首页 > 文章中心 > 电力电子

电力电子

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电力电子范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电力电子范文第1篇

就当前我国在电力电子技术方面的发展而言,其研究的主要内容包括以下四个方面:(1)电力电子元器件以及功率集成电路。(2)电力电子变换器技术。该技术研究的内容主要包括新能源的节约、电力能源的节约、新能源电力电子、空间以及军事应用中的特殊电力电子变换器技术等。(3)电力电子技术的应用。在其应用方面研究的主要内容是将超高功率转换器应用于钢铁、电力牵引、可再生能源发我国电力电子与电力传动系统发展问题和方向的分析代维菊黑龙江省绥化学院电气工程学院152061电、电力、船舶推进、冶金等工业方面以及电力电子系统的网络化、信息化发展。(4)电力电子系统的集成。在系统集成方面,其研究内容主要包含标准化电力电子模块、多芯片系统的集成、单芯片系统的集成、集成电力电子系统的可靠性以及稳定性研究等。

2我国电力电子在发展过程中遇到的问题

目前,我国在研究电力电子技术方面还存在着诸多的问题,这些问题都严重的制约了我国经济的发展。主要问题有:现今我国电力电子产品大多是采用的晶闸管,虽然利用晶闸管可以创造出一部分科技含量较高的产品和设备,但是这些产品和设备多使用的是国外的生产设备以及多组分组集成制造法,特别是很多先进的全控型电力电子器件,几乎全都需要从国外进口,才能满足国内的技术要求,尤其是很多关系着我国的经济发展以及社会安全的关键领域中的核心技术、设备、软件等。另外,我国电力电子技术与国外发达国家的差距甚大,这在一定程度上影响着我国与国外经济的合作。在过去的几十年中,我国经济发展的各部门都先后从欧美发达国家中引进了先进的电力电子技术,并且开始重视国内技术的发展。就目前的发展情况而言,虽然表面上显示出我国在很多技术方面可以满足国内的要求,但实际上在很多关键技术领域,我国的电力电子技术依然需要进口,国内的技术水平依然相对较低。国内与国外发达国家在电力电子技术方面的主要区别在于电力电子技术的发展依然存在着技术含量低、产品可靠性差、数字控制水平满足不了社会的要求、系统控制软件的水平低、应用程序的控制技术差、重大项目领域缺乏经验等问题。这就使得我国必须要依赖从国外进口高性能、高功率的电力电子转换器设备才能满足国内的使用。

3提高我国电力传动系统性能的主要方法

现今,我国电力传动系统研究工作主要围绕着交流传动系统进行。伴随着交流电动机调速装置的性能越来越完善以及调速理论的重大突破,电动机的调速技术渐渐从直流发电机—电动机组调速、晶闸管可控整流器、直流调压调速向交流电动机变频调速转变。之所以交流传动系统发展的这么迅速,其原因与我国在功率半导体器件的制造技术、交流电动机控制技术、以大规模集成电路和微型计算机为基础的数字化控制技术、电力变换技术等关键性技术方面的突破有关。要提高交流传动系统的整体性能,可从以下三个方面开展研究工作:(1)PWM技术的应用随着电压型PWM逆变器在高性能交流驱动系统中的广泛应用,我国对PWM技术的研究更为深入。PWM功率半导体器件的开关控制主要采用是高频技术,一般来说,PWM技术可分为三类进行研究,即随机PWM、正弦PWM以及优化PWM。正弦PWM的开关频率对于提升电力电子器件的功率有着非常突出的作用,这使得该技术在中小功率交流驱动系统中的应用极为广泛。不过,这种技术不适用于容量过大的电源转换设备,因为高开关频率将会引起极大的开关损失。(2)直接转矩、矢量控制技术的应用对于交流电机的交流驱动系统而言,其具有强耦合、多变量、非线性等特点,这就使得其控制工作变得十分的动态化,不过我国目前在这方面的研究还是较为成功的。在上世纪七八十年代,我国就提出了交流电机的动态控制理论,该理论要求不仅要对各个变量的振幅进行全面的控制,同时还要对各个阶段进行控制。直接转矩控制技术以及矢量控制技术是我国在交流驱动系统控制中的主要技术,此外,随着科学技术的发展,神经网络控制、模糊控制等智能控制技术也在我国逐渐发展起来,对提高交流传动系统的控制精确度有着极其重要的作用。(3)微电子技术的应用微电子技术对于提高我国数字控制处理芯片的运算能力以及可靠性有着极大的作用。当前,适合用在交流传动系统中的微处理器有ApplicationSpecificIntegratedCircuit—ASIC、DigitalSignalProcessor—DSP、单片机等。其中,高性能计算机的结构形式主要采用的是多总线结构、多处理器结构以及流水线结构等。

