首页 > 文章中心 > 虚拟仪器技术论文

虚拟仪器技术论文

虚拟仪器技术论文

虚拟仪器技术论文范文第1篇

1.1实验室资源共享由于测控专业学生相对较少,所以大多高校都不愿花大量经费去建立测控专业的实验室,基本都采用共享其它专业实验室的方式,这也限制了测控专业的发展。我们学院也同样存在这个问题,目前针对测控技术与仪器专业开放的专业实验室有传感器实验室、自动控制实验室和计算机仿真实验室,没有专门的虚拟仪器实验室。之前学生只能在计算机仿真实验室里做些虚拟仪器课程的基础实验,无法做专业实验,在将物联网技术引入之后,我们摸索出了实验室资源共享的模式,也就是将不同实验室的资源共享使用,以此完成虚拟仪器课程的专业实验教学任务。其中传感器实验室拥有近20种传感器、30套ZigBee模块(WSN的一种)和30套GPRS模块(无线传输技术的一种)等设备;计算机仿真实验室拥有50台计算机和配套虚拟仪器软件,可以完成虚拟仪器课程的所有基础实验。在教学安排上只要将传感器技术和虚拟仪器课程分在两个学期,就可以实现两个实验室的资源共享,学生就可以借助于传感器实验室的资源完成虚拟仪器课程的大多数专业实验。

1.2科研成果转化虚拟仪器技术是利用高性能的模块化硬件,结合灵活高效的软件来完成各种自动测试、测量应用。将虚拟仪器技术和物联网技术结合起来,在自动测试测量、无线通信、故障诊断和远程测控等方面有着极大的应用价值和应用前景。目前,国内很多高校和科研机构积极致力于这两者结合模式的研究,如天津大学、华北电力大学等。我们学院在这方面也开展了很多研究,譬如开展了“基于LabVIEW和物联网的风光互补电站监控系统的研究”、“虚拟仪器与GPRS无线通信测试研究”等多项校厅级项目,并取得了一些成果。我们已经将项目涉及的无线传感器技术、GPRS无线数据传输技术应用到虚拟仪器课程当中,对整个虚拟仪器课程的教学起到了很大的推动作用。

2物联网技术的应用体现

物联网技术在虚拟仪器课程中的应用体现在实验教学环节,主要针对专业实验。因为基础实验仅依靠软件编程就可以实现,譬如学生编程练习数组函数、结构等知识。但对于专业实验,必须要有硬件配套才能完成,借助于传感器实验室的WSN和GPRS将传感器测量的信号传给计算机仿真实验室的上位机,再通过上位编程对各种参数进行分析处理,就实现了一套从数据采集、数据传输、数据分析、数据存储、远程监控的完整流程,让学生体会到虚拟仪器作为自动测试测量领域专业开发工具的优势所在,掌握到该领域的一些前沿技术,此类专业实验的实验流程如图1所示,只要改变传感器类型、ZigBee组网方式和数据中心程序,就可以完成不同的专业实验。在实验内容安排上,我们追求量少质高。开设了几个目前科研应用中比较常用的无线通信、远程测控和故障诊断方面的实验。譬如开设的“虚拟仪器与GPRS无线通信测试”实验,就是由校级精品实验项目转化而来,旨在通过借助虚拟仪器的实验平台,快速搭建一套GPRS无线通信系统,模拟实际工程中无线通信的全过程,通过LabVIEW编程,设计出友好的人机交互界面,将无线通信的原理和过程直观形象地展现出来,让学生充分理解无线通信的原理和设计思想,在实验室里就能接触到要在科研项目或企业里才能用到的新技术。同时在课堂教学上将实验中涉及到的物联网技术进行讲解,譬如ZigBee组网选择、ZigBee组网协议、用于GPRS通信的TCP/IP协议等,讲解时可结合项目实例进行,课堂上现场演示利用GPRS技术通过简单编程实现手机短信和彩信的收发,让学生能直观地感受到所学课程的实用性和前沿性,让学生从心底里产生要将这门课学好的冲动。

3教学效果

引入物联网技术之前,由于无法开展专业性的实验,使得很多理论无法得到实践运用和验证,学生只能通过编程练习数组函数、结构等基础实验,普遍感觉实验比较空洞、枯燥,积极性不高,学生感觉不到该课程的工程应用价值,也体会不到虚拟仪器作为自动测试、测量领域专业开发工具的优势所在。在将物联网技术引入之后,使这一问题得到很大改观。开设的实验项目涉及的内容是目前很流行的无线通信领域,而且GPRS通信中还可以实现手机短信的接收和发送,所以学生的积极性都很高。另外,在项目的实验过程当中,每组学生会对程序界面的设计和调试过程进行探讨,所以实验氛围也很好。另外该类项目要求学生要对所做内容有个清晰的思路和具体实现方案,要求学生具备一定的编程能力和程序调试能力,所以对学生实践能力的锻炼,创新意识的培养、探究性思维的启发都起到一定作用。

4结语

虚拟仪器技术论文范文第2篇

【关键词】虚拟仪器;发展;应用

1.引言

随着计算机技术、大规模集成电路技术和通信技术的飞速发展,电子测量技术领域发生了巨大的变化;仪器结构的日趋复杂,仪器性能的不断提高,仪器的测试技术已成为测量领域的研究重点。美国国家仪器公司于20世纪80年代中期首先提出基于计算机技术的虚拟仪器的概念,把虚拟测试技术带入了新的发展时期,随后研制和推出了多种总线系统的虚拟仪器。虚拟仪器技术的提出与发展,标志着21世纪测试技术与仪器技术发展的一个重要方向。虚拟仪器代表着从传统的以硬件为主的测量系统到以软件为中心的测量系统的根本性改变。

