首页 > 文章中心 > 监测系统论文

监测系统论文

监测系统论文

监测系统论文范文第1篇

【关键词】:隧道工程,盾构姿态,自动测量,系统开发

1引言

盾构机姿态实时正确测定,是隧道顺利推进和确保工程质量的前提,其重要性不言而喻。在盾构机自动化程度越来越高的今天,甚至日掘进量超过二十米,可想而知,测量工作的压力是相当大的。这不仅要求精度高,不出错;还必须速度快,对工作面交叉影响尽可能小。因此,为了能够在隧道施工过程中及时准确给出方向偏差,并予以指导纠偏,国内外均有研制的精密自动导向系统用于隧道工程中,对工程起到了很好的保证作用。

1.1国内使用简况

国内隧道施工中测量盾构机姿态所采用的自动监测系统有:德国VMT公司的SLS—T方向引导系统;英国的ZED系统;日本TOKIMEC的TMG—32B(陀螺仪)方向检测装置等等。所采用的设备都是由国外进口来的。据了解,目前有些地铁工程中(如广州、南京)在用SLS—T系统,应用效果尚好。

总的来看,工程中使用自动系统的较少。究其原因:一是设备费或租赁费较昂贵;二是对使用者要求高,普通技术人员不易掌握;三是有些系统的操作和维护较人工方法复杂,在精度可靠性上要辅助其它方法来保证。

1.2国外系统简况

国外现有系统其依据的测量原理,是把盾构机各个姿态量(包括:坐标量—X.Y.Z,方位偏角、坡度差、轴向转角)分别进行测定,准确性和时效性受系统构架原理和测量方法限制,其系统或者很复杂而降低了系统的运行稳定性,加大了投入的成本,或者精度偏低,或者功能不足,需配合其他手段才能完成。

国外生产的盾构设备一般备有可选各自成套的测量与控制系统,作业方式主要以单点测距定位、辅以激光方向指向接收靶来检测横向与垂向偏移量的形式为主。另外要有纵、横两个精密测倾仪辅助[7]。有些(日本)盾构机厂商提供的测控装置中包括陀螺定向仪,采用角度与距离积分的计算方法[1][2],对较长距离和较长时间推进后的盾构机方位进行校核,但精度偏低,对推进只起到有限的参考作用。

2系统开发思路与功能特点

2.1开发思路

基于对已有同类系统优缺点的分析,为达到更好的实用效果,我们就此从新进行整体设计,理论原理和方法同过去有所不同,主要体现在:其一,系统运行不采用直接激光指向接收靶的引导方式,而是根据测点精确坐标值来对盾构机刚体进行独立解算,计算盾构姿态元素的精确值,摈弃以往积分推算方法,防止误差积累;其二,选用具有自主开发功能的高精度全自动化的测量机器人,测量过程达到完全自动化和计算机智能控制;其三,在理论上将平面加高程的传统概念,按空间向量归算,在理论上以三维向量表达,简化测量设置方式和计算过程。

目前全站仪具备了过去所没有的自动搜索、自动瞄准、自动测量等多种高级功能,还具有再开发的能力,这为我们得以找到另外的测量盾构机姿态的方法,提供了思路上和技术上的新途径。

系统开发着眼于克服传统测控方式的缺点,提高观测可靠性和测量的及时性,减少时间占用,最大限度降低人工测量劳动强度,避免大的偏差出现,有利于盾构施工进度,提高施工质量,在总体上提高盾构法隧道施工水平。系统设计上改进其他方式的缺点,在盾构推进过程中无需人工干预,实现全自动盾构姿态测量。

2.2原理与功能特点

盾构机能够按照设计线路正确推进,其前提是及时测量、得到其准确的空间位置和姿态方向,并以此为依据来控制盾构机的推进,及时进行纠正。系统功能特点与以往方式不同,主要表现在:

(1)独特的同步跟进方式:本系统采用同步跟进测量方式,较好克服了随着掘进面推进测点越来越远造成的观测困难和不便。

(2)免除辅助传感器设备,六要素一次给出(六自由度)。

(3)三维向量导线计算:系统充分利用测量机器人(LeicaTCA全站仪)的已有功能,直接测量点的三维坐标(X,Y,Z),采用新算方法——“空间向量”进行严密的姿态要素求解。