4结束语

电力电子范文第2篇

关键词:配电网;电子装备;网络化技术

1配电网电力电子装备技术现状分析

1.1变换器。变换器是电功率处理器的一种,把某种幅度、频率转化成其他的幅度和频率的电能,这样的转化是变换器的主要作用。随着信息技术的不断发展,变换器技术也得到了不断的发展和进步。再加上电力电子技术人员的研究,拓展机构已经研发并展现,这一技术的出现和应用,使得双向或者多向电能流动控制成为可能。与此同时,在发展的过程中不断地优化,变换器的效率也得到了明显的提高,利用率甚至达到了百分之九十九,在大功率的系统中,变换器技术对电压及其电流的处理可以达到轻松应对的效果。1.2半导体开关器件。电力电子装备技术的基础是半导体开关器,主要包括了SCR/IGCT/IGBT等器件。目前的发展阶段,电力电子装备技术应当把重心放到现有的半导体开关器件上,性能和水平和研发新型的半导体开关有关。半导体开关器件中,不管是材料的选择,还是器件工艺的选取,对于整个电路的绝缘材料和磁性元件都有一定的适应和改造作用,不仅可以降低能耗,还可以把器件的体积减少到实际需要的范围之内。1.3电力电子装备系统。多个变换器和电路两个部分组成了电子装备系统,并且在电力电子装备系统中得到了很大的应用。在连接方式上能够实现能量的处理。但是在很多的大型规模中,就需要借助多个控制器来维持系统的平衡性和正常运转。配备的控制器分为变化器控制器和系统控制器两个部分。变化器控制器的主要作用是负责单一的变化,系统控制器是负责全部变化器的所有运行情况,并进行相关指令的调查。

2电力电子装备的互联与网络技术

2.1即插即用的功率接口。随着电力电子装备技术在生活中的广泛应用,电力系统在运行的过程中,配电网可以见到电力电子装备技术。即插即用的功率接口是把各种各样的电气设备、发电等端口进行接入配电网中,各种设备之间存在差异,因此电能输入在形式上可以和电网进行区别开来。即插即用的功率接口是把电能转化成为功能,并直接将各种各样的设备电能输入形式和电网匹配的形式进行一个实际情况的转化。因此,一个接口属于一个电力电子装备,不仅如此,即插即用的功率接口还可以当做通信接口。最终,实现网络的连接。通信接口也可以对终端设备进行识别,在终端设备运行的信息上进行上传并接收系统的调控指令。2.2能量路由器。能量路由器在整个电力电子装备中,实现网络化技术智能管理模块。能量路由器是属于中低配网、低压区域网的相应接口;能量路由器在正常运营的范围之内可以实现电能双向流动,更可以提供相应低压直流母线来提供再生能源电力设备。与此同时,能量路由器通信接口所具备的通信功能,从而把终端设备的运营信息上传到网络的终端系统中去。这样就可以接收到调控指令,指令的确定需要在终端设备的具体工作上进行决定,能量路由器对其中的故障电流起到了限制性的作用,并保持了低压配电网电压的稳定性,接受到系统的保障性效果。2.3操作系统。互联网技术的操作在本质上是一个通用的网络协议,想要实现设备上的网络督促,就要做到网络监督和识别上的统一;想要实现管理上的统一,就必须先统一协调全部功率的接口及其能量撸起的二者全部支持和协调网络协议。在实际的操作过程中,用户可以把网络协议直接安装到自己的手机或者电脑上去,在有网络信号的情况下,就可以对自身家用电的使用效果进行实时性监控。这样就可以及时的保证了对网络上电价信息的有效反馈。针对发生的故障和情况,可以有效的进行实际情况的措施优化和预防。目前,新常态的背景下,配电网电力电子装备的互联和网络化的技术,最重要的是信息流极和能量流极两个方面;虽然我国在配电网能量层面上已经初步实现了互联功能,可是通信层面上的建设和构建还有待提高和进步。在电力电子装备互联网与网络化的技术构架中分为了功能接口、能量路由器在整个网络中的管理模模块、操作系统三个部分。也就是说电力电子装备互联网技术的基础是信息流和能量流两个部分的内容。也就是标准的操作系统,一个通用的网络协议,可以利用即插即用的功率接口实现识别和监测。

3结束语

随着社会的进步,电力电子装备技术的发展状况对配电网的性能改造和优化,有着十分重要的作用,也有效的推动了直流配电网的进步和发展。配电网的电力电子技术是基于电力电子装备的有效运营的基础上进行的,它是一个时变形很强的系统,最后可以达到电能变化的目的。配电网中电力电子装备的互联和网络技术的结合,是现代化电网发展的一个趋势也是一个过程。针对于电能和信息集成一体化的重要意义,为智能化电网和管理产生一个很大的推动性作用。