2.仪器发展过程

到目前为止,电子测量仪器的发展大致分为4代,第1代为模拟仪器,如指针式万用表;第2代为数字化仪器,如数字频率计,此类仪器目前应用甚为广泛;第3代是智能仪器,不但可以自动检测,还能处理数据;第4代就是虚拟仪器,完全由计算机控制。

一立的装置是传统仪器的特征,传统仪器由操作面板、信号输入端口、检测结果输出等几部分组成。传统仪器用硬件电路或固化软件实现其功能。这种只能由仪器厂家来定义、制造的框架式结构决定了传统仪器的用户无法随意更改其结构和功能。从而也推动了虚拟仪器的面世。

所谓虚拟仪器,就是用户在通用计算机上加上软件和硬件,根据自己的需求定义和设计仪器的测试功能,使得使用者在操作这台计算机时,就像在操作一台他本人设计的专用传统仪器一样。

虚拟仪器由计算机、应用软件和仪器硬件组成。其核心思想就是利用计算机的软、硬件资源,将原本需要硬件完成的任务软件化,所以应用软件是虚拟仪器的核心。其硬件系统又分为仪器硬件和计算机硬件。

3.虚拟仪器的应用

随着虚拟仪器的发展,现在根据采用总线方式的不同可以将其分为5类:PC总线-插卡式虚拟仪器、并行口式虚拟仪器、GPIB总线式虚拟仪器、VXI总线式虚拟仪器、PXI总线式虚拟仪器。其功能和性能不断地提高,虚拟仪器不仅有着比传统仪器更为先进的功能。虚拟仪器的已经在各个领域得到广泛的应用,例如基于VXI总线的军工虚拟仪器和基于虚拟仪器的边界扫描测试系统等。

(1)虚拟仪器在测量方面的应用。虚拟仪器系统的开放性和灵活性以及可以与计算机技术发展保持同步,使得它在测量方面不仅能提高精确度,降低成本,还能节省用户的开发时间。

(2)虚拟仪器在监控方面的应用。用虚拟仪器可以随时采集和记录从传感器传来的数据,并进行统计、数字滤波、频域分析等处理,从而实现监控功能。这一应用已经在氡室温度监测和水质监测以及锅炉监控等系统中得到充分体现。

(3)虚拟仪器在工程处理中的应用。在工程处理的每一个阶段,虚拟仪器均能提供出色的服务:从研发、设计到生产测试。比较典型的是基于LabVIEW的虚拟仪器,它集报警管理、历史数据追踪、安全、网络、工业I/O、企业内部连网等功能于一身。在生产过程中,这些功能可以轻松地将多种工业设备集成在一起使用,减少传统仪器设备的数目。

(4)虚拟仪器在远程教育方面的应用。越来越多的教学部门开始用虚拟仪器建立教学系统,不仅节省开支,而且由于虚拟仪器系统具有灵活、可重复利用性强等优点,使得教学方法也更加灵活了。

(5)虚拟仪器报表生成技术的应用。LabVIEW生成的计量检定报表及访问Access测试信息数据库可以方便快捷的完成出具记录、鉴定报告这一任务。使得工程技术人员以一定格式的报表形式输出测试结果和测试信息更为方便。

4、虚拟仪器的发展展望

虚拟仪器是与计算机软硬件技术、通信技术及网络技术同步发展的,后者的高速发展给前者提供了广阔的天地。高效、高速、高精度和高可靠性以及自动化、智能化和网络化的测控仪器即将面世。虚拟仪器将因为开放式数据采集走上标准化、通用化、系列化和模块化的道路。

4.1虚拟仪器对军事领域的影响

我国虚拟仪器的构想是在我国国防工程核试验中萌发和实现的,由此可见虚拟仪器和军事领域的密切关系。在虚拟仪器系统中仿真无人飞机、导航和控制。

现代军事野战中,军用电站是强有力的后备军,但是传统仪器不能灵活地对军用电站进行谐波分析。为了取代EMC系统和谐波分析仪昂贵且功能固化且不能满足不同场合对军用电站的谐波分析这个问题,我们利用虚拟仪器研发了基于LabWindows/CVI的军用电站谐波分析系统。这个系统功能可以根据需要扩展,为未来自动化测试奠定了基础。

4.2虚拟仪器在现代农业中的应用前景

虚拟仪器系统可用于农产品的自动检测,农产品自动划分等级,农田的自动化监测以及种子和细胞生物特性的研究。根据我们在计算机中模拟植物在现实中的生长状况得到的植物形态结构和生长规律,从而更好地提高农产品的质量。

提高农作物产量是农业发展的根本目的。众所周知,袁隆平院士被称为“杂交水稻之父”,依据他的理论,我们可以通过计算机设计不同的植株并模拟其生长,从而选出理想的植株作为母本造福人类。现代农业中,已经有中国农业大学研发的精播机虚拟系统和美国基于LabVIEW的自动化灌溉系统这样得到广泛应用的虚拟仪器。相信虚拟仪器的设计和研发在现代农业中将有着不可估量的作用。

