首页 > 文章中心 > 火灾风险因素分析

火灾风险因素分析

火灾风险因素分析

火灾风险因素分析范文第1篇

关键词:火灾;风险评估;农村消防工作

一、Y市农村火灾风险评估基本方法

要准确判断一个地区火灾的风险程度和危险度就必须通过合理的方法对该地区的火灾状况进行评价,找出关键节点,才能为火灾风险的控制提供有力支撑。风险评估的方法很多,主要有风险坐标图、层次分析法、关联图法、事故树分析法、关键风险指标法、专家技术评估法等。本文主要在现有理论的基础上,以Y市农村为例,采用层次分析法与专家评价法,将定性与定量有机结合建立一个评估体系,对火灾的风险进行量化和评估[1.2],得出不同因素对于火灾风险的影响程度,找出不同工作举措对于减少农村火灾风险起到的具体作用,最终确定最合理火灾防控措施,做到以最有效方法、最低投入到达最安全的保护[3.4]。

二、Y市农村火灾风险评估结构模型的设计

为了对农村火灾风险进行系统的评估,本文根据农村火灾的规律,结合具体调研的基础上,构建农村火灾风险评估体系,并采取层次分析法(TheAnalyticHierarchyProcess,简称AHP)和专家评分法,对农村消防火灾风险进行系统的评估[5.6]。在整个体系的构建和评估过程中,作者选取Y市消防支队防火监督处长(负责全市的火灾防控工作)、防火监督处工程师(指导全市火灾防控工作开展,开展火灾原因调查等工作)、县市消防大队大队长(全面负责县市的消防工作)、大队参谋(具体县市的火灾防控工作)、中队干部(负责火灾扑救工作)等作为本次火灾评估体系的专家组,专家的选择具有很好的层次性,既包括负责火灾全局统筹的领导也包括具体实施的工作人员,既有理论基础扎实的工程师也有实践经验丰富的基层工作人员,最大程度的确保体系的科学性,真实反映Y市农村火灾的状况。首先,我们在征求专家组意见的基础上,建立一个合理的层次结构,我们将农村火灾风险状况作为目标层,然后根据对Y市农村地区火灾情况调研的结论,在众多的因素中选取对农村火灾防控具有重要影响的消防公共基础设施建设、消防安全管理体系、公众消防安全素质、消防安全规划等作为评价Y市农村地区火灾风险状况的一级指标。然后再对四个方面进行细化,确定具体的火灾风险要素[7],构建农村火灾风险评价指标体系(见表1)。完成体系的构建后,本文采用层次分析法来确定各参评指标的权重。逐一征求专家组意见,然后再进行讨论确定判断矩阵(见表2)。计算出各指标的权重之后,通过专家打分法对Y市农村火灾风险状况(见表3)进行打分,得出具体分值然后得出Y市农村地区风险总值。

火灾风险因素分析范文第2篇

关键词:城市区域火灾风险评估

一、火灾风险评估的概念

过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。

通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。

现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。

较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。

从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。

二、城市区域火灾风险评估的意义及发展概况

在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。

目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。

与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:

(一)用于保险目的

在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。

ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。

市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。

(二)用于消防力量的部署

当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。

具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。

关于火灾风险对于灭火救援力量的影响,美国消防界对此的关注可以说几经反复,其间美国消防学院、NFPA等都做了许多工作。直至20世纪90年代,国际消防局长协会成立了由150名专业人士组成的国际消防组织资质认定委员会(theCommissionofFireAccreditationInternational,CFAI),经过9年的广泛工作,制定了“消防应急救援自我评估方法”,和制定标准的社区消防安全系统。另外,NFPA最终还制定了NFPA1710和1720两个指导消防力量部署的标准,分别帮助职业消防队和志愿消防队和改进为社区提供的消防救援的水平。根据NFPA最近的调查,NFPA1710将在全美30500个消防机构中的3300~3600个得到正式的应用,也推广到加拿大有些地区[10]。

