技术