(4)运行稳定精度高:能充分满足隧道工程施工对精度控制的要求以及对运行稳定性的要求。

(5)适用性强:能耐高低温,适于条件较差的施工环境中的正常运行(温度变化大,湿度高,有震动的施工环境)。

图1系统主信息界面示意

系统连续跟踪测定当前盾构机的三维空间位置、姿态,和设计轴线进行比较获得偏差信息。在计算机屏幕上显示的主要信息如图一所示。包括:盾构机两端(切口中心和盾尾中心)的水平偏差和垂直偏差及盾构机刚体三个姿态转角:1)盾购机水平方向偏转角(方位角偏差)、2)盾构机轴向旋转角、3)盾构机纵向坡度差(倾斜角差),以及测量时间和盾构机切口的当前里程,并显示盾构机切口所处位置的线路设计要素。

2.3运行流程

系统采用跟踪式全自动全站仪(测量机器人),在计算机的遥控下完成盾构实时姿态跟踪测量。测量方式如图二所示:由固定在吊篮(或隧道壁)上的一台自动全站仪[T2]和固定于隧道内的一个后视点Ba,组成支导线的基准点与基准线。按连续导线形式沿盾构推进方向,向前延伸传递给在同步跟进的车架顶上安置的另一台自动全站仪[T1]及棱镜,由测站[T1]测量安置于盾构机内的固定点{P1}、{P2}、{P3},得到三点的坐标。盾构机本体上只设定三个目标测点。该方式能较好地解决激光指向式测量系统的痼疾——对曲线段推进时基准站设置与变迁频繁的问题。

2.4刚体原理

盾构机体作为刚体,理论上不难理解,刚体上三个不共线的点唯一地确定其空间位置与姿态。由三测点的实时坐标值,按向量归算方法(另文),解算得出盾构机特征点坐标与姿态角度精确值。即通过三维向量归算直接求得盾构机切口和盾尾特征部位中心点O1和O2当前的三维坐标(X01、Y01、Z01和X02、Y02、Z02)。同时根据里程得到设计所对应的理论值,两者比较得出偏差量。

2.5系统初始化操作

系统初始化包括四项内容:

1)设置盾构机目标测点和后视基准点;

2)固定站和动态站上全站仪安置;

3)盾构控制室内计算机与全站仪通讯缆连接;

4)系统运行初态数据测定和输入。

在固定站[T2]换位时,相关的初态数据须重测重设,而其他几项只在首次安装时完成即可。

F1键启动系统。固定的[T2]全站仪后视隧道壁上的Ba后视点(棱镜)进行系统的测量定向。[T2]和安装于盾构机车架顶上的[T1]全站仪(随车架整体移动)以及固定于盾构机内的测量目标(反射镜)P1、P2、P3构成支导线进行导线自动测量。

2.6运行操作与控制

本系统在两个测站点[T1]、[T2]安装自动全站仪,由通信线与计算机连接,除计算机“开”与“关”外,运行中无须人员操作和干予,计算机启动后直接进入自动测量状态界面,当系统周而复始连续循环运行时,能够智能分析工作状态来调整循环周期(延迟时间),直到命令停止测量或退出。

3系统软件与设备构成

3.1软件开发依据的基础

测量要素获得是系统工作的基础,选用瑞士Leica公司TCA自动全站仪(测量机器人)及相应的配件,构成运行硬件基础框架。基于TCA自动全站仪系列的接口软件GeoCom和空间向量理论及定位计算方法,实现即时空间定位,这在设计原理上不同于现有同类系统。系统通过启动自动测量运行程序,让IPC机和通讯设备遥控全站仪自动进行测量,完成全部跟踪跟进测量任务。

3.2系统硬件组成的五个部分

■全自动全站仪

测量主机采用瑞士徕卡公司的TCA1800自动测量全站仪,它是目前同类仪器中性能最完善可靠的仪器之一。TCA1800的测角精度为±1”、测距精度为1mm+2ppm;仪器可以在同视场范围内安装二个棱镜并实现精密测量,使观测点设置自由灵活,大大提高了系统测量的精度。

■测量附属设备

包括棱镜和反射片等。

■自动整平基座

德国原装设备,纠平范围大(10o48’),反应快速灵敏(±32”)。

■工业计算机

系统控制采用日本的CONTECIPCRT/L600S计算机,它能在震动状态、5。~50。C及80%相对湿度环境中正常运行,工矿环境下能够防尘、防震、防潮。其配置如下:

——Pentiun(r)-MMX233HZ处理器

——32M内存

——10G硬盘或更高

——3.5英寸软驱

——SuperVGA1024*768液晶显示器

——PC/AT(101/102键)键盘接口

——标准PS/2鼠标接口

——8串口多功能卡(内置于计算机扩展槽)