英国对消防救援力量的部署标准是依据内政部批准的“风险指标”,把消防队的辖区划分为“A”、“B”、“C”、“D”四类区域,名为“风险分级”系统。其目的是对消防队的辖区进行风险评估,确定辖区内的各种风险区域,进而确定该风险区域发生火灾后应出动的消防车数量和消防响应时间。1995年,英国的审计委员会了一份题为“消防方针”的考察报告,认为这种方法没有充分考虑建筑设施的占用情况、社区的人口统计情况和社会经济因素,也没有把建筑物内的消防安全设施纳入考核范围。故而由审计委员会报告联合工作组与内政部的消防研究发展办公室一起,设立了一个研究项目。该项目的目的是开发一套供消防机构划分区域的风险等级,对包括灭火在内的所有应急救援力量进行部署,用于消防安全设施的规划并能解决上述问题的风险评估方法,再对开发出的方法进行测试。最后Entec公司开发出了计算软件,并于1999年4月以内政部的名义出台了“风险评估工具箱”测试版[11]三、国内外近期的城市区域火灾风险评估方法

(一)国内的城市区域火灾风险评估方法

张一先等采用指数法对苏州古城区的火灾危险性进行分级[15],该方法的指标体系考虑了数量危险性,着火危险性,人员财产损失严重度,消防能力这四个因素。1995年李杰等在建立火灾平均发生率与城市人口密度﹑城区面积﹑建筑面积间的统计关系基础上,选取建筑面积为主导参量,建立了以建筑面积为单一因子的城市火灾危险评价公式[12]。李华军[16]等在1995年提出了城市火灾危险性评价指标体系,该体系中城市火灾危险性评价由危害度﹑危险度和安全度三个指标组成,用以评价现实的风险,不能用来指导城市消防规划。

(二)美国的“风险、危害和经济价值评估”方法[13]

美国国家消防局与CFAI于1999年一起,在“消防局自我评估”及“消防安全标准”的工作的基础上,更突出强调了“火灾科学”的“科学性”,开发出名为“风险、危害和经济价值评估(Risk,HazardandValueEvaluation)”的方法。美国消防局于2001年11月19日了该方案,这是一个计算机软件系统,包含了多种表格、公式、数据库、数据分析方法,主要用于采集相关的信息和数据,以确定和评估辖区内火灾及相关风险情况,供地方公共安全政策决策者使用,有助于消防机构和辖区决策者针对其消防及应急救援部门的需求做出客观的、可量化的决策,更加充分地体现了把消防力量布署与社区火灾风险相结合的原则。

该方法的要点集中于两个方面:1、各种建筑场所火灾隐患评估。其目的是收集各种数据元素,这些数据能够通过高度认可的量度方法,以便提供客观的、定量的决策指导。其中的分值分配系统共包括6类数据元素:建筑设施、建筑物、生命安全、供水需求、经济价值。2、社区人口统计信息。用于收集辖区年度收集的相关数据元素。包括居住人口、年均火灾损失总值、每1000人口中的消防员数目等数据元素。

该方法已在一些消防局的救援响应规划中得到应用。以苏福尔斯消防局为例,它利用该方法把其社区风险定义为高中低三类区域,进而再考察这些区域的火灾风险可能性和后果:高风险区域包括风险可能性和后果都很大的以及可能性低、后果大的区域,主要指人员密集的场所和经济利益较大的场所;中等风险区域是风险可能性大,后果小的区域,如居住区;低风险区域是风险可能性和后果都较低的区域,如绿地、水域等,然后再把这些在消防救援响应规划中体现出来。

(三)英国的“风险评估”方法[14]

英国Entec公司研发“消防风险评估工具箱”,解决了两个问题:一是评估方法的现实性,是否在一定的时限内能达到最初设定的目标。经过对环境、管理、海事安全等部门所使用的各种风险评估方法的进行广泛考察之后,研究人员认为如果对这些方法加以适当转换,就可以通过不同的方法对消防队应该接警响应的不同紧急情况进行评估。二是建立了表达社会对生命安全风险可接受程度的指标。