此外,虚拟仪器在汽车、导弹方面也有深远影响。如汽车的防抱制动系统。我国自主研发的DASP虚拟仪器产品在1988年用于钱塘江大桥模态试验、1995年用于长三捆运载火箭全箭模态试验、1996年用于“神舟”号载人飞船移动发射平台模态试验、2004年用于航天员超重训练设备臂架系统和2008年用于北京奥运会场馆鸟巢的动态测试都获得了成功。

这些都充分证实了虚拟仪器不可限量的发展前景。相信在创新的基础上,虚拟仪器将会与物联网和云计算等高端科技集成更高级的仪器并成为未来测量机器的核心。

5.结语

功能和规模固定,只可以连接有限的设备并且技术更新慢,由仪器厂商定义的传统仪器。由于它复杂的工艺,至今在我国还没有形成一定的规模,大部分依赖进口,这使我国在世界测量仪器市场很被动。虚拟仪器取代传统仪器已经成为必然。作为新兴的虚拟仪器,各国都处于研究初期阶段,这给我国提供了一个大好机会,我们应着眼未来,使虚拟仪器在我国有突飞猛进的发展。

参考文献

[1]郭恩全,赵兴奋.虚拟仪器发展趋势及其对军用测试技术的影响[J].计算机自动测量与控制,1997,7(3):44-47.

[2]陈尚松,李智,雷加,郭庆.虚拟仪器回顾与展望[J].理论与方法,2009,28(12):17-21.

虚拟仪器技术论文范文第3篇

远程虚拟仪器系统是近年来诞生并发展迅速的一种新型网络测控技术,它不同于一般的信息网络技术,其主要应用于远方有传感器或其他数据接收设备得到的数据的传输与通信。例如,医疗系统远程会诊、环境监测与数据分析等等。本文对远程虚拟仪器中的网络通信、工作原理、实现方案等作了系统的探讨和研究。

虚拟仪器与远程虚拟仪器

随着微电子技术、计算机技术、软件技术和网络技术的高度发展,在科研、工业和医学领域,随着低成本高性能的计算机资源的有效利用,数字化平台逐渐成为测量仪器的基础。仪器技术和计算机技术的深层次的结合创造了虚拟仪器的概念,将计算机(处理器、存储器、显示器等)和通用仪器硬件(A/D、D/A 变换器、数字输入/输出、定时和信号处理器等)与用于数据分析、过程通讯及用户图形界面的软件有效地结合起来,就组成了虚拟仪器。

虚拟仪器技术的出现彻底打破了传统仪器由厂家定义、用户无法改变的模式,用户借助通用的仪器硬件平台,调用不同的测试软件,就可以构成不同功能的仪器。虚拟仪器能提供给用户一个充分发挥自己才能和想象力的空间,用户可以随心所欲地设计和构造自己的仪器系统以满足多种多样的测试需求,而所需的只是一些必要的硬件、软件加上通用计算机。仪器的智能化和虚拟化已经成为未来各级实验室以及研究机构发展的方向,“The Soft is Instruments(软件就是仪器)”正在被广大科技、教学工作者逐步接受。

继“软件就是仪器”的概念之后,出现了“网络就是仪器”的新观念。远程虚拟仪器就是虚拟仪器在网络领域的扩展。远程虚拟仪器技术结合了虚拟仪器技术与网络技术,将虚拟仪器的应用范围拓展到整个Internet网上,使信号采集、传输和处理一体化,一方面可以使许多昂贵的硬件资源得以共享,充分利用现有的实验室资源; 另一方面还有利于远程教育实验教学的开展,从而解决限制远程教育中的实验教学进行的难题。因此构建基于Internet上的远程虚拟仪器实验系统已经成为虚拟仪器应用发展的一个重要的环节。远程虚拟仪器结构模式如图1所示。

图1 远程虚拟仪器的结构模式

远程虚拟仪器的实现

无论哪种远程虚拟仪器系统,都是将硬件仪器(传感器、调理放大器、A/D卡)搭载到远端服务器上,加上应用软件并和本地的笔记本电脑、台式 PC 机或工作站等各种计算机通过网络相连而构成的,实现了用计算机和网络技术的全数字化的采集测试分析,因此远程虚拟仪器的发展跟计算机和网络技术的发展步伐完全同步,显示出其灵活性和强大的生命力,Internet为实现远程虚拟仪器系统提供了一个很好的平台,利用浏览器/服务器模式,操控者可以在浏览器端控制远程服务器进行测试以及进行远程实验的操作,从而实现对远地实验系统的远程控制和监控。

远程虚拟仪器是虚拟仪器在网络领域的拓展,除了具备虚拟仪器的全部优点外,主要优势还在于不受地域、环境的限制。用网络技术组建的远程虚拟仪器系统,可以使信号采集、传输和处理一体化,不但可以共享许多昂贵的硬件资源,而且还便于扩展测试系统、提高测试效率,所以应用极为广泛,是科研、教育、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它的出现对远程医疗、远程诊断等新兴领域的发展有重要意义,也使现代远程教育的全面开展成为可能,同时也会使教学实验走上一个新的发展高度。

远程虚拟仪器开发和实现方案

Internet 网络技术和基于计算机技术的虚拟仪器(VI)系统技术正在推动着远程测控技术的迅速发展。基于 Internet 的远程测控开发主要研究和讨论基于Web的虚拟仪器技术,本文则基于最流行的现场测控开发平台LabVIEW,讨论了四种用于开发远程虚拟仪器的技术实现过程及其工作原理,并对其实现特点进行了分析。