■双向通讯(全站仪D计算机)设备

系统长距离双向数据通讯设备采用国内先进的元器件,性能优良,使得本系统通讯距离允许长达1000米(通常200米以内即满足系统使用要求),故障率较国外同类系统低得多,约减少90%以上。通讯原理如图三所示。

3.3系统硬件组成简单的优势

从设备构成可知,系统不使用陀螺仪,也不必配装激光发射接收装置,并舍去其他许多系统所依赖的传感设备或测倾仪设备,从而最大限度地简化了系统构成,系统简化提高了其健壮性,系统实现最简和最优。

带来上述优点的原因,在于机器人良好的性能和高精度以及定位原理上直接采用三维框架,通过在计算理论和方法上突破过去传统方式的框框,使之能够高精度直接给出盾构机上任意(特征)点的三维坐标(X,Y,Z)以及三个方向的(偏转)角度(α,β,γ),这样在盾构机定位定向中,即使是结构复杂的盾构机也能够简单地同时确定任意多个特征点。比如DOT式双圆盾构需解决双轴中心线位或其他盾构更多轴心、以及铰接式变角等问题,可通过向量和坐标转换计算解出而不必增加必要观测。

由此可知,本构架组成系统的硬件部件少,运行更加可靠,较其他形式的姿态测量方式优点明显。实际上本系统的最大特点就是由测量点的坐标直接解算来直接给定测量对象(刚体)的空间姿态。

另外特别说明一点:本系统由两台仪器联测时,每次测量都从隧道基准导线点开始,测量运行过程中每点和每条边在检验通过之后才进行下步。得到的姿态结果均相互独立,无累积计算,故系统求解计算中无累计性误差存在。因此,每次结果之间可以相互起到检核作用,从而避免产生人为的或系统数据的运行错误。这种每次直接给出独立盾构机姿态六要素(X,Y,Z,α,β,γ)的测算模式,在同类系统中是首次采用。

冗余观测能够避免差错,也是提高精度的有效方法。最短可设置每三分钟测定一次盾构机姿态,由此产生足量冗余,不仅确保了结果的准确,也保证了提供指导信息的及时性,同时替代了隧道不良环境中的人工作业,改善了盾构隧道施工信息化中的一个重要但较薄弱的环节。

4工程应用及结论

4.1工程应用

上海市共和新路高架工程中山北路站~延长路站区间盾构推进工程,本系统在该隧道的盾构掘进中成功应用,实现实时自动测量,通过了贯通检验。该工程包括上行线和下行线二条隧道,单线全长1267米。每条隧道包含15段平曲线(直线、缓和曲线、圆曲线)和17段竖曲线(坡度线、圆曲线),线型复杂。

盾构姿态自动监测系统于2001年12月11日至2002年3月7日在盾构推进施工中调试应用。首先在下行线(里程SK15+804~SK16+103)安装自动监测系统,调试获得成功,由于下行线推进前方遇到灌注桩障碍被迫停工,自动监测系统转移安装到上行线的盾构推进施工中使用,直到上行线于2002年3月7日准确贯通,取得满意结果。

4.2系统运行结果精度分析

盾构机非推进状态的实测数据精度估计分析

通过实验调试和施工运行引导推进表明,系统在盾构推进过程中连续跟踪测量盾构机姿态运行状况良好。测量一次大约2~3分钟。在“停止”状态测得数据中,里程是不变的,此时的偏差变化,直接反映出系统在低度干扰状态下的内符合稳定性,其数据——偏差量用来指导盾构机的掘进和纠偏。盾构不推进所测定盾构机偏差的较差<±1cm,盾构推进时测定盾构机偏差的误差<±2cm。表三中和人工测量的结果对比,考虑对盾构机特征点预置是独立操作的,从而存在的不共点误差,由此推估测量结果和人工测量是一致的,在盾构机贯通进洞时得到验证。

4.3开发与应用小结

经数据随机抽样统计计算得出中误差(表一、表二)表明:以两倍中误差为限值,盾构机停止和推进两种状态偏差结果的中误差均小于±20毫米,满足规范要求。

为了检核盾构姿态自动监测系统的实测精度,仍采用常规的人工测量方法,测定切口和盾尾的水平偏差和垂直偏差,并与同里程的自动测量记录相比较(表三),求得二者的较差()。由于二者各自确定的切口中心点O1和盾尾中心点O2不一致偏差约为2cm,所以各自测定的偏差不是相对于同一中心点的,即二者之间先期存在着系统性差值。

通过工程实用运行,对多种困难条件适应性检验,系统表现出良好的性能:

1)实时性——系统自动测量反映当前盾构机空间(六自由度)状态;