Entec的方法分为三个阶段。首先应该在全国范围内,对消防队应该接警响应的各类事故和各类建筑设施进行风险评估,这样得到一组关于灭火力量部署和消防安全设施规划的国家指南。对于各类事故和建筑设施而言,由于所采用的分析方法、数据各不相同,所以对于国家水平上的风险评估设定了一个包括四个阶段的通用的程序:对生命和/或财产的风险水平进行估算;把风险水平与可接受指标进行对比;确定降低风险的方法,包括相应的预防和灭火力量的部署;对不同层次的灭火和预防工作的作用进行估算,确定能合理、可行地降低风险的最经济有效的方法。

国家指南确定后,才能提供一套评估工具,各地消防主管部门可以利用这些工具在国家规划要求范围内,对当地的火灾风险进行评估,并对灭火力量进行相应的部署。该项目要求针对以下四类事故制定风险评估工具:住宅火灾;商场、工厂、多用途建筑和民用塔楼这样人员比较密集的建筑的火灾;道路交通事故一类危及生命安全、需要特种救援的事故;船舶失事、飞机坠落这样的重特大事故。

第三个阶段是对使用上述评估工具的区域进行考查,估算其风险水平,与国家风险规划指南对比,并推荐应具备的消防力量和消防安全设施水平。

参考文献:

1、ThomasF.Barry,P.E.Risk-informed,Performance-basedIndustrialFirerotection.

TennesseeValleyPublishing,2002.

&n2、HB142-1999Abasicintroductiontomanagingrisk:AS/NZS4360:1999

3、ISO8421-1:1987(E/F)

4、RichardW.Vukowski,FireHazardAnalysis,FireProtectionHandbook,18thedition,1995.

5、Brannigan,V.,andMeeks,C.,“ComputerizedFireRiskAssessmentModels”,JournalofFireSciences,No.31995.

6、NFPA101AGuideonAlternativeApproachestoLifeSafety.2000edition.

7、赵敏学,吴立志,商靠定,刘义祥,韩冬.石化企业的消防安全评价,安全与环境学报,第3期,2003年

8、李志宪,杨漫红,周心权.建筑火灾风险评价技术初探[J].中国安全科学学报.2002年第12卷第2期:30~34.

9、FireSuppressionRatingSchedule,ISOCommercialRiskServices,1998edition.

10、NFPA1710:ADecisionGuide,InternationalAssociationofFireChiefs,Fairfax,Virginia.2001.

11、Entec,ReviewofHighOccupancyRiskAssessmentToolkit.23August2000.

12、李杰等.城市火灾危险性分析[J].自然灾害学报95年第二期:99~103.

13、InformationontheRisk,HazardandValueEvaluation,USFA,1999.

14、MichaelSWright,DwellingRiskAssessmentToolkit:1999.

火灾风险因素分析范文第3篇

关键词:LNG 内河 风险 识别

柴油-LNG船舶是利用柴油作为发动燃料,而后运行过程中使用天然气作为燃料的双燃料船舶。现有船舶均以柴油发动机为主,船舶应用双燃料后,在保持原有柴油机结构和燃烧方式不变的前提下,只需增加一套LNG供气系统和柴油—LNG双燃料电控喷射系统,通过电子转换开关,即可实现单纯柴油燃料状态下和天然气双燃料状态下两种运行模式,技术先进、经济可靠、节能环保、市场潜力巨大,具有广阔的开发价值。

改装后的船舶甲板上安放了LNG储气罐,其主要成分为甲烷,当浓度达到5%~15%时,存在火灾爆炸的风险。所谓风险,是指在一定的时间内,由于系统行为的不确定性(主要指发生了意料之外的事故)给人类带来危害的可能性。这里所指的危害包括经济损失、人员伤亡和环境破坏三个方面。据统计,1987 ~1992年期间,所有在船舶上死亡的人数,有超过三分之一是由于火灾造成的,因此,对船舶进行泄漏后火灾事故的风险分析是很有必要的。

