前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇机电一体化技术定义范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

关键词:继电保护;整定计算;数据拼接; 发展
中图分类号:TM77 文献标识码:A
整定计算是保证电网正常运行最为基本的工作,能够使得故障出现之后继电保护装置可以在短时间之内做出相应的反应,保护电路并尽快的排除故障。数据模型拼接技术是整定计算之中一个很重要的方法,而现在的技术等等方面也面临着不少的难题。本文通过研究现状的方式对数据拼接的发展方向做出简要的分析。
一、整定计算的基本结构
整定计算是针对于数据的维修保护,通常都是将所有的数据集中起来一同维护管理。我们可以知道数据的集中无疑就是数据库的职能了,因而整定计算的基础就是数据库,其中包括了许多基础数据的内容:如接线图、设备台账、基本运行方式、后备保护运行定值、整定计算模板、整定计算原则等多方面的基础数据。其中接线图主要使用了分层管理的方式,将电压等级从南方最高的电压到省内最低的电压分成几个等级的电压。基本运行方式有全网运行、各省运行、省间运行等几种基础的运行方式。其中全网运行方式的基础就是各省与省间运行方式两种。后备保护运行定值由在各省之间的后备保护定值一同组成。而整定计算原则既可以使用全国统一的整定计算原则,同样可以使用各省自己单独制定的整定计算原则。
基础数据库将管理由管理方交给的所有建立的数据库,包括维修、保护等等多个方面的管辖措施。各省电网用户都会有属于自己的数据库,自己的数据库也仅对用户本人所开放,并且所有数据的使用登陆等等情况都会有所记录,保证用户数据的绝对安全。
二、数据模型的拼接
1 数据模型拼接的基本原理
上文中阐述了如何实现基础数据库的建立与管理,而数据的拼接正是把用户的数据上传到上级数据库,然后进行拼接,从而形成完整的数据库。拼接的过程大致是下属电网整定计算系统导出图形与参数到XML交换文件,之后经过第一次导入完整导入到空区域。后续导入即是匹配导入,仅导入修改的部分。其中目标区域是接受导入源工程数据的区域,这些区域都存在于目标工程之中。而目标工程指的是某种计算工程并且接受导入的数据进行整定计算。
2数据交换的原则
数据交换的过程中,所交换的文件对数据以及电网参数进行详尽的描述,导出时选择相应的区域或者选择部分区域以及之间的线路进行传输。而相对应的,导入的操作之中,文件的交换成为了数据交换过程之中最为关键的一个部分,要注意到以下几个方面:(1)导入的过程中,文件的导入必须伴随着相应的设置以及用户的确认才能完整的进行,最终保存至数据库之中。(2)交换文件与元件的名称进行匹配。匹配主要是由两个方面来进行的,自动匹配以及手动匹配,当然大多数的系统之中都是优先采用自动匹配,而当不能自动匹配成功的时候,只有采用手动匹配的方式来进行匹配。两种匹配方式都是为了迎合数据的分级方式从而进行的,均是逐层匹配。(3)在数据导入数据库的过程之中,数据库将会记录每一次所导入的数据所属的区域,当下一次相同区域数据导入时,数据库将会将两次导入数据的区域相互比较,如有缺失的区域,系统将缺失的区域提取出来,询问是否已经删除。而相对应的一次性设备,将不会保存这类的信息。若上述中记录信息的区域之中存在有一次性设备,系统将直接进行提示是否删除。
3 整定计算数据拼接的技术难点
整定计算数据拼接的主要技术难点主要表现在将下级导出的交换文件与上级网络进行拼接的过程之中,需要考虑许许多多这两个方面的差距并做出最为合适的处理方案。其中包括了厂站、线路和其他元件的增加与删减、名称的更改、参数的改动、位置的改动、运行方式的不统一等等。这些不统一在修改的过程中存在的很多必须要注意的方面使得整个修改方案变得更加的困难。首先要确保在拼接之后的数据不会有任何的偏差。其次拼接过程中数据的修改不能从单独的一方面进行,并且修改的过程最好能够完整的展示给每一个用户,能够方便用户的操作,从而提高整个系统修改的实用性。还有另外一点就是基于用户操作的习惯不相一致,计算机的系统也会有所差异,所以之后整个数据拼接过程的优化,将会从新程序的开发以及更新管理方案进行更加进一步的调整。