2)动态性——系统自动跟踪跟进,较好解决了弯道转向问题;

3)简易性——系统结构简单合理,操作和维护方便,易于推广使用;

4)快速性——系统测量一次仅需约两分钟;

5)准确性——结果准确精度高,满足规范要求,在各种工况状态都小于±20毫米;

6)稳定性——适应震动潮湿的地下隧道环境,系统可以长期连续运行。

本系统已成功用于上海市复兴东路越江隧道?11.22米大型泥水平衡盾构推进中。我们相信对于结构简单,运行稳定,精确度高,维护方便的盾构姿态自动监测系统,在盾构施工中将发挥其应有作用。

[参考文献]

[1]隧道工程,上海科学技术出版社,1999年7月,刘建航主编

[2]地铁一号线工程,上海科学技术出版社,1999年7月,刘建航主编

[3]TPS1000经纬仪定位系统使用手册,Leica仪器有限公司

[4]盾构姿态自动监测系统研究与开发报告,2002年4月,上海市政二公司

[5]杭州湾交通通道数据信息管理系统设计与开发,华东公路,1998.3,岳秀平

[6]GeoCOMReferenceManualVersion2.20,LeicaAG,CH-9435Heerbrugg(Switzerland)

监测系统论文范文第2篇

该层用来建立包传输机制和实现媒体访问控制,MOAP系统中仅存在一个主设备,其他皆为从设备。主设备与从设备之间可以建立通信,从设备与从设备之间不能进行通信。本规范定义由主设备传输至从设备的数据包称为下行数据包,简称下行包;由从设备传输至主设备的数据包称为上行数据包,简称上行包[1]。

2应用层

应用层由LL(ILowerLayerInterface,低层访问接口)和OAS(ObjectAccessStandard,对象访问规范)两个实体组成。基于MOAP协议的数据包传输仿真为验证MOAP协议的时效性,这里用NS2(NetworkSimu-lator)仿真软件来模拟MOAP通信协议中数据包的传输过程及数据包传输的时延。仿真实验场景设置如下:假设桥梁测点网络监测区域为300m*300m的正方形中,其测点总数为20个。根据目标模型在测量区域内生成目标轨迹,设置每个节点vmax为50m/s,amax=10m/s2,1=50,2=100,场景持续50s,流量的固定码率(ConstantsBitRate,cbr)为1Mbit/s,协议采用的是MOAP通信协议。

3基于MOAP协议的无线桥梁监测系统示例

3.1监测点传感器的设置

某跨桥的总长为500m,其跨径布置为90+2×160+90m,由三个T型桥柱组成对称结构。在各跨箱梁根部支点截面、L/4截面和L/2截面,设置桥梁监测测点,埋设应力和位移传感器,以测试箱梁和墩身结构的实际应力和应变[2]。该桥梁的测点中包括14个应变测点和6个位移测点,总共20个测点。其布置示意图如图2所示。

3.2上位机软件界面

桥梁监测数据采集系统采用MFC库,使用VS2010作为开发工具,C++作为开发语言进行开发,综合利用MFC提供的各种通信方法来实现系统的功能。主界面如图3所示。无线桥梁监测系统设备配套的上位机处理软件,用于在上位机上对传感器进行动静态数据采集和处理,并为进一步分析提供数据。软件界面主要包括以下几块:(1)菜单工具栏:位于界面的最上面,提供菜单和工具按钮快捷操作,主要包括配置操作、网络操作、静态采集、动态采集等;(2)网络结构:位于界面的左边,以“桥梁—采集点—节点”三级展开的模式给出无线传感网络的拓扑结构,图中给出了20个节点的网络配置结构;(3)采集控制:位于界面的右边,提供相关控制操作,图中主要标出开始动态采集命令行;(4)状态栏:界面最下边,在进行网络通信的时候,任务栏将显示当前通信状态和进度。

3.3MOAP协议数据包传输实例

以下以在桥梁监测数据采集系统中动态采集为例,对其数据包进行解析。给出监测数据包为:发送包:34054100640000000000002ee09597接收包:0405410101e67f对发送包的分析如下:数据链路层中的数据包中控制字34转化为二进制为00110100,001代表当前版本的默认号,1代表是下行包,0100与从设备收到数据包中的地址进行比较,与自身地址一致时才可响应该消息;05代表采集器的唯一编号;41代表执行的是动态操作的指令;数据域中第一个0064对应的十进制是0100代表的是采样率,第二个0064代表是实时同步采样率;00002ee0中2ee0代表的是采样时间和采样次数的积,转化为十进制后为12000次,则代表动态采集12000个数据;9597代表CRC校验。从数据包的传输过程中可以看出:(1)应用层数据包在传输的过程中加一个字节的指令,该指令可以判断上位机中所发的命令;(2)数据链路层数据包在应用层数据包中加上控制字、地址和循环冗余校验。控制字主要是用来判断是上传还是下发指令,还包括是否是广播通信;地址用来说明具体是给哪个具体的硬件下发指令;(3)物理层主要负责透明传输原始比特流。