油改气阶段性成果

2011年7月,柴油—LNG双动力实船改造再传喜讯,由芜湖市港航管理局与中油嘉润公司合作承担的交通运输部海事局LNG船舶改造项目试航成功。近一年来,我国政府主管部门和船舶相关企业在该领域频频试水,取得诸多成果。

据统计,目前,我国已经实现了拖轮、散货船、游船、渔政船等船型的LNG改装试验。正如一位业内专家所说:“国内已经掌握发动机改装的成熟技术。”

风险识别方法

风险评估是建立在大量的考察工作之上的,在收集丰富的现场数据并加以分析之后,风险评估工作才能开展。危险识别是风险评估工作的第一步,可以定性的给出需要改进风险的建议,也可以在此基础上深入的分析,最终将风险的结果量化。分险识别的方法有很多种,以下主要介绍两种方法:

1、故障树分析法(Fault Tree Analysis,FTA)

FTA是安全系统工程与风险分析中最重要的分析方法之一。FTA选择一个最不希望发生的事件作为顶事件,把它作为第一级并找出导致顶事件发生的诸多直接因素,把它作为第二级,并列的画在顶事件的下面,并且用恰当的逻辑门联结,采用同样的方法,对第二级的各个因素进行建树,直到把底事件画到树的最下一行,这样就形成了一棵自上而下倒立的树形图。

2、事件树分析方法((Event Tree Analysis,ETA)

ETA是一种逻辑演绎法,它在一个初因事件的情况下,分析此初因事件可能导致的各种序列的结果,从而定性或定量的评价系统的特性。

事件树分析方法的优点是:(1)可以用简单图示方法给出危险发生的全过程,简单明了;(2)能对潜在的危险给出一定程度的估计,能明确危险扩大的原因及危险发生概率的大小关系;(3)事件树分析可进行事故序列发生概率的计算等定量分析。

柴油-LNG内河散货船危险识别

1、柴油-LNG内河散货船有害因素识别

柴油-LNG内河散货船与普通内河散货船相比,使用了柴油-LNG的双燃料发动机,由于LNG易燃、易爆的特性,因此本文着重对柴油-LNG动力系统进行危险识别。

2、柴油-LNG内河散货船风险分析

2.1燃气泄露风险分析

LNG发生泄漏主要有两类模式:一类是LNG管路的泄漏,包括软管、各种阀门、压力表、法兰、管路等;另一类则是罐体或罐体上的设备,包括泄压阀、安全阀等的泄漏。

发生泄漏事故后,周围就会产生大量的蒸发气并和空气形成混合蒸发气,该混合蒸发气对人员的危害程度取决于蒸发气的浓度和人员与蒸发气接触的时间长短等因素,当蒸发气浓度大于1000 mg/m3 时,人员就受到轻度危害;当蒸发气浓度大于17990 mg/m3 时,人员就会受到中度危害(头晕、头痛、兴奋或嗜睡,恶心、呕吐、脉缓,严重时麻醉、记忆丧失)。当气体泄漏后浓度达到5%~15%范围且遇到明火时,即发生爆炸。

2.2火灾和爆炸风险分析

在LNG特性中,一个固有的安全因素是天然气气态时密度小,如果局部泄漏,由于自然浮力和快速扩散,将从泄漏处上升飘走,积存可燃混合气体的可能性很小,不易造成严重后果。若LNG泄漏量较大,在罐区周围形成天然气蒸气云,将达到爆炸极限。由于其最小点火能为0.28 mJ,在大于此能量的点火源存在的条件下就会发生爆燃、轰燃,即蒸气云团爆炸。此种加压储存的可燃液化气体突然瞬间泄漏时,遇到火源发生剧烈的燃烧,产生巨大的火球,造成人员伤亡和财产损失,称为沸腾液体扩展蒸气爆炸。