三、数据拼接发展方向
基于上述对于现阶段继电保护数据拼接的分析,可以看出现在数据拼接仍然有不少的难点需要我们进一步解决,其中技术难点与管理上的难题都有所存在,造成现在的数据拼接并不是十分科学高效的。故下文之中将对数据拼接的发展方向进行分析研究。
1智能化的开发将会成为数据拼接的主要发展方向。近些年来,智能化的发展越发的迅速,包含了众多的领域,以至于神经网络、遗传信息等方面都出现了重大的突破。这些领域因为智能化的介入从而有了飞速的发展,完全都是因为这些领域之中,复杂的问题计算与研究占据了十分大的一部分,而继电保护的一体化整定计算数据的拼接无疑也是属于这一方面的。在数据拼接的过程之中会出现很多上下级信息不完全相同进而需要双方面进行信息检查的时候,智能化的优势将会体现出来,智能化将会把所有的信息进行比较分析,从而以最快的速度将整个数据拼接过程之中出现的差异给予正确的修复,智能化同时也可以更加方便用户的操作,使得信息的拼接变得更加方便简洁,而相对于现在的数据拼接系统而言,智能化更高强度的加大了数据拼接的速率,同时也将错误率降至最低的水平之下。
2计算机的网络化使得整个世界有了新一次的革命,对于数据的拼接同样如此。网络化同样应该进入数据拼接的处理之中,继电保护能保护整个电力系统,在故障发生的同时可以最为有效的排除、切断故障元件,而数据的拼接在整个整定计算过程中显得格外重要。故障点的探寻等信息的交换,在网络化的环境之中,可以将信息更加快速安全的进行拼接整合,使每一个保护单元都可以共享信息以及更加稳定协调的工作。网络化使得数据信息管理更加方便简洁,将信息有序的进行排列,在数据拼接的过程之中,大大减少了双方信息不一致而导致的更加复杂的整理修改数据。
结语
本文通过对现在继电保护一体化整定计算数据模型拼接的难点与缺失进行概述分析,对之后数据拼接的发展方向进行了预测,从而发现了网络化与智能化将会在数据拼接的方面占据更加重要的份额。这两个方面的发展将会大大减少数据拼接过程之中出现的各种问题,提供更加先进的科学技术以及管理机制,能够使得整个数据拼接过程错误率大大下降,也为每一个用户提供了更加便捷的服务方式。
关键词:机电一体化;计算机控制;传感器
1 机电一体化的概念
人类从使用简单工具到现代的机器发生了巨大的变化。特别是计算机控制技术出现以后,传统机械又有了一个飞跃。
机器应该是机械和电器的合成。传统的机械工程和自动控制工程从专业学习到工程设计应该一体化。目前,关于机电一体化的定义与概念,许多书籍都是根据国外书籍的定义和概念而引用。对于国外的概念基本强调机器人跟数控机床的概念。虽然,机器人和数控机床是机电一体化中具有一定代表性的产品,但绝非是机电一体化的全部内容,机械的内容很多:化工机械、轻工机械、重工机械、纺织机械等。机电一体化强调的是机械产品的自动化和智能化的问题。
2 机电一体化的基础知识
机电一体化涉及的知识还是比较广泛的。在机电一体化设计中常常会涉及到机械做功,液体压力做功等理论力学和材料力学的相关知识。对于机械零件还涉及到机械零件的加工方法一些工艺性问题。尤为重要的是数控加工技术。零件的加工精度、材料的选择都是需要学习的。一些机械零件例如:轴和轴承、齿轮、凸轮、链条、链轮等可以说是机电一体化设备中应用极广泛的一类机械零件。对于零件的学习使是我们应具备的基础。还有自动控制和人工控制的内容,电路电器的基本知识。
3 传感器
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息按一定的规律变换成为电信号或其他所需的形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制的要求。它是实现自动检测和自动控制的首要环节。
传感器大致可分为物理传感器和化学传感器两大类。在机电一体化中起着至关重要的作用。常见的传感器有:压力传感器、位移传感器、位置传感器、温度传感器、湿度传感器、气敏传感器等等。
4 绦凶爸