4结语

监测系统论文范文第3篇

关键词:塔式起重机信息融合单片机状态监测

目前在国产塔机上仅配置了力矩限制器、位置限制、速度限制器等装置,其原理是当被监测参数超过某限制值时断电报警,实际上是一种安全保护装置,其缺点是:

(1)不能实进监测塔机的运行参数,因而不能将塔机的运行状态及进显示给司机,以便及时调整。

(2)运行参数的监测基一是单独进行,不能在计算机统一管理下对诸多参数实施同步监测,协调处理,综合判断。

(3)这些保护装置长期使用后其自身的可靠性大大降低,是旦失灵,司机又无法知道。

多传感器信息融合是80年代国外军事和机器人领域率先提出来的一项高新技术,其基本原理是充分利用多个传感器资源,对观测到的有关同一目标的信息进行合理支配和使用,把多个传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,以获得对被观测目标的综合的最佳估计。与单一传感器系统相比,多传感器信息融合系统具有以下优点:

(1)信息量大。大量的信息的融合和综合能减小系统的不确定性,从而提高精度。

(2)很好的容错性。在传感器有误差或失效的情况下,也能有较高的可靠性。

(3)能获得单个传感器无法感知的特征信息。

我们针对目前国内塔机运行参数监测仪器的不足,并考虑到塔机运行状态的识别以及故障诊断的需要,利用了塔机的结构特点,在不改变塔机结构和不增加许多辅助装置的前提下,研制了基于信息融合和单片机技术的塔机运行关态监测系统。

1系统组成

图1是自繁荣昌盛式塔机的结构简图,塔机工作时的运行部分主要有起升机构1(见图2),回转机构2(见图3)和小车变幅机构3(见图4)。

图2起升机构

1.电动机2.联轴器3.制动器4.减速器5.卷筒6.吊钩7.滑轮组8.离合器9.拉力传感器10.光电传感器11.导向轮

图2中,安装在滑轮组7上的拉力传感器9将起重量G转换成电信号后送到A/D转换器与单片机接口(见图5);导向轮11的转角变化能反映起重物G的起吊位置和速度,光电传感器10能将导向轮11的转角变化检测出来并转换成电信号送到单片机INT0引角(见图5)。

图3中,电动机1通过减速器3和小齿轮4驱动回转支承装置5中的大齿轮回转,带动上部旋转,小齿轮4的转角变化能反映塔机的回转角度和速度的变化,电涡流传感器6能把小齿轮4的角度变化检测出并变换成电信号送到单片机P3.0引脚(见图5)。

1.电动机2.制动器3.少齿行星传动减速器4.小齿轮5.回转支承装置6.电涡流传感器

图4中,变幅小车状有电涡流传感器3,当变幅小车在塔机吊臂上行走时,电流传感器能检测到吊臂上等间隔布置的腹杆数并送到单片机INT1引脚(见图5)。

1.起升卷扬2.塔机吊臂3.电涡流传感器4.小车牵引卷扬5.变幅小车6.吊臂复杆

2系统工作原理

2.1起重理G检测

将拉力传感器串接在定滑轮吊绳固定端的适当位置,由动态应变仪交吊重转换为电压信号,然后由A/D转换器进行转换,从而测量起吊的重量,当重量超过额定置时,保护装置动作并发出报警信号。

2.2变幅小车位置L及瞬间速度V1检测

在变幅小车上安全电涡流传感器(见图4),传感器与吊臂上的腹杆垂直。小车运行时,当电涡流传感器经过腹杆时会产生一负脉冲,通过对脉冲进行计数及任意两个脉冲之间的时间差进行定进,可计算出小车的瞬时位置及速度(吊臂上任意两腹杆间的距离是相等的)。如图5所示,将电涡流传感器输出信号与89C52的INT1相连,对该引角上的脉冲进行计数,可获得小车通过腹杆的个数,由T1引脚对任意两个脉冲的时间间隔进行定时,可检测出小车经过两个腹杆所用的时间,由P1.4、P1.5引脚检测小车向前有向后运动。当小车速度超过最大允许值时,保护装置动作,并发出报警信号。