火源出现的形式主要有明火、电火花、雷击放电、静电。

LNG储气罐火灾爆炸事故树法风险识别

由于LNG储气罐中储存的可燃气体属于易燃易爆品,密度小、爆炸范围宽,一旦发生燃烧爆炸事故,就会造成人财两伤的严重损失。所以,如何预防储气罐发生火灾爆炸事故是安全管理的重点。对其进行安全评价,控制事故的发生,有着积极的意义。

1、LNG储气罐火灾爆炸事故树

事故树分析又称故障树分析,是一种演绎的系统安全分析方法。它从要分析的特定事故或故障(顶事件)开始,通过对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按照工艺流程、先后次序和因果关系绘制事故树图,表示出导致灾害、伤害事故的各种因素间的逻辑关系,层层分析其发生的原因,进行结构重要度的计算,找出事故的基本原因,即故障树的底事件为止,并确定各个基本事件在导致事故发生过程中的重要程度。

事故树分析法最突出的优点是可以评价出事故发生的概率和找出事故的直接原因事件,并可以分析出事故的潜在原因事件。

2、结构重要度分析

结构重要度分析是从事故树结构上分析各基本事件的重要程度,即在不考虑各基本事件的发生概率,或者说假定各基本事件的发生概率都相等的情况下,分析各基本事件的发生对顶上事件的发生所产生的影响程度。

机舱火灾与爆炸事件树法

船舶火灾事故主要是由明火、烟火、摩擦火、自然火、电器漏电或接触不良、静电释放、化学作用等原因引起的。而船舶机舱发生火灾主要有以下几种类型:LNG可燃气体泄漏或油舱(柜)、油管内的油类物质泄漏遇热或遇明火引起火灾;曲轴箱油物浓度过高引起火灾甚至爆炸;机舱内维修用的破布、棉纱等可燃废弃物处置不当诱发的火灾;机舱内其他易燃物管理不当导致的火灾;电气设备损坏(例如线路老化、绝缘差、接头处理不当、漏电等)以及电器设备操作不当等原因引起的火灾。因此,基于以上造成机舱火灾事故主要原因的分析,可编制一些造成机舱火灾的事件树。

火灾风险因素分析范文第4篇

关键词:汽车缺陷;汽车火灾

1 汽车缺陷特性分析

产品因设计、生产、指示、提供(包括运输、维修)等原因在某一批次、型号或者类别中存在具有同一性的、危及人体健康和生命安全的不合理危险导致缺陷发生。75%以上的产品召回事件的根源,可追溯到产品开发中的缺陷。因为汽车是成批量生产并进入市场的,所引发的损害是广泛且无法控制的,造成的是对社会与公共利益的严重损害。

1.1 汽车缺陷客观存在性 我国的汽车召回制度将美国法规所定义缺陷和不符合统称为缺陷。本研究所称的缺陷与我国国家质检总局等四部委联合的《缺陷汽车产品召回管理规定》中的定义相一致。汽车是一种复杂的机电一体化的高科技消费品,生产制造工艺复杂,工作环境多变,且产品一致性程度高,容易产生大范围的缺陷。近年来,随着市场竞争加剧、汽车研发技术的进步和平台化战略的推进,产品的设计周期从过去的5~6年压缩到现在的2~3年甚至更少。较短的开发周期使汽车试验和可靠性验证的时间也相应缩短,很多设计和制造问题无法在产品投放到市场前暴露并解决,使缺陷的产生成为必然。