所谓执行装,就是把从电源、液压、气压等动力源获得的能量变换成旋转运动或者直线运动的一种装置。执行装置主要由执行元件、传动原件等构成。主要的执行装置有如下几种:步进电机装置、伺服电机装置、普通电机装置、液压油缸装置、液压马达装置、气压装置、气动马达装置。这些机械装置是控制系统的控制对象,也叫控制系统的执行装置。普通电机装置也是控制系统的控制对象,如采用变频器可以控制转速,PLC也可以控制转速和角位移。普通电机采用控制器的控制精度和效率没有步进电机和伺服电机高,但是在一些控制要求不太高的机电一体化设备中,目前应用还是比较广泛的,毕竟普通电机价格比步进电机和伺服电机低得多。
5 计算机控
机械设备的控制系统从最初的的强电控制到现在的计算机控制,经历了如下过程:简单的开关控制――继电器控制――单片机控制――单板机控制――PLC控制――PC控制。事实上,到现在为止机械设备的控制系统无论从简单的开关控制,继电器控制到复杂的单片机控制、单板机控制、PLC控制、PC控制都有它们的使用价值。随着时间的发展,使用的比例肯定会按上述顺序,前面的越来越少,后面的越来越多。目前来看单片机控制、PLC控制系统在机电一体化应用领域的数量上应该是最多的。
数控技术是指用数字指令来实现一台或多台机械设备动作控制的技术。它所控制的通常是为止、角度、速度、等机械量和开关量,以及温度、流量、压力等物理量。数控技术和计算机控制技术是相互关联的。数控技术的特点:精度高、速度快、可靠性高。
6 机电一体化的设计方法
机电一体化设计类型可分为:
根据受控对象的不同,进行机电一体化设计;
改进型机电一体化设计;
创造发明性机电一体化设计;
不同的机电一体化设计类型,也有不同的设计方法。所谓根据受控对象的不同进行机电一体化设计,也就是不同行业有不同的受控对象。比如数控机床、包装机械一类的受控对象基本上是机械动作;在化工机械中,处理机械动作外还有对温度、流量、压力、配比等物理量的控制;也有将化学量作为受控对象的,如土壤分析仪对土壤酸碱度、钙、镁、磷的分析等。当然受控对象最多的还是机械动作问题。
改进型机电一体化设计是应用非常广泛的一类设计。比如,我国数控机场普及度不高的现状的主要原因一方面是数控机床的售价太贵,对于许多企业来说很难承担这笔开支的。所以对现有机床进行数控化改造,提高现有机床的生产效率和质量、节约成本等起到很好的效果。
在机电一体化设计中,我们主要考虑3部分的设计:机械部分、控制部分、传感器部分。事实上,为了简化问题,机电一体化的设计思路完全可以从两部分来考虑。即机械部分和控制部分,因为传感器完全可以在控制部分中一起考虑。机电一体化设计发展到今天,机械部分的设计仍然是这三部分中最重要的部分。过去在机电一体化设计的学习和实际工作中存在一种错误的认识和看法:认为机械设计直观简单,技术含量没有控制部分高。这是一种本末倒置的认识。
参考文献
关键词:机电一体化;建模;仿真;虚拟原型
中图分类号:TM 文献标识码:A 文章编号:1009-914x(2014)26-01-01
引言
机电一体化技术一般指的是电子、机械和信息技术结合的一种新型技术,最早在上世纪70年代在西方被提出来,其本质是机械技术通过运用信息化技术不和电子技术而达到效能最优的状态。而目目前机电一体化的建模与方式技术是最新的研究热点,本文针对这个热点展开探究。
一、机电一体化技术概述
第一,我国机电一体化技术的发展与现状。我国机电一体化技术大体经历了自发初级阶段、蓬勃发展阶段和智能化发展新阶段等三个阶段。初级阶段机械产品只是通过简单的电子技术进行了产品优化,到了发展阶段则利用了当时兴起的计算机、通信和控制技术,机电结合更为灵活,到了智能发展阶段,机电一体化技术更多地吸收了激光、模糊、信息和神经网络技术等其他学科成果,逐渐形成独立的技术体系。第二,机电一体化的相关技术。机电一体化主要涉及机械技术、检测与传感器技术、信息处理技术、伺服驱动技术、接口技术、监控与诊断技术、柔性制造系统技术等技术。第三,机电一体化技术的发展趋势。目前机电一体化主要朝着智能化、集成模块化、光机电一体化、信息网络化、系统化技术方向发展,朝着技术产品能功能多样、效率优化、智能运行、稳定性强的理念发展,力求让技术产品向轻盈、超薄、细微、小巧等时尚化方向发展。