小车位置L1=L0±n×S,小车速度V1=(L1-L0)/Δt

式中L1——本次脉冲小车位置,L0——上次脉冲小车位置,n——脉冲个数,S——两腹杆间的距离,Δt——两个脉冲间的时间距离。

2.3吊重位置H及速度V2检测

将图2中导向轮轴上安装一圆盘,在圆盘上加工出若干个小孔,光电传感器与圆盘垂直,当塔机起长时,每当小孔转到与传感器相对的位置,都会产生一个脉冲。由脉冲的个数及任意两个脉冲之间的时间间隔,可计算出起升位置及速度。当起升速度超限时,保护装置动作并发出报警信号。检测进,由P1.1、P1.2检测重物运动方向,由INT0检测脉冲个数,由T0对任意两个脉冲的时间间隔进行定时,见图5。

起吊位置H1=H0±n×l

式中H1——本次脉冲重物位置,H0——上次脉冲重物位置,l——每经过一个脉冲重物运动的距离起吊速度V2=(H1-H0)/Δt式中Δt——两个脉冲间的时间间隔。

2.4动态力矩M检测

当小车的位置及吊重检测出来后,运行时的力矩为M=L×G。

将运行时的动态力矩实进地显示给司机,并与该位置时的额定力矩相比较,可控制小车的运动。当力矩超限时保护装置动作,并发出报警信号。

2.5塔机回转角度α、回转速度V3检测

在回转机构的小齿轮上安装一电涡传感器,塔机回转时,小齿轮每转过一个齿都会产生一个脉冲,通过对脉冲计数及任意两个脉冲时间间隔进行定时,可计算出塔臂回转角度和速度。当回转速度超限时,保护装置动作,并发出报警信号。

由P1.3、P1.7检测塔机的回转方向,由P3.0对脉冲进行计数要可得到回转角度,由T2对脉冲之间的时间间隔进行定时,可计算出回转的速度。

回转角度α1=α0±n×β,回转速度V3=(α1-α0)×r/Δt

式中α1——本次回转角度,α0——上次回转角度,n——回转齿数,β——每回转一齿对就的角度,r——回转半径。

3基于多参数信息状态的监测原理

我们研制的监测系统是一种电子显示监测系统是一种电子显示监近系统,客观存在通过塔机实际工作时所产生的信号和预先储存的安全工作数值进行比较,达到报警保护目的。如图6所示,塔机要作时,当起重量,工作幅度,小车运行速度等参数接近安全工作数值时,系统发出报警信号,正常工作时,安不断地在司机室显示上述各项监测数值。

4结语

本系统已完成试验开发阶段,正时一步完善,推向实用,它的主要特点是:

(1)能在一个显示屏上随时监测到反映塔机运行状态的多种运行参数:起重量,起重力矩,起升速度及位置,小车变幅位置及速度,塔臂回转角度及速度等。

(2)当被监测参数超过设定限值时,可报警或断电停机;并能自动记录起重朵出现意外的运行参数状态。

监测系统论文范文第4篇

关键词:综合监控系统,蠕虫

 

工业控制网络因为搭建使用方便,远程管理方便的优势已经广泛地用于各行各业。工业控制以太网比传统的工业控制总线传输数据量大,协议更多样,通用性、扩展性更优越,逐渐成为大型分布式工业控制系统的首选。为适应地铁智能设备分布分散,数量大,协议种类繁多,监控实时性要求高的特点,广州地铁三号线组建了以工业控制以太网为骨干的综合监控系统。

本文以主动探测型蠕虫为讨论对象。蠕虫可能造成网络中断,工作站死机等问题,严重威胁着工控网络的正常稳定工作。免费论文,综合监控系统。。防御蠕虫入侵已经成为摆在工业控制网络维护人员面前的一道难题。

1广州地铁三号线的综合监控系统介绍

广州地铁三号线综合监控系统是一个大型数据采集与监控系统,集中监控三号线全线各站的电力、智能建筑、火灾报警、屏蔽门、防淹门、广播、闭路电视、售检票系统、行车信号、车载信息、乘客信息传递、时钟系统、门禁系统等十三个专业的设备。

系统采用千兆光纤以太网为骨干网,各站通过千兆交换机连接作为网络节点。千兆交换机与前端处理器连接,以前端处理器为与诸系统如火灾报警系统、智能建筑系统等子系统设备的通讯转换接口。