1.2 基于数据统计分析的汽车缺陷普遍性分析 2006年欧盟对汽车召回行动中的危险进行了细分,缺陷风险模式主要是伤害和失火,这两项因素占总风险的98%,爆炸和割伤仅占2%。其中,伤害主要指因缺陷引发故障,使驾驶员对车辆的操控能力减弱,对车辆乘员和车外其他交通参与者造成伤害,也有少数情况是车辆在静态状态下产生机械伤害。我国汽车召回数据分析结果显示:伤害风险占69.1%,失火风险占29.5%。可以看出,我国汽车的失火风险相对欧盟平均水平要高接近10%。

正因为汽车缺陷几乎是无法避免的,因此发达国家都采用召回等方式作为缺陷的补救措施,以消除安全隐患。各国汽车召回的数据进一步说明缺陷存在的普遍性。

然而,在我国的公安交管部门关于事故原因的统计中,车辆因素所占的比例偏低,且年度之间波动较大,其直接原因是:交通管理部门往往因为确定和追究事故责任者的需要而过分强调人的因素,对于需要技术鉴定的车辆问题尽可能回避。深层次的原因则是:割裂了人车路体系中三个因素之间存在的相互联系,特别对车辆因素在交通安全中的作用认识不足。

事实上,一起交通事故的发生,不能把它看作仅仅人车路因素中某一独立环节的失调引起的,而往往是由两个或多个因素共同作用的结果,但在一般事故处理现场只能确定其中一种作为主要原因,车辆安全性能这一重要因素往往被忽视。

道路交通是由人、车和道路三大要素构成的整体,交通安全既是社会、经济问题,也与汽车安全技术息息相关。汽车具有运动速度高、零部件复杂、乘载人数多等特点。最快的跑车最高时速超过400km/h,最大的单体客车可一次性容载200人,最大的专用货车满载质量达600吨;而一般民用汽车的行驶速度在30~180km/h,承载人数在4~100人之间。可见,一旦汽车火灾缺陷在高速运动中暴露出来,将带来非常严重的风险。

2 汽车火灾特点

由于火灾发生于同一载体,缺陷导致的汽车火灾特性与汽车本身相关。

2.1 汽车火灾发生三要素 汽车火灾的三要素是:可燃物、热源和氧气。汽车上的可燃物有:树脂部件、橡胶、编织物,以及外加的油品(如汽油、油)等。从材料的角度分析,只要达到燃点,汽车上大部分元件都可以燃烧,甚至是铝合金等;汽车上的热源有:发动机(排气管)、加热器、电器元件(马达)和线束等。氧气在大气当中,因此普遍说来该条件是一直满足的。

2.2 汽车火灾蔓延特征 汽车火灾方向为蔓延快速向上方蔓延、沿着车内气体流通线路蔓延。发生火灾之后,火焰是从下往上燃烧的,并且随着车内气体流动的方向蔓延。此外,火焰在蔓延的时候还会随着外部风向的方向蔓延。掌握火势蔓延的方向有利于掌握起火点,从火灾之后残留的燃烧纹路可以判断哪些地方燃烧的严重程度大,燃烧的时间长。

3 汽车缺陷与汽车火灾的相关性分析

汽车火灾是缺陷所带来的主要风险之一。汽车内部可燃物多,火焰传播迅速,容易造成严重的人员伤亡和财产损失。近年来,全国汽车火灾有增无减,形势严峻,引起各方高度重视,常见引起汽车火灾的缺陷表现在以下三方面。

3.1 汽车燃油系统火灾与缺陷相关性 燃油系统和电气系统设计制造缺陷是引发车辆火灾的主要因素。燃油系统油液渗漏,一旦遇到明火或热源,将发生火灾。需要指出的是,除了燃油外,汽车中的其他油液也是潜在的燃料,刹车油(含乙二醇),ATF(自动变速器油)甚至防冻液(含乙二醇)被点火源引燃。因此,一旦管路或零部件出现油液渗漏的情况,都可能产生起火的风险。