作者:蒋志明 何静 单位:西安西瑞控制技术股份有限公司

电力电子范文第3篇

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.电力电子技术的应用

2.1一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2.2交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

2.3电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

2.4家用电器

电力电子范文第4篇

关键词:电力系统;电力电子;技术;应用

前言

电力电子技术是应用于电力领域的相关技术,它以电力变换为主要研究内容。为了实现更高效,更方便的使用能源,人们不断将其进行变换和控制,并取得了一定的应用成果。

1 应用现状

1.1 输电系统

在电力系统中,有一种技术应用叫做柔流输电技术,他的应用,是将电力电子技术与控制技术进行有效融合,从而使其生成一种较为新型的技术,这样的技术应用,能够有效将二者的特性进行相应发挥。并且,这项技术的应用有效发挥了其电能消耗量小的特点,并不断促进了电能的平稳输出,在一定的程度上促进了电力技术的发展,使得电力应用得以高效运行,而且,在相应电流稳定输出的基础上,它还在相关技术的基础上有所突破和进展,使得资源被充分利用,并有效服务于人们的生产和生活。但是在这样类似的输电系统中,电力电子的应用拘束已经进入了更搞得发展水平,并持续改进其中不足。在电力输出方面,我国近几年的发展更着重集中于高雅的直流方式。

1.2 控制静止励磁

在对静电励磁控制方面,因为除了大型的发电设备以外,他还能被应用于风力发电方面,针对电力电子技术中的变速恒频励磁,它的相关控制在风力发电机中具有重要的作用。并且,在相应的控制技术下,晶闸管整流技术也得以开发,得以广泛应用,它不仅结构性能简单,在成本年开发上的资金投入极少,而且,它的优势还有可靠性低等多方面,这是使得它能够被长久使用的重要支撑,从而能够从经济上得以节省,在一定意义上实现了可持续发展。它已经被人们大力应用于较为大型的发电机组等方面的运行,提高了工作速度,加大了工作效率,使其拥有了较好的发展前景。

1.3 变速恒频励磁

在风力发电的运转过程中,其转子励磁的应用,使得发生的电流跳转频率的选择,可以通过变频电源来运作,从而使其功率的发挥得以最大化,从而避免一些因为风速问题而产生的频率差,以免风力发电的稳定差不能够被有效实现和发挥。在正常运行的情况下,他的应用有着较好的耗电率,在火电厂中,它是用电大户,但是,即使它的效率并不高,却可以应用相关的变频调速的技术来改善他的工作效率,但是从目前的情况来看,这样的生产并不多见,因此,在相关的技术应用上,企业可以在日后的发展中根据自身条件适当向其进行延伸探索。在之前的技术应用中,其主要被应用于水利和风力的相关发电过程中,在水力发电机中,水力的大小是由发电机的功率大小所决定的,并且它对于水流量的多少,也起到了决定性的作用,也就是说,在水力发电的过程当中,发电机的功率对生产电量的大小是相关联的,并且起着决定性的作用。然而在风力发电的运用中,对其电量高低起着至关重要作用的则是风速大小,因此,风力发电的应用会受到相应环境因素的影响,从而使其工作效率极大降低。为此,要想在没有风的天气也能促进发电机的运作效率,就需要加入变速运行的相关技术,将励磁电流进行调整频率,促进输出功率的增大,使其运转速度得以增加,不断提高工作效率。

1.4 配电环节的应用

电力电子在配电系统中的应用已经具有一定的实践,在这个过程中,他的具体应用并不能尽如人意,针对相应的损耗电力方面的问题,首先,要想他的应用被有效实施,应该在电压控制方面给予足够的支持基础,其次,要在满足了电压控制的情况下,对各方面因素有可能影响其运作质量的原因进行有效评估,以备能够尽量掌握和控制突发问题的影响,并保证一定程度的资源损失。然而,这个问题的有效解决,是用户电力技术在DFACTS设备中的研发所产生的,这种设备的产生,能够加强供电方面的可靠性,并且还能有效提高它的效率和质量。

2 未来发展方向

电力系统在未来的发展中,必将融入更多的新兴技术,在人们的日常生产和生活中起到积极的作用,给予电力电子技术的发展前景,其在日后的发展中,定将走向更高的领域。但是,其发展过程中,必须要能够持续发展技术支持。在过去的几十年里,在传统的电力行业的发展过程中,电力电子技术渐渐地在新兴产业中崭露头角,并持续发展进步,在传统的设备运用中有很多旧的不合理的应用技术,也都逐渐被电力电子技术所取代。并且随着新能源开发的d起,电子产品消费量的逐渐增加,使得电力电子技术越来越多的受到大众的好评与喜爱,从而得到了广泛的应用。而电力电子技术的基础原理更需要被电力行业所吸收,并且其成功的应用于此,比如在二十世纪八十年代左右,相对于较大的功率电子相关技术就已经开始得到了应用实践。但是为了使其更好的服务于大众,它的脚步会不断前进发展,得到良好的应用。