二、虚拟原型技术与机电一体化
(一)虚拟原型技术
该技术是在CAX技术、DFX技术、物理样机设计技术的基础上发展起来的,并且在发展过程中吸收了信息技术、仿真技术和先进制造技术,让机电产品的设计智能化和灵巧化,生产效率高效而稳定,最终让产品开发形成一套从设计到仿真,从分析到复杂的系统化开发体系。1,基本原理。该技术以CAX技术为基本技术基础,和以前的串行设计技术比起来,该技术实现了多功能系统的集成化结合。人们可以通过该虚拟模型技术建立机械模型,通过仿真环境得到真实实验参数,并依据实验参数对产品进一步优化,降低开发成本,缩短周期,提升竞争力。2,系统结构。该技术通常以某种可以输入多种产品参数的三维实体数字化模型结构的形式出现,该模型是可变的,动态的,人们可以依据开发和设计需要不断输入新的参数,并得到新的模型结构,根据模型结构来优化产品设计。3,技术优势。该技术具有能全面反映实验产品的初始信息、为整个产品的开发过程提供模型支撑等优势,该技术的运用为制造业的发展注入了新的活力。4,关键技术及发展应用。虚拟原型技术的关键技术主要有系统总体技术、支撑环境技术、虚拟现实技术、协同仿真技术、一体化建模、过程管理技术、模型技术等多方面的技术,作为一门融合了多个学科技术的新型综合技术体系,其发展前景十分广阔。
(二)虚拟原型技术与机电一体化
虚拟原型技术是一种新型的以多领域仿真技术、先进建模技术、信息管理技术以及交互式用户界面技术为基础的综合性技术体系,与传统的机电产品开发设计和生产技术相比起来,其原理和实际运行效率都有很大的几部。因此,如果能将虚拟原型技术有机地融入到机电产品的设计和开发中,将会有效促进机电产品开发效率的提高,并且进一步发展机电一体化技术。虚拟原型技术与机电一体化技术是相互促进的关系,虚拟原型技术最终将会促进机电一体化产品设计的高效和智能化发展,而机电产品技术的发展在解决生产难题的过程中,客观上又会带动虚拟原型技术的发展。下面本文将进一步阐释这种相辅相成的关系。
三、基于虚拟原型机电一体化的控制仿真设计
第一,概述。以虚拟原型是机电一体化产品的基础,虚拟原型技术对机电产品开发设计、电气、控制等各方面的的数据模拟和测试都起到缩短周期、提高研发效率和节约开发成本的作用。联合仿真设计主要由三个部分组成:首先是机械模型的建构,其次是LabVIEW软件同机械模型与有机融合;最后是协同仿真的过程,机电产品实现综合评定和性能测试。第二,机械特性的仿真设计。机械特性仿真设计主要包括对机械的零部件特性、机械结构、机械动力状态、机械运行状态等仿真设计的分析。对机械零部件和结构的特性分析主要采用有限元分析。有效元分析主要通过Solidworks Simulation网络软件机械零件和机构力学的模拟分析,一般要分析机械材料的强度、应力和安全性能,为机电产品的结构的尺寸、材料搭配以及传动系型号选择提供模拟参数的参考;SolidWorks 与LabVIEW软件的结合为机械动力学提供仿真设计环境,该软件对力的运动各种元素进行分析研究,提供准确的机械性能和动力分析参数;机械运动的仿真设计为机电产品的运动参数、碰撞侦测参数和运动轨设计参数等提供科学的参数分析,为机电产品的机械结构和零部件的几何数据确定等提供支持。
第三,机械动力学仿真设计。机械动力学仿真设计一般指的是指在运动条件下给机电产品的部分零件,在不同的引力、压力和力矩条件下得出机械运动的性能参数,该仿真设计一般需要SolidWorks软件的支持。仿真设计所提供的模型能够对产品在运动条件下进行各部分参数的测试,并最后通过仿真参数进行控制变量分析,最后得出机电产品的在现实运行状态各部分零件和机构性能的表现;并且依据系能表现,对机电产品中机械结构和零部件几何参数进一步进行优化设计,直至模拟的运动条件下机电产品各部分指标能达到预期。