3.2 汽车电气系统火灾与缺陷相关性 在汽车运行过程中,电气系统故障占整车故障的85%左右,而在所有汽车火灾中,因电气系统故障引起的火灾占60%左右。据统计分析,美国高速公路上因点火问题引发的汽车火灾中,仅电路短路等缺陷占事故原因的5.1%。电气系统的火灾主要是由电路短路或元件过载引起的,电路和电气元件产生电弧或高温,将周围的绝缘体和可燃物引燃。电气系统缺陷可能导致短路反应链,在短时间内扩大火灾。

火灾风险因素分析范文第5篇

关键词:城市轨道;事故案例;危险因素

1 引言

目前城市轨道是很多城市缓解交通问题的首选方案。但近年来全球地铁事故不断发生,我国的北京、上海、广州等城市地铁也先后发生事故.城市轨道交通的安全性受到了人们越来越多的关注。因此,分析城市轨道交通在施工、运营中存在的危险因素,对于防止轨道交通事故的发生,改善运营的安全状况,降低事故损失都具有十分重要的意义。

2 城市轨道交通典型事故案例分析

根据所查找的资料对城市轨道交通在火灾、水灾、停电、列车出轨/相撞、爆炸、毒物泄露等方面发生的事故进行了分类统计,统计结果见表1所示。

依据表1所统计的部分重大轨道 交通 事故,绘制地铁事故原因分布图,见图1所示。从中可以看出火灾事故是威胁城市轨道交通安全的主要因素,其发生事故量占轨道交通总发事故量的63%左右。 3 城市轨道交通建设及运营过程中的危险因素 分析

3.1 施工期危险有害因素分析

3.1.1 工程地质等 自然 条件危险因素

各类不良地质条件,如暗河、古河道;地下人防设施;地下不明障碍物;承压水地层;复杂地貌条件等不良地质条件及施工 方法 不当,机具配备衬砌强度和工程进度【2】等方面的原因,存在着塌方、异常涌水、有害气体堆积等危险因素。 被拆迁建筑的外接管线,特别是电源、燃气等的切断、检查不当引发事故;施工期间临时交通标志、标线没有设置或设置不当;施工人员携带火种、打火机等可引起火灾的物品进入洞内,引起爆炸、火灾等事故;施工机械噪声、振动过大,会妨碍对话, 影响 信号联络,还会对作业人员造成不适感;长期吸入洞内作业产生的粉尘、内燃机排出废气和烟雾,会引发矽肺病、缺氧症。

3.2 电气系统危险有害因素分析

供电系统地铁接触网高压电,一旦发生接触网断线或绝缘子损坏,接触到金属结构物就会使其带电,危及人身安全[2].由于电气设备损坏和使用不当常有触电伤亡事故发生;变电所、配电室中的电气设备等由于短路、过载、接触不良、散热不良、照明、电热器具安置或使用不当、违章作业等均会引起电气火灾、触电事故;杂散电流会给地铁以外的金属管道、金属结构造成电蚀危害。列车内的高压电器设备的安全防护措施不当,可能引起人员伤亡事故。

3.3 车辆系统危险有害因素分析

列车失控发生事故,造成人员伤亡, 经济 损失;轨道损伤或断裂,导致严重伤亡事故;列车脱轨,造成严重的伤亡事故;由于地铁车门的安全标志不清,造成的机械伤人事故,同时在事故发生后,不利于事故救援,人员疏散;由于地铁列车内的座椅等材料的选择不当,易发生火灾,且产生有毒烟气,加重事故后果。

3.4 通风/排烟系统危险有害因素分析

在通风系统管理上的缺陷,会妨碍通风系统的正常工作(如对风亭、风道的行人出人口等方面的管理。)[3]地铁发生火灾,不仅火势蔓延快,而且积聚的高温浓烟很难自然排除,并迅速在地铁隧道、车站内蔓延,给人员疏散和灭火抢险带来困难,严重威胁乘客、地铁职工和抢险救援人员的生命安全,这是造成地铁火灾人员伤亡的最大原因[4]。