1. DataSocket 技术

LabVIEW 具有强大的网络通信功能,这种功能使得 LabVIEW 的用户可以很容易地编写出具有强大网络通信能力的 LabVIEW 应用软件,实现远程虚拟仪器。DataSocket 是 LabVIEW 最新提供的一个网络测控系统开发工具,它大大简化甚至免除了网络通信编程,用户使用这种技术可以很容易地在互联网上实现高速实时数据交换。借助它可以在不同的应用程序和数据源之间共享数据并进行实时数据(Live data)的传输。图2描述了 DataSocket 的体系结构。

DataSocket 可以访问本地文件以及 HTTP 和 FTP 服务器上的数据,并为低层通信协议提供了统一的 API 函数,编程人员无需为不同的数据格式和通信协议编写具体的通信程序代码。DataSocket 使用一种增强型数据类型来交换仪器类型的数据,这种数据类型包括数据特性(如采样率、操作员、通道数、时间、及采样精度)和实际测试数据。

DataSocket 遵循了 TCP/IP 协议,并对底层进行了高度封装,所提供的参数简单友好,用类似与 Web 中的统一资源定位符(Uniform Resource Locator,URL)定位数据源,URL 不同的前缀代表了不同的数据类型。FILE 表示本地文件,HTTP 为超文本传输资源,FTP 为文件传输服务器上的资源,OPC表示访问的资源是 OPC 服务器,DSTP(DataSocket Transfer Protocal,DataSocket 传输协议)则说明数据是来自 DataSocket 服务器的实时数据。

2. 基于 ActiveX 技术

组件式技术已经成为当今软件技术的潮流之一,组件式技术是一种广泛的体系结构,支持包括设计、开发和部署在内的整个生命周期计算的理念,它将彻底改变目前软件生产和开发的模式。组件是一种能够提供某种服务的自包含的软件模块,它封装了一定的数据(属性)和方法,并提供特定的接口,开发人员利用这一特定的接口来使用组件,并使其与其它组件交互通信,以此来构造应用程序,用户可根据自己的需求灵活购买软件组件。他们只需编写一些“胶水编码”将各个组件“粘”起来,便可构建自己的应用系统,就如同今天我们购买板卡组装计算机一样简单。

目前,基于组件式技术的规范主要有 Microsoft 的 COM/ActiveX 和 Sun的 Java/JavaBeans。由于 Microsoft 的 Windows 操作系统已经成为桌面 PC 操作系统的事实上的标准,所以 COM/ActiveX 得到了许多第三方厂商的支持。利用 COM/ActiveX 技术,我们可创建各式各样的桌面和 Internet 应用程序。ActiveX 控件技术是 COM/ActiveX 技术的重要组成部分,是 COM 技术在 Internet 上的扩展。ActiveX 是一种可以在应用程序和网络十计算机上重复使用的程序对象。创建它的主要技术是 Microsoft 的 COM/ActiveX 技术,组件对象模型(COM)是其基础。ActiveX 控件可以以小程户下载装入网页,也可以用在一般的 Windows 应用程序环境中。

ActiveX 控件可以由不同的可以识别 Microsoft 的 COM 技术的语言开发,它是一个组件,它可以在同一个或分布式的计算环境中开发或使用。COM 的分布式支持技术称为 DCOM。在实现中,ActiveX 控件是一个动态链接库(DLL)模块,它包括在容器(包括 COM 程序接口的应用程序)当中,这种可重复使用的组件技术可以加快开发速度和质量。

通常情况下,基于以下三点可以考虑采用 ActiveX 控件实现远程测控功能:

浏览器对组件技术,尤其是ActiveX 的广泛支持;

ActiveX 控件在客户端的执行效率要高于 JavaApplet;

易于开发,Delphi 开发的程序可以直接以 ActiveX 控件形式进行网络开发。

在远程测控系统开发中,我们可以用 Borland Delphi 开发平台对远程测控客户端软件进行重新开发,并以 ActiveX 控件的形式进行封装。当客户端在访问服务器网页时,会自动下载和运行该 ActiveX 控件程序,从而实现了类似Java Applet 程序所实现的功能。

3. 基于 Java Applet 技术

(1)Java Applet 技术的特点

首先,Applet 程序是从服务器端自动下载到客户端执行,并且是嵌入到浏览器中运行。对用户而言,这与一般的上网浏览没有任何区别,Applet 只能在浏览器环境内运行,只需所用的浏览器支持 Java 即可,而当前几乎所有的浏览器均支持 Java 并拥有 Java 虚拟机,无须下载插件。而且,Java 方便的语言操作能力,无论在界面操作还是程序设计上,均给开发人员带来极大的便利。

其次,Java 语言具有强大而完善的网络开发功能。在 Applet 程序中,很容易就可以实现同远程服务器之间建立连接并控制数据传递。当客户端打开服务器网页时,会自动下载和启动 Applet 程序,这样,客户端只需简单操作 Applet程序即可控制远端系统工作和结果数据传输。

第三,由于 Java 本身是一种优秀的跨平台语言,这使得无论在 Windows操作系统还是 Unix 系统抑或是 Linux 系统下,针对客户端开发的 Applet 程序都无须修改而做到完全移植。这一特点很大程度地扩展了远程测控系统的应用范围。