3 结束语

电力电子技术的应用和发展,为人们的生活和生产带来了极大的方便,它使电力系统在运行方面更加的安全、高效、优质,使得其在电力系统中得以被广泛应用,从而为电力系统在百年发展的历史上具有了一个革命性的变革,也必将推动电力电子技术在更高水平上的技术发展。

参考文献

[1]韦林,廖慧昕,易干洪.电力电子技术在电力系统中的应用研究[J].数字技术与应用,2012(10):97-98.

电力电子范文第5篇

1该技术应用在电网中的现状

作为一项新兴的电工技术,电力电子将强弱两种电技术结合在一起成为新技术的一种,不仅在应用上占据一定的份额,并且在国民经济上发挥着自身巨大的作用。除此之外,还会对输电系统的前景造成巨大的影响,使得其出现革命性的变革,推动其不断向前发展。现有的电力电子技术在生活中应用十分广泛,涉及到如下方面:生产电能的过程中会用到它、输配送电能的过程中会用到它、存储电能的时候会用到它、还有其他的领域也需要他。这项技术基本上应用在了电力系统全部的环节中。

(1)生产电能的过程中会用到它。在这个方面的应用主要是发电系统,通过提高类似于发电机这类发电设备的工作效率来控制和调节设备功率。我们显而易见的就是大型发电机的应用上了,其控制方向是静止励磁控制。

(2)输配送电能的过程中会用到它。在这个方面的应用换言之就是输电系统。这个过程中,我们会引进一个新的技术称之为交流输电,它是将现代出现的叫做控制技术的一种技术和电力电子技术紧密的结合在一起形成的。这一项柔流输电技术通过控制技术,针对电力系统,然后不间断的调节系统的各项指标(包括参数、功率和电压等等)。这样的处理尽可能的减少了输配送电能的过程中将会存在的能源损耗问题,也会提高其过程的稳定性。关于这个输配送电的过程,目前技术上比较关心的是高压直流电的输送。距离的远近也是一个重要因素,我们知道的是关于高压直流,其距离越远的输送越发能处理输送过程产生的诸多问题。在其他方面的参数控制相同的情景之下,高压直流的输电远距离会相对交流有很大幅度的损耗减小。因为如果电流保持稳定不变,那便不会出现电抗压降,这样会减少输电整体的压降。那么我们可以以低成本投入的线路获得我们意想不到的线路高稳定性,甚至可以保证基本上不会出现由于稳定性不够而产生各种各样的线路问题。

2相关器件的发展过程的描述

上个世纪的50年代后期,世界上出现了晶闸管,这是世界上出现的第一只,这个晶闸管的出现意味着电力电子技术发生了来势汹汹让人触不及防的一次大变革,它标志着人们不再在电气传动领域一如既往的坚持过去的运作方式,这样的格局已经进步了,发生了翻天覆地的变化。电能的转换已经发生了革新,已经不会再沿用过去古老的办法,而选择采取最新出现的技术,电力电子技术中的各种器件出现和构成,这一领域将我们带入了变流器的时代。走到这个时期,电力电子技术就算是历经千辛万苦才迎来了春天,但始终没有阻挡它进入这一个新的时代。据此经过40多年的发展之后,我们到了新的世纪,我们口中的电力电子技术已经变得非常的成熟,它的每一个方面都取得了非常惊人的成绩。这40多年的经过,是世界上各个技术人员最为紧张,竞争最为残酷的一段时期。传统的电网模式所采取的信息传递方式为点对点,即信息的交互和传递仅能在有限的局部范围进行,因此较为保守和安全。电力电子技术的兴起掀起了智能化电力系统的诞生。智能化电力系统所具有的性能包括实现信息的共享化,有利于各级对变电站的运行进行相关管理。在纵向发展的角度,由二极管带头的第一代器件最后发展至第二第三代,最终将各个电子元件结合在一起,形成了集成电路,也作为最新出现的第三代电力器件在世界上立足。我们如果想要在生活必不可少的网络上,得到系统最为贴心的服务,便不得不将电力电子技术应用起来,这是一项高科技技术。我们实事求是的说一句:电子系统出现如今的盛事,变得如此的现代化,是离不开电力电子技术的,没有这项技术,我们现在享受的网络系统根本就无法如此现代化。

3结语