3.5 给/排水系统危险有容因素分析

给、排水管道的防腐,绝缘效果不佳发生泄露现象;隧道内排水系统不完善,隧道防水设计等级过低,导致涝灾或地表水侵人;地面车站的地坪高度低于洪水设防要求;排水系统设置不完善,污水乱排以及污水、垃圾排人地铁隧道等会影响地铁环境卫生。

3.6 通信/信号系统危险有害因素分析

通信系统的电源发生故障或通信设备本身发生故障等 问题 时,不能保证各种行车信息及控制信息不间断地可靠传输,从而引起事故的发生。

3.7公用工程及辅助设施危险有害因素分析

站台上乘客过多产生拥挤,可能会使乘客跌入轨道区,列车进站而造成人身伤亡事故;在自动扶梯运行中,可能发生梯级下陷,驱动链断裂、梯级下滑,扶手带断裂等故障,对乘客造成伤害;车站地面材料不防滑或防滑效果不明显存在安全事故隐患伙地下车站站厅乘客疏散区、站台及疏散通道内及与地铁相联开发的地下商业等公共场所存在发生火灾的危险,且会发生连锁火灾事故;车站内的建筑物装修材料选用不当,会发生火灾,且产生有毒烟气,加重事故后果;乘客无视地铁运营安全管理的要求,擅自携带易燃易爆、有毒危险物品乘车,造成各种潜在事故隐患;车辆段蓄电池间、检修间等车间易产生有毒气体,吹扫库在吹扫车底工作时产生大量粉尘,对工作人员健康,造成影响。

3.8 自然灾害危险性分析

3.8.1 台风

根据国内外地铁事故(例如 台湾 地铁受纳莉台风影响所造成的损失)的分析表明,台风对沿海城市的轨道交通特别是高架桥部分有一定的影响,且其破坏程度较高。因此,在受台风威胁的地区建设的轨道交通工程,其工程设计及施工过程中应加强对台风危害的防范。

3.8.2 水灾

地铁工程的车站和隧道大都处于地面标高以下,一方面受到洪涝灾害积水回灌危害,另一方面受到岩土介质中地下水渗透浸泡危害。地下水或地表水进人地铁车站和隧道内,可以使装修材料霉变,电气线路、通讯、信号元件受潮浸水损坏失灵,造成工程事故。地下水积存,使地铁内部潮湿度增加,使进人车站的乘客胸闷,不舒适。

3.8.3 地震

地下铁道的车站和隧道包围在围岩介质中,地震发生时地下构筑物随围岩一起运动,与地面结构不同,围岩介质的嵌固改变了地下构筑物动力特征。一般认为地震对地下结构影响较小。但1995年阪神地震后,人们才改变以往看法,地下结构存在地震破坏的可能性。

4 结束语

发展 城市轨道交通,对促进城市的建设和经济发展提高市民的生活水平,和改善城市的环境具有重大的意义。轨道交通作为城市重要的公共交通工具,其安全性直接关系到广大乘客的生命安全。城市轨道的安全建设、安全运营,是其运输的首要目标和基本原则。

城市轨道交通系统是一个庞大复杂的系统工程,从其建设施工到正式运营的各个环节存在着诸多的危险因素。本文在统计分析以往城市轨道事故的基础上,从施工期、供电系统、车辆系统、通风/排烟系统、给/排水系统、通信l信号系统、公用工程及辅助设施等方面分析了存在的危险因素,为确保地铁的安全运营提供依据。

参考 文献 [2]刘鹏,朱iF清.浅谈地铁劳动安全卫生篇章的编制.铁道劳动安全卫生与环保,2004, 28 ( 2 )

[3]刘国芳.北京地铁通风系统的现状分析和改进意见.铁道建筑,1995,3:1518

[4]原震,赵新文如何解决地铁站台隧道的通风排烟问题.消防技术与产品信息,2003,11

[5]施毓凤,杨最,孙力彤城市轨道交通的安全管理问题.城市轨道交通 研究 ,2003 ( 2);26