(2)Java Applet的工作原理及通信过程

应用本方案实现的远程测控系统的基本结构示意图如图3所示。客户端由两个部分组成,一个是网络浏览器,另一部分则是嵌入到浏览器页面中运行的 Java Applet 程序,客户端通过 Internet 和支持 Java Applet 的浏览器来访问服务器,自动下载并运行 Applet。服务器端由 Web 服务器、LabVIEW 程序和DataServer 三部分组成。Web 服务器为客户端提供 WWW 服务,使得客户端能够通过浏览器访问服务器。LabVIEW 程序负责服务器端的现场测控。而 Data Server 一方面同客户端 JavaApplet 程序建立网络连接,作为 Applet 程序的数据服务器,按受客户端 Applet 程序的请求并传送数据; 另一方面又负责响应Applet 程序的请求,以客户方式对 LabVIEW 程序进行相应的控制。

具体过程如下:

①客户端 Web 浏览器请求服务器端的网页,JavaApplet 自动下载到客户端并启动运行。建立客户端于服务器端 Data Server 的网络连接。

②Applet 向 Data Server 发送数据请求,实现数据接收和显示。

③Applet 程序获取鼠标和键盘事件,并发送到服务器端的 Data Server,Data Server 对 LabVIEW 程序进行相应的控制,从而间接实现远程控制。

4. AppletVIEW 技术

AppletVIEW 是 Nacimiento Software Corporation 的产品,它能够把由LabVIEW 以及 LabWindow/CVI 生成的虚拟仪器到 Web 上。

(1) AppletVIEW 技术的特点

客户端程序采用 AppletVIEW 开发实现,AppletVIEW 是一个为 LabVIEW开发 Web 应用程序的软件,可以实现 B/S 模式虚拟仪器。它为服务器端提供了网络开发的 G 语言支持,从而在服务器端,可以在 LabVIEW 平台上结合AppletVIEW 的功能更好的解决网络多用户问题。而且,数据的传输是基于 Socket 的一种传输方式,具有较高的数据吞吐量。针对客户端程序开发,AppletVIEW 提供了一个友好的可视化开发环境和―些测控常用的组件,这个环境也加快了客户端程序的设计开发。

(2) AppletVIEW 的工作原理及通信过程

AppleWIEW 开发包的一部分是 VITP 服务器,它负责处理本地仪器和远端仪器的经由 Web 的通信。在服务器端的仪器系统里,它作为 LabVIEW 程序运行,提供了一个在 AppletVIEW 子仪器和远端仪器之间的接口界面。此服务器管理经过 AppletVIEW 子仪器的来自以及送入虚拟仪器的数据,并且通过JavaApplet ID 以及一组数据管道在本地仪器和远端仪器间进行通信。在远端可以监控本地仪器的运行状态,具体通信过程如图4所示,过程描述如下:

1-2: Web 浏览器从 Web 服务器请求 HTML 页面,Web 服务器发送此页面到 Web 浏览器。

3-4: 在浏览器端,带有< Applet>标示的 HTML 页面说明有 Java 程序被调用,Web 浏览器的 Java 虚拟机运行并从 Web 服务器请求 Applet 类文件。需要的 Java 类文件在 AppletVIEW.jar 中。

5: 服务器发送 AppletVIEW.jar 到 Web 浏览器。

6-7: AppletVIEW.jar 加载后,程序开始运行,请求“configureFile”中的参数。

8: Appletbuilder 生成的 MyApplet.jvi 被送到 Web 浏览器的程序中。

9: Java 程序与服务器通过数据端口(默认 4749)建立 TCP/IP 连接,通信过程建立。

链接:四种实现方案比较

基于DataSocket技术的远程测控方案,优点是DataSocket定义了一个测控数据传输协议,从而利用这种方法可以达到很高的数据传输效率,实时性能相当好。缺点是它只能实现C/S模式而不能实现B/S模式,需要同时开发服务器端程序和客户端程序,客户端控制功能太弱,尚有待加强。

基于ActiveX实现方案,在实现上采用 Delphi开发,它的优点是开发效率高,而且一旦程序下载成功,比起同样功能的Java 程序具有更高的执行速度和效率,占用的系统资源也相对比较少; 但是,实验证明,它生成的ActiveX控件程序的尺寸比 Java 程序要大许多,客户端需要花费大量的时间来下载这个程序。

基于Java Applet技术的优点是可以实现B/S模式,只需开发服务器端程序,开发效率高,客户端无须下载插件,程序较小便于下载执行; 缺点是图像质量差,动态显示有跳动感不连续。

基于AppletVIEW组件技术实现的远程测控方案,可以实现B/S模式,AppletVIEW 是第三方开发的远程测控专用组件,为远程测控系统提供了可视化开发环境,能把LabVIEW仪器面板自动生成Java仪器面板,所以具有很高的开发效率。而且,数据的传输是基于Socket的一种传输方式,具有较高的数据吞吐量,缺点是需要修改本地测控程序,并在本地VI程序中调用AppletVIEW提供的一些网络控件VI,来与浏览器端的Java程序通信,从而实现网络测控。

远程虚拟仪器是虚拟仪器在网络领域的拓展,它的许多优点使其应用极为广泛,是科研、教育、开发、测量、检测、计量、测控等领域不可多得的好工具。网络通信技术和虚拟仪器技术相结合是本文的讨论重点,文中对远程虚拟仪器的网络结构及构成、开发方案及工作原理都作了较为系统的研究。最后再给出几点经验和建议:

(1) 如果是实验室或小范围的远程测控,可采用C/S模式,客户端实现与服务器直接相连,没有中间环节,因此响应速度快。如果是远距离、大范围的远程测控工作,可采用B/S模式,具有分布性特点,可以随时随地进行操作,而且升级维护方便。

(2) DataSocket定义了一个测控数据传输协议,数据传输效率高,实时性能好,但只能实现C/S模式。而基于ActiveX 技术开发效率高,具有更高的执行速度和效率,但生成的ActiveX控件的尺寸较大,客户端需要花费大量的时间来下载这个程序。采用Java Applet技术可以实现B/S模式,开发效率高,实验证明图像质量差,动态显示有跳动感不连续。基于AppletVIEW组件技术可以实现B/S模式,开发效率高,数据的传输是基于Socket的一种传输方式,具有较高的数据吞吐量,试验结果表明,系统稳定可靠,实时性好。

虚拟仪器技术论文范文第4篇

关键词:仿真,建模,图像模型

 

1 引言

虚拟仿真系统的模型结构一般包括数学模型(Mathematical Model)与图像模型(Image Model)两部分,其中,数学模型定义图像模型的特性,建立原理的数学关系,计算数值结果并反映到图像模型中。论文大全。即数学模型是隐藏在图像模型后面的“规则”,这些规则是对真实系统本质的抽象;图像模型采用三维渲染图片或实物照片模拟真实的物理外形及操作,并显示由数学模型计算得到的结果,完成与用户的交互,即提供人机交互的“界面”。不同的虚拟仿真系统具有不同的数学模型,但不同的虚拟仿真系统具有大致相同的图像建模方法,因此讨论图像建模方法具有普遍意义。

2 图像建模技术

图像模型的优劣直接影响虚拟仿真系统的真实感与交互性。论文大全。为了尽量逼真地模拟出场景、仪器和元器件的外形与操作,虚拟仿真系统一般采用三维建模与绘制技术进行图像建模。图像模型包括静态模型和动态模型两部分。

2.1 静态建模

首先确定出虚拟仿真系统中各对象模型的所有三维几何模型,然后使用三维建模和绘制软件制作出符合需要的静态渲染图片,用来模拟场景、仪器和元器件的外观,并设计最接近真实的操作动作,通过图像技术模拟各部分的操作,最后将其组合在一起,完成整个场景、仪器和元器件的图像建模。如虚拟仪器,通常由仪器面板、旋钮、开关、表盘指示等组成,图1所示为虚拟示波器的图像模型。

图1 虚拟示波器的图像模型

2.2 动态建模

在虚拟仿真系统中,经常会出现移动虚拟仪器设备、连接线路、调节仪器设备旋钮等操作,同时仪器设备会有指针偏转、数值或波形显示等变化。这些都需要对其进行动态模拟。一般先要制作出符合需要的三维渲染图片,再采用相应的动态图像编程技术完成动态模拟。在虚拟仿真系统中常用的动态建模技术有以下几种。

2.2.1 画布动态绘制技术

画布(Canvas)是图形绘制和显示的工具。画布上可以使用多种模式绘制各种线条、图案。只要选择合适的事件响应用户操作,并在事件中灵活使用各种绘制模式,完成画布的动态绘制,就能动态模拟用户的操作或仪器的变化。论文大全。

例如在“电路与电子技术虚拟实验系统”中对电路搭接操作的模拟(如图2):用鼠标拖动各种虚拟元器件,在通用实验板上任意搭接电路,将所有接线柱定义为热点,响应鼠标操作事件。在鼠标键按下事件中记录鼠标按下时的坐标,并设置开始连线标志;在鼠标移动事件中,在背景图的画布上使用动态绘制技术不断刷新连线,实现操作部分的动态模拟。

图2在虚拟仿真环境中电路搭接操作

再如仪表指针的模拟(如图3):仪表指针绕着一个旋转点偏转,一定的偏转角度对应一定的表盘读数。仪表指针部件包括旋转点坐标、指针最小角度、最大角度、当前角度、指针长度等属性,根据仪表数值仿真计算结果改变当前角度,并在表盘上动态透明绘制指针,实现自动部分的动态模拟。

图3 某仪器的表盘指针指示情况

2.2.2 帧剪切技术

虚拟仿真系统中大量的动态变化是仪器设备部件发生状态改变,即从一个状态跳变至另一个状态。当模拟这种动态变化时,帧剪切(Frame Clip)技术十分有用。

首先制作出该部件在所有不同状态下的仪器设备的整体图片,采用图像编辑技术将这些仪器设备图片中该部件部分在相同位置、以相同大小剪裁下来,得到不同状态下的图像帧,并按顺序将这些图像帧组成一幅图片序列。程序运行时先拷贝该部件初始状态下的图像帧进行显示,在响应事件时,该部件根据操作类型改变当前状态序数,并将当前状态序数下的图像帧装载显示。

例如对旋钮、按钮、开关等部件的操作即是改变它们的状态。图4是某仪器的一个旋纽在各种状态下的图片,通过在响应鼠标操作的事件中采用帧剪切方法来模拟旋钮旋转操作。

图4 某仪器设备的一个旋纽在各种状态下的图像

2.2.3 掩码透明贴图技术

当虚拟部件移动时,需要动态地将其图片贴在背景图上,由于虚拟部件图片是矩形块而其图形往往不是规则的几何图形,采用透明贴图技术将图片中不属于该部件图形的边缘部分变得透明,仅将其图形贴在背景图上,从而实现虚拟部件与虚拟仿真环境在视觉效果上的无缝拼接和自然融合。