第四,机械运动仿真设计。一般来机械运动仿真设计主要是逼真模拟机电产品在运动状态下的各部分性能的表现状况。高度仿真模拟可借助于SolidWorks提供的动画仿真环境实现。在动画仿真模拟环境中,工程师可以依据其动画表现进行性能参数测试,另一方面也便于生产方向客户展示其良好的运行性能。SolidWorks软件可以提供动画模拟仿真、基本运动模拟仿真、Motion模拟仿真。动画模拟仿真主要是展现机电装配体的运动性能,操作人员可以通过添加马达插件,然后定义软件驱动装配体的各个零部件运动。基本运动模拟仿真与动画模拟仿真略有区别,它是通过对机电装配体上增添马达插件并定义运动,定义其中的引力和弹簧等基本物理参数来测试装配体运动性能。Motio运动仿真主要通过SolidWorks Motion 插件来实现,该仿真形式主要对装配的零件和结构进行在力、阻力以及摩擦力等力的作用下所表现的性能状况测试,测试相对更为精确。
四、结语
机电一体化技术是机械、电子和信息技术的有机结合,是一门不断在融合新兴的计算机技术、智能技术、生物技术和网络技术的独立的综合性技术体系,而虚拟原型技术有利于降低机电产品开发的周期和成本,提高机电产品设计和生产的效益,虚拟原型技术的建模与仿真技术能通过虚拟数字模型的建立来代替真实的产品测试工作,提高产品开发的效率,缩短周期并节约成本,机电一体化技术在不断利用现代技术的基础上将进一步发展。
参考文献
[1] 陈海霞,刘霞. 虚拟样机技术在数控机床设计中的应用[J]. 机械制造与自动化. 2011(03)
【关键词】机电一体化;智能控制;应用
随着科学技术的高速发展,电子技术也在迅猛发展,机电一体化系统逐渐完善,并且在工业生产和机械制造中得到了广泛应用,能够有效提高工业生产和机械制造质量,已经引起了我国工业生产人员的充分重视。而智能控制在机电一体化系统的背景下应运而生,促进了机电一体化系统的发展。智能控制在没有人操控的情况下可以自动控制目标,实现生产制造,智能控制的功能主要体现在控制程序和控制主体上。目前,工业行业对于工业生产的质量要求越来越高,而工业生产受到许多不确定性因素的影响,这就导致数控管理非常困难,无法控制工业生产的质量。通过智能控制来代替人工操作,能够充分发挥智能控制的优势,有效解决机电一体化系统中的问题,取长补短,使工业生产的质量更高、效率更快。因此,如何在机电一体化系统中应用智能控制技术值得广大工业人员深思。
1机电一体化系统的概述
1.1机电一体化的定义机电一体化又被称作为机械电子学,主要指的是把电子电工技术、微电子技术、机械技术、信息技术、信号变换技术、接口技术和传感器技术等多项机械和电子技术结合起来,并应用在实际工业生产中的综合性技术。1.2机电一体化系统的结构机电一体化系统的结构主要由硬件和软件来部分组成,其中硬件组成部分主要包括了电子装置、计算机装置和机械装置,而软件组成部分主要包括了计算机技术、信息技术、电子技术、机械技术、自动控制技术、系统技术、检测技术、传感技术以及伺服传动技术。其职能组成部分主要包括信息处理部分、动力组成、感知部分、控制部分、执行部分和机械运动部分。
2智能控制的概述
2.1智能控制的定义智能控制主要指的是在无人干预的情况下智能机器能够模拟人类的行为自动进行操作,其主要是通过计算机来完成相关智能操作,提前下达指令或程序,才能模拟人类智能。智能控制相对于传统人力控制来说更加复杂,但是能够更好地完成控制任务,达到控制目的。随着科学技术和社会经济的高速发展,智能控制将会面临更加广阔的发展空间,而且运用智能控制能够很好地解决传统控制无法完成的复杂控制任务,智能控制更加安全、可靠,对于一些高危操作,只需要设定一段程序,机器就能够自动代替人力完成操作。传统控制属于智能控制的最初阶段,在智能控制中包含了许多学科,这些学科相互结合,能够起到良好的辅助作用。智能控制理论体系主要基于信息学、自动控制学和人工智能学等多种学科建立起来的。2.2智能控制和传统控制之间的关系以及对比优势智能控制是在传统控制基础上的延伸和发展,自二十世纪六七十年代以来,计算机信息技术与人工智能技术发展的速度越来越快,人们为了让控制系统的控制效果更好,逐渐在控制系统中应用人工智能技术,而人工智能技术的应用,也使控制系统走向了智能控制阶段。