综合监控系统的数据库存放于各站服务器,本站工作站访问本站服务器数据库读取设备状态显示。系统结构呈典型C/S结构。服务器采用UNIX系统而工作站采用windowsXP系统。服务器与工作站通过中间件软件完成数据交换。

综合监控系统管理员可从网管工作站可读取被监控的各种设备的运行数据及系统运行数据。

网络结构如图1所示:

2主动探测型蠕虫的特征

蠕虫是一类具有强传染性,攻击系统漏洞干扰计算机及网络工作的程序的统称。蠕虫和传统的病毒有以下区别:

(1)存在形式不同:传统病毒是可自我复制的一个代码片段,寄生在宿主文件中。蠕虫则是一个独立的程序。

(2)传染机制不同:传统病毒的传播方式是将病毒代码嵌入宿主程序,蠕虫则是通过自身复制感染网络上的其他计算机。

(3)触发方式不同:传统病毒需要使用者操作宿主文件触发,蠕虫则是主动攻击,不需人为干预。

常见的主动探测型蠕虫工作过程可分为网络探测、系统漏洞扫描、实施攻击、自我推进四步。

蠕虫先会进行网络探测,即通过IP探测机制探测网络中其他主机的IP。完成网络节点的探测后,蠕虫对被发现的网络主机进行扫描,探测主机系统是否存在适合攻击的漏洞。确认网络主机为可传播对象后,蠕虫将自身复制到目标主机并在目标主机上进行自我隐藏、信息搜集等工作。同时,蠕虫会将自身在目标主机上复制多个副本,并启动搜索进程,实施网络探测,进行下一轮攻击。

3综合监控系统蠕虫的来源:

综合监控系统是工控系统,并不接入Internet,蠕虫的来源主要是以下两种:

(1)更新软件版本时感染蠕虫

工控软件一般都不是在工厂一次开发完成,直接上线投入运行就能达到终验水平的。工控软件从完成初步开发出厂,到稳定运行,最终达到可接受验收的水平,往往需要经过多次升级修改。

(2)取数据时感染蠕虫

较安全的数据读取方式是采用一次性写入的光盘取出数据。但综合监控系统有其特殊性,首先综合监控系统可监控几乎所有设备,需要读取的数据量巨大;其次因为地铁行业的特殊性,数据分析需要及时,在事件发生后必须马上取得数据,导致取数据的次数较多。这样假如每次取数据都花费一张光盘,成本相当高,不符合企业利益。

另外,在运行过程中,为了分析系统运行状况,保障系统安全运行,管理员每天都需要读取系统运行日志进行分析并保存。管理员的存取介质也有可能带有蠕虫。

4蠕虫的防治

4.1蠕虫的检测

综合监控网络的网络结构简单,数据内容单一,利于用对照表检测法进行感染检测。免费论文,综合监控系统。。凡是不符合对照表特征的数据包均视为有害,进行报警。

(1)检测的基础是建立特征对照表。综合监控系统的监控机制在时间上是循环重复的。免费论文,综合监控系统。。因此可以从骨干网提取一时段单位的数据包,根据设计文本规定的通讯信息种类,遍选让检测软件学习,生成特征对照表。

(2)对照表的特征的选择。根据蠕虫的入侵习惯,可选用协议种类比,源IP,目标IP,数据量作为检测特征量。

综合监控网内数据包较固定,可增加数据包长度作为特征量。免费论文,综合监控系统。。免费论文,综合监控系统。。

(3)进行数据检测。为减少网络负荷,采取定时抽取一时间段骨干网数据进行检测的方式。出现不符合特征表的情况将进行报警。

4.2系统功能的恢复

蠕虫网络感染能力很强,通常单工作站完成蠕虫清楚,网络上有残留的蠕虫,几小时后又会重复感染。所以清除蠕虫是一个系统性的工作,不能单机进行。

服务器采用UNIX系统,前端处理器采用VxWorks系统,均不感染针对windows系统蠕虫,综合监控系统网络的蠕虫宿主是工作站。为减少恢复所用时间,可对工作全盘恢复,彻底清除病毒。

清除蠕虫时必须断开各网络节点,恢复后逐站连接。

4.3蠕虫的预防

从维护者的角度,通过建立完善的管理制度限制蠕虫进入网络是较有效且成本较低的蠕虫防御方法。

针对蠕虫的来源,防御蠕虫应该注意两项制度的落实。

首先是规范软件上线前的病毒检测。软件出厂时必须有开发人员的病毒检测报告,上线前由用户在测试平台验证后才能上线运行。

第二是规范数据读取的权限,仅允许授权人员进行读取数据的操作。所用存储设备必须是专用设备,且连接办公网络时设置为只读。免费论文,综合监控系统。。

在成本允许的情况下,应该考虑增加综合监控系统对外接口的保护,减少蠕虫的影响范围,比如选用有防火墙功能的存储设备取数据,转换协议传输数据防止蠕虫扩散,在读取数据的终端网管工作站设置防火墙。