原图(OriginalPicture)与掩码图(MaskedPicture)制作:利用图像处理软件将某部件图片的边缘部分变为黑色(颜色值的二进制码各位均为0)即得到原图,在原图的复本上将图形边缘部分变成白色(颜色值的二进制码各位均为1)、图形部分变为黑色即得到掩码图,如图5为某仪表指针的原图及掩码图。

图5 某仪表指针的原图及掩码图

编程实现方法:在程序代码中,定义部件原图、掩码图、被覆盖背景图的位图对象,在摆放该部件位置处,先将掩码图与背景图(如图6a)进行“与”运算,将背景图上应贴上部件图形部分变为黑色,并保留应被贴上边缘部分的图像(如图6b);再将原图与背景图进行“或”运算,部件图形部分被贴在背景图上,背景图上应被贴上边缘部分的图像仍被保留下来(如图6c),从而完成对某部件的透明贴图。其贴图过程可用如下公式表示:

其中OP、MP、BP分别表示原图、掩码图、背景图。

a) BP b) BP∧MP c)BP∧MP∨OP

图6 某仪表指针透明贴图过程示意图

3 结束语

“军队院校网上虚拟实验室”重点建设项目“电路与电子技术虚拟实验系统”采用上述建模方法与技术,很好地解决了仿真技术与多媒体技术的融合设计问题,使系统具有良好的可设计性、操作的任意性和具有真实感的交互功能。项目成果分别获得军队科技进步二等奖和全国、全军、海军多媒体教育软件评比一等奖。目前,该虚拟实验系统已在20多所军内外高校使用,取得了良好的效果,实现了电路与电子技术基础实验教学方法和手段的创新,为探索现代化实验教学的新路子提供了有益的经验。同时该成果将在36所军队院校推广使用,并由高等教育出版社正式出版发行,具有良好的推广前景。本文是对完成该项目的主要建模方法与技术的初步总结,供从事相关研究和开发的同行参考。

参考文献

1 YangYanming, Gao Yang, Wang Qing. Development and application of an intelligentvirtual system on electronic circuit experiments //Computer Science andTechnology in New Century. Beijing: International Academic Publishers, WorldPublishing Corporation, 2001:1031-1032

2 杨彦明, 吴为团, 于宝良. 网上虚拟实验室的研究与实现. 东北师大学报(自然科学版), 2004, 36(12): 50-54

虚拟仪器技术论文范文第5篇

关键词:虚拟仪器;数字信号处理;教学创新

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)43-0117-03

一、引言

随着现代计算机和信息技术的不断发展,数字信号处理在当今高科技领域有着极为重要的地位和广泛的用途[1]。然而它的基础课程却处于教难、学更难的境况中,并且,学生即使掌握了理论知识,也很难灵活应用至实践中[2]。调研国内外数字信号处理课程教学,上述问题主要归因于两个方面:一方面是传统的教学形式单一,仅依赖文字帮助理解基本理论[3-5];数字信号处理课程不同于其他课程,它是基于“高等数学”、“大学物理”等公式和推导较多的学科,理论性强,极具抽象性,有大量的算法和晦涩难懂的基本理论[6]。在课堂教学中教师仅采用Powerpoint软件编制的课件不够直观,许多内容学生很难透彻理解。其次,数字信号处理是适应高速数字集成电路的面市应运而生的,其大量的计算算法适于在计算机上实现,对于人来说则运算量大且烦琐,学生们难以亲手验证,因而经常得不到形象化的结果,使得对理论的理解难以透彻,实际应用中总有一层障碍。另一方面是受限于传统实验室的模式和格局,数字信号处理课程的实验教学环节严重缺失[7-9];信息类专业课程有很强的实用性,其受众广,且信息量大,然而因实验场地、设备、资金等因素,目前单一的传统实验室已完全不能满足学校完成教学任务,很难开展实验教学,很多院校根本没有配套开设实验教学。然而,实验教学是高等院校培养高素质合格人才的重要实践性环节,在培养学生的实践能力、研究能力、创新能力和综合素质等方面有着其他教学环节所不能替代的独特作用。若学生们缺乏实验教学环节,在实际应用时则会显得有些束手无策,实际动手能力和创新能力也亟待增强。若不能在教学中突破以上两个瓶颈问题――单一的教学形式和传统的实验室建设模式及格局,数字信号处理课程的教学质量和教学效果将大打折扣。