和传统控制相比,智能控制系统主要具有这样几点优势:(1)智能控制比传统控制更加高级,是传统控制基础上的延伸和发展,智能控制的结构比较开放,分为各个等级,能够对分布的信息进行综合处理,提高了信息的处理效率,同时,利用智能控制来处理信息,更加精确,能够全面优化控制系统的功能。(2)智能控制系统中包含了众多学科,智能控制理论体系主要基于信息学、自动控制学和人工智能学等多种学科建立起来的,所以智能控制理论体系非常完善,同时对于传统控制而言更加成熟。(3)和传统控制相比较,智能控制能够适用于更加广泛的范围,智能控制能够解决机电一体化中对于控制对象不确定性的问题,安全、可靠地达成控制任务,提高了机电一体化控制效果。(4)智能控制和传统控制在使用方法上存在差异性,只能控制主要通过数控模型来进行混合控制,而传统控制主要通过运动学模型来进行控制,智能控制能够模拟出多种控制方式,适应各种控制环境,对于现代化工业生产起到了重要的辅助作用。除此之外,智能控制中还包含了传统控制理论,对于一些简单的问题可以通过传统控制来完成,而对于一些复杂的问题,就可以结合二者的优势,来发挥最好的控制效果。2.3智能控制的特点和类型综合而言,智能控制主要具有这几种特点:第一,智能控制的组织性明显;第二,智能控制的结构变化显著;第三,只能控制具有非线性特点;第四,只能控制能够满足目标的高质量、多元化需求;第五,智能控制能够从总体的基础上进行优化;第六,智能控制包含的学科种类非常齐全;第七,智能控制比较先进。智能控制主要分为这样几种类型:第一,分级递进智能控制系统;第二;复合式智能控制系统;第三,人工智能型控制系统;第四,进化型智能控制系统;第五,自主学习型智能控制系统;第六,专家型智能控制系统;第七,组合结构型智能控制系统。2.4智能控制系统的发展趋势由于智能控制系统的组织功能和适应非常强大,这也是当前机电一体化系统的发展趋势。在机电一体化系统中应用最广泛的就是人工神经网络和遗传计算系统。在机电一体化系统中,各个部分相互依存,起到了良好的辅助作用。近几年以来,我国的智能控制技术已经逐渐走向成熟阶段,逐渐在机电一体化系统中得到应用,智能控制技术作为一种先进的新兴技术,随着计算机信息时代的来临,智能控制系统一定能得到高速发展。
3机电一体化系统中智能控制的应用
近几年来,智能控制在机电一体化系统中的应用得到了广泛应用,其主要运用于数控领域、机械制造领域、机器人领域和建筑工程领域,下面就机电一体化系统中智能控制的应用进行深入分析。3.1智能控制在数控领域中的应用随着工业生产的高速发展,数控领域是近年来逐渐兴起的新型产物,数控技术的发展促进了我国工业的发展进步。目前,工业生产对于精确度的要求越来越高,而数控系统的要求也相应提高。在数控系统中应用智能控制,能够提高数控系统的精确度和可靠性。为了达到智能控制的目的,必须建立数控模型,结合应用传统控制理论,但是对于数控模型信息模糊的位置,必须运用智能控制才能精确控制目标。在数控系统中设置安全诊断系统,可以充分利用专家系统和遗传算法,来对数控系统中的信息数据进行检测、预算,从而全面提升数控系统的预测和控制功能,进一步完善数控系统。3.2智能控制在机械制造中的应用在工业生产中机械制造是主要目的,而机械制造的前提就是应用智能控制。在机电一体化系统中机械制造是主要组成部分。目前,我国的机械制造主要通过运用计算机技术和智能控制技术,这也是智能控制在机械制造中的主要应用方式。面对更加先进的机电一体化系统,传统控制技术已经无法发挥其作用,在现代化机械制造中,有许多复杂难以预测的数据,无法通过脑力运动来计算,必须合理运用智能控制技术,对人类的行为进行模拟,利用人工神经网络来建立数据模型,通过传感器来传达信息,进而通过智能控制技术来预测处理动态模拟信息。在机械制造中智能控制的应用主要体现在这些方面:对机械的故障风险进行智能诊断,智能监控机械制造的动态过程,利用智能传感器来采集信息数据。3.3智能控制在机器人领域中的应用模糊控制是机器人控制系统的核心,其操作功能多种多样,目前,工业机器人已经完全实现了智能化和自动化。为了提高工业机器人的智能化功能,必须充分运用智能控制系统,使机器人的智能传感器和视觉系统连接起来,这样在行走和搬运物品的过程中,才能自动规避障碍物,并由机器人自行设计合理的路径规划,完全模拟人体行为,来进行各种工业操作。同时,智能控制能够丰富机器人的知识储备系统,让机器人具备人工神经网络,具备逻辑思维,适应各种工业操作,把智能控制和工业机器人结合在一起,能够节省人力,提高工业生产质量。3.4智能控制在建筑工程领域中的应用随着社会经济的高速发展,人们的生活水平不断提高,在建筑工程中越来越多地运用到机电一体化系统,而智能控制是其中的重要组成部分。通过运用智能控制,能够对建筑工程进行智能化管理。在建筑物内部的照明系统中应用智能控制,能够对照明时间和光照强度进行智能化调配,不仅可以节约能源,而且能够让人们生活更加方便。在建筑物的火警装置中采用智能控制,通过计算机联网通信,摄像头和智能传感器来进行实时监控,一旦发现火灾险情,可以及时传达给主机系统,进行智能化处理,智能化预警机制能够提醒居民撤离,并把信息传输到火警部门的监控电脑中,火警人员能够及时赶到现场,救援火灾。
4结语
综上所述,智能控制在机电一体化系统中的应用,能够起到优势互补的作用,有效提高工业生产的效率和人们生活质量。智能控制和传统控制相比具有更加显著的优势,为了充分发挥智能控制的作用,必须加快智能控制和机电一体化系统的融合应用。
参考文献:
[1]曲百峰.探讨机电一体化系统中智能控制的应用[J].黑龙江科技信息,2013(20):33.
[2]肖攀,董硕.机电一体化系统中智能控制的应用探析[J].山东工业技术,2015(12):187.
[3]王睛睛.基于机电一体化系统对智能控制的有效应用的几点思考[J].科学与财富,2015(8):261.
[4]顾子旭.机电一体化系统对智能控制的有效应用的几点思考[J].数字通信世界,2015(6):183.
关键词:机电一体化;发展背景;趋势
【分类号】:TU855
前言:近些年来,随着现代科学技术的飞速发展,推动了不同学科的相互交叉与渗透,并引发了几乎所有工程领域的技术革命与改造。再加之微电子技术的飞速发展及其向机械工业的渗透,机械工业的技术结构、产品结构、功能、生产方式及其管理体系均发生了巨大变化,目前,关于“机电一体化”含义尚未取得统一的定义,较为普遍的提法是“日本机械振兴协会”经济研究所对机电一体化概念所做的解释:“机电一体化是在机械主功能、功力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。”随着生产和科学技术的发展,“机电一体化”还被不断地赋予新的内容。但其基本概念的含义可概括为:机电一体化是从系统的观点出发,将机械技术、微电子技术、信息技术、控制技术、计算机技术、传感器技术、接口技术等在系统工程的基础上有机地加以综合,实现整个系统最优化而建立起来的一种新的科学技术。它使生产系统柔性化,机电产品智能化,极大地提高了生产效率。一场“机电一体化”革命蓄势待发。
一。机电一体化的发展背景
随着机电一体化技术的快速发展,机电一体化产品有逐步取代传统机电产品的趋势,这完全取决于机电一体化技术所存在的优越性和潜在的应用性能。
(一) 使用安全性和可靠性提高
机电一体化产品一般都具有自动监视、报警、自动诊断、自动保护等功能。在工作过程中,遇到过载、过压、过流、短路等电力故障时,能自动采取保护措施,避免和减少人身和设备事故,显著提高设备的使用安全性。机电一体化产品由于采用电子元器件,减少了机械产品中的可动构件和磨损部件,从而使其具有较高的灵敏度和可靠性,产品的故障率低,寿命得到了提高。
(二)生产能力和工作质量提高
机电一体化产品大都具有信息自动处理和自动控制功能,其控制和检测的灵敏度、精度以及范围都有很大程度的提高,通过自动控制系统可精确地保证机械的执行机构按照设计的要求完成预定的动作,使之不受机械操作者主观因素的影响,从而实现最佳操作,保证最佳的工作质量和产品的合格率。同时,由于机电一体化产品实现了工作的自动化,使得生产能力大大提高。
(三)使用性能改善