二、虚拟仪器技术在教学应用中的优势

伴随着虚拟仪器技术的发展及其在国内的普及,它可为数字信号处理课程的教学提供新的思路和巨大变化。突破传统教学手段,深入融合虚拟仪器技术,全面创新数字信号处理课程教学方法应运而生[10-11]。虚拟仪器是将现有的计算机技术、软件技术和高性能模块化的硬件结合在一起而建立的功能强大又灵活易变的仪器,其强调硬件是基础,软件是核心,使用者可通过修改软件,方便地修改和增加仪器的功能和规模,性价比高[12]。模块化硬件体积小,便于携带,可“装入”计算机,即能与计算机互联互通。软件开发平台可选择图形化编程语言LabVIEW,它具有功能强大的数据分析函数,可以非常灵活地为教学中的理论知识设计各种虚拟仪器。同时,它也将使用者从复杂的文本编程语言中解脱出来,将重心专注于软件的功能。这使得教师可在很短的时间内开发出虚拟仪器课堂应用,把书本上理论性较强的知识转换成直观性很强的动态图形,加深对理论知识的理解。由于虚拟仪器使用的硬件大多是通用的,各种专业仪器的功能主要依靠软件实现,将虚拟仪器引入至实验教学中,必将大量减少设备经费的支出和节省实验场地的空间,学生们也能感受和应用先进的科学技术和手段,积极主动地学习。因此,根据数字信号处理课程的特点,基于虚拟仪器技术开发虚拟辅助教学软件和构建虚拟实验教学平台,全面创新数字信号处理课程教学方法和体系。这对活跃课堂气氛,增强学生学习兴趣,提升学生基本技能,提高教学质量,巩固教学效果等将具有非常重要的意义。

三、创新课程教学形式,开发虚拟辅助教学软件

虚拟辅助教学软件是基于虚拟仪器技术开发的教学演示子系统。针对数字信号处理课程中许多难以理解的抽象概念与性质,对应每一章的内容相应制作多个精致的演示程序,用丰富而具有动感的彩色图形把课程中疑难之处用生动形象的形式展现出来,使学生加深理解。下面以“窗函数”为例,具体阐述虚拟辅助教学软件如何进行辅助教学。在数字信号处理课程中,为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截短,截断函数称为窗函数,简称为窗。在教学演示子系统中,基于虚拟仪器技术开发出窗函数比较动态演示程序,其前面板和程序框图分别如图1和图2所示。针对同一个信号施加不同的窗函数,让学生观察频域波形的变化,从而体会窗函数的性质和特性。这样动态形象的演示让学生能感性地认识到窗函数之间的不同,加深对窗函数的理解。

从以上应用实例可发现,通过利用虚拟辅助教学软件,不仅能够采用文字和静态图形直观地展示教学内容,还能通过动态图形生动形象地阐述教学内容,更易于学生理解所学内容。采用PPT课件和虚拟辅助教学软件结合授课,教学形式新颖,教学内容生动,教学效果更好。

四、完善课程教学体系,构建虚拟实验教学平台

虚拟仪器使用的硬件大都是通用的,各种专业仪器的差异主要靠软件实现。依托虚拟仪器技术、计算机技术、电子技术和通信技术等,融合多种模块化硬件设备构建高校虚拟实验教学平台,具有无可替代的优势和广阔的发展前景。图3为虚拟实验教学平台架构,由n台计算机及相关硬件如采集卡、信号调理箱、电工实验箱等组成,形成一个局域网,并与校园网连接,方便学生随时随地接入进行实验。

虚拟实验教学平台充分利用虚拟仪器技术和计算机高速计算的优势,给学生提供实用的信号仿真、分析处理、设计等工具,不仅可以快速便捷地得到所需的信号数据或计算结果,而且能把这些结果绘制成图形,给学生以非常形象化的感性认识。数字化的实验结果存储,加上网络传输能力,使实现远程实验教学成为可能,虚拟实验教学平台让实验随时随地进行。整个实验也许只需要一套硬件设备,其他是由软件来实现的,这样可以大大节省实验设备和场地的资金投入,即共享教学设施,节约现实教学资源。虚拟实验教学平台具有灵活、成本低、网络化等特点,在高校的教学乃至科研中将发挥极大的作用。与传统的实验室相比,虚拟实验教学平台的优势主要体现在:(1)传统仪器的功能仅由厂家定义,虚拟仪器在很大程度上功能可由使用者自行定义和设计,便于开展研究性或设计型的实验。(2)各种测量仪器不应当再是彼此相互孤立的,能够与计算机相联,组成一个以一台计算机为中心的测量环境(系统)。(3)计算机进一步组成网络,因而形成一个网络化的仪器与测量环境(系统)。虚拟实验教学平台能够为学生提供高性价比的实验教学条件,让教学环节从课本延伸到实验,加深对理论教学的深入理解,巩固教学成果,培养学生实践动手和创新能力,提高学生技能水平,让学生今后无论是直接就业还是继续深造都更具竞争力。

五、结论

针对数字信号处理课程教学中存在的问题,深度融合虚拟仪器技术,全面创新和改革数字信号处理课程的教学形式和体系,开发出虚拟辅助教学软件和构建虚拟教学实验平台,将课程中抽象和复杂的理论知识以形象和易于理解的方式传达给学生,完善实验教学环节,将理论与实际联系起来,以期激发学生学习兴趣,提高教学质量,巩固教学成果,培养学生的动手能力和创新能力,提升学生的社会竞争力。

参考文献:

[1]段丽娜.浅谈DSP技术的应用和发展前景[J].科技风,2012,(24):206,213.

[2]王典,刘财,刘洋,等.数字信号处理课程分类和分层教学模式探索[J].实验技术与管理,2013,(2):31-32.

[3]高军萍,王霞,李琦,等.数字信号处理课程教学改革的探索与体会[J].电气电子教学学报,2007,29(2):19-21.

[4]刘大年,史旺旺,孙贵根,等.“数字信号处理”课程的形象化教学方法探索[J].电气电子教学学报,2006,28(4):104-107.

[5]王俊峰.交互式教学在“数字信号处理”课程中的应用[J].中国电力教育:上,2010,(3):94-96.