机电一体化产品普遍采用程序控制和数字显示,操作按钮和手柄数量显著减少,使得操作大大简化并且方便、简单。机电一体化产品的工作过程根据预设的程序逐步由电子控制系统指挥实现,系统可重复实现全部动作。高级的机电一体化产品可通过被控对象的数学模型以及外界参数的变化随机自寻最佳工作程序,实现自动最优化操作
二.形势。
我国用微电子技术改造传统工业的工作量大而广,有难度我国用机电一体化技术加速产品更新换代,提高市场占有率的呼声高,有压力。
我国用机电一体化产品取代技术含量和附加值低,耗能、耗水、耗材高,污染、扰民产品的责任重,有意义。在我国工业系统中,能耗、耗水大户,对环境污染严重的企业还占相当大的比重。近年来我国的工业结构、产品结构虽然几经调整,但由于多种原因,成效一直不够明显。这里面固然有上级领导部门的政出多门问题,有企业的“故土难离”“死守故业”问题,但不可否认也有优化不出理想的产业,优选不出中意的产品问题。上佳的答案早就摆在了这些企业的面前,这就是发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。这是解决机电产品多品种、少批量生产的重要出路。同时,可为传统的机械工业注入新鲜血液,带来新的活力,把机械生产从繁重的体力劳动中解脱出来,实现文明生产。
另外,从市场需求的角度看,由于我国研制、开发机电一体化产品的历史不长,差距较大,许多产品的品种、数量、档次、质量都不能满足需求,每年进口量都比较大,因此亟需发展。
三.机电一体化的发展趋势
(一) 智能系统化
所谓智能系统化,是指机电产品系统体系结构进一步采用模式化和开放式的总线结构,机电系统各部分可以灵活组态,进行任意组合,这是机电一体化和传统机械自动化的主要区别之一。另外,机电产品的通信功能大大加强,局部网络开始被大范围地使用。总之,未来的机电一体化更加注重产品与人的关系,机电产品开始往着生物系统化的方向发展。
(二) 微型化
未来的机电一体化将会高度融合微机械技术、软件技术和微电子技术,所以未来的机电产品系统能进行精细操作,在航空航天、生物医学和信息技术等领域都将有广阔的应用前景。
(三) 规范化
由于机电一体化产品种类繁多,研制和开发工作相当复杂,所以需要制定一系列标准来规范生产过程。在这种形势背景下,机电一体化开始向着规范化的方向发展,如此一来,不仅可以迅速开发新产品,而且还可以扩大生产规模。
(四)网络化趋势
计算机技术等的突出成就是网络技术。网络技术的兴起和飞速发展给科学技术、工业生产等领域都带来了巨大的变革。各种网络将全球经济、生产连成一片,企业间的竞争也将全球化。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术使家用电器网络化已成大势,利用家庭网络将各种家用电器连接成以计算机为中心的计算机集成家电系统,使人们在家里分享各种高技术带来的便利与快乐,因此机电一体化产品朝着网络化方向发展是为大势所趋。
(五)绿色化趋势
工业的发达给人们生活带来了巨大变化。物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前途。机电一体化产品的绿色化主要是指使用时不污染生态环境,报废后能回收利用。
(六) 集成化 集成化既包含各种技术的相互渗透、相互融合和各种产品不同结构的优化与复合,又包含在生产过程中同时处理加工、装配、检测、管理等多种工序。为了实现多品种、小批量生产的自动化与高效率,应使系统具有更广泛的柔性。首先可将系统分解为若干层次,使系统功能分散,并使各部分协调而又安全地运转,然后再通过软、硬件将各个层次有机地联系起来,使其性能最优、功能最强。
(七) 带源化 是指机电一体化产品自身带有能源,如太阳能电池、燃料电池和大容量电池。由于在许多场合无法使用电能,因而对于运动的机电一体化产品,自带动力源具有独特的好处。带源化是机电一体化产品的发展方向之一。 人性化 机电一体化产品的最终使用对象是人,如何给机电一体化产品赋予人的智能、情感和人性显得愈来愈重要,机电一体化产品除了完善的性能外,还要求在色彩、造型等方面与环境相协调,使用这些产品,对人来说还是一种艺术享受,如家用机器人的最高境界就是人机一体化。