参考文献

[1]王民孙薇王艳玲《网络蠕虫检测和控制研究》/文章编号1671-7597(2009)1020079-01

[2]魏长宝《入侵、蠕虫对网络安全的危害及防范》/文章编号1672-3791(2007)12(b)-0081-02

[3]rising.com.cn瑞星主页

监测系统论文范文第5篇

关键词:生态环境监测;发展现状;策略

中图分类号:TU97 文献标识码:A

1 关于生态环境监测的概述

1.1 什么是生态环境监测

近年来,在环境监测理论和实践深入发展的基础上兴起了生态环境监测的理论研究和实践。所谓生态环境监测,就是运用环境监测和生态学的理论和方法,对生态系统的条件、生态系统条件的变化、生态系统在环境压力下所产生的反应及这种反应的发展趋势进行监测,以获得各类生态系统的结构和功能在时间和空间上所显示格局的认识和数据。

1.2 生态环境监测的划分类型

划分生态环境监测类型的方法有很多种,从不同的角度出发,就有不同的生态环境监测类型。普通的划分方法是以生态环境监测对象的价值为尺度,按照不同的生态系统圈进行划分,形成农村、城市、草原、森林、荒漠等生态环境监测类型。虽然这是一种大家普遍接受的方法,但是这样的划分类型不能囊括生态环境监测类型的全部,存在着相当的局限性。目前最科学的生态环境监测类型的划分方法,是把生态环境监测的空间尺度及检测对象作为划分生态环境监测的出发点,根据这种划分方法,生态环境监测被划分为宏观生态环境监测和微观生态环境监测两大类。

宏观生态环境监测是指运用遥感技术、生态制图技术、地理信息系统和区域生态调查及生态统计等手段,在相关专业数据和原有自然本底图的基础上,在区域生态范围内对生态系统的条件、生态系统条件的变化、生态系统在环境压力下所产生的反应及这种反应的发展趋势进行监测。

微观生态环境监测是指运用化学、物理、生物学的理论和方法,把数量众多的生态环境监测站作为工作的基础条件,对某一生态系统或者景观生态区的各个构成部分进行监测,收集相关属性信息。干扰性生态、污染性的生态环境监测均为组成微观生态环境监测的主要部分。微观生态环境监测是宏观生态环境监测的基础,宏观生态环境监测是微观生态环境监测的主导,两者之间的关系式既相互独立又相辅相成,共同构成一个完整的生态环境监测网。

1.3 生态环境监测的任务和特点

生态环境监测的任务主要有:动态监测生态系统现状和由于人类活动所引起的重要生态问题;监测已被破坏的生态系统在人类的治理过程中生态平衡的恢复过程;收集监测数据,对各种生态问题的变化规律及其发展趋势进行研究;为诸多重要的国际生态研究及监测计划提供技术和数据支持。

2 关于生态环境监测在我国的发展现状分析

2.1 我国的生态环境监测所取得的成就

中国科学院在我国近年来提出的“地球动态观测信息网络”、“我国代表类型区生态状态和变迁规律的大尺度时空观测研究以及发展趋势预测”、“中国资源生态环境预警研究”等方案及计划的基础上提出的“我国生态系统研究站网”研究计划(CERN)已经实施,建立了53个生态定位站,组织进行了数量颇多的生态研究工作,世界各国对其所取的成果予以了相当的关注,生态环境监测的应用前景已相当可观;生态环境监测指标和生态质量评价指标体系方面的理论研究工作得到重大发展。

2.2 我国的生态环境监测发展的不足之处

与环境污染监测相比我国的生态环境监测是显得比较落后的,仅处于理论研究阶段,急需进入实施阶段,仅在小范围内实施生态环境监测,偏重对生态过程的研究;没有统一的指标体系和操作方法,没有充分发挥现代化技术及手段的作用。

3 关于提高生态环境监测水平的策略分析

3.1 确立统一的生态环境监测指标体系

目前的生态环境监测指标体系不仅没有统一制定而且还存在诸多缺陷,如:尚未把微观和宏观生态环境监测有机结合、监测方法不规范、操作性不强等。因此,制定统一的生态环境监测指标体系势在必行。笔者认为,制定统一的生态环境监测指标体系要从一致性指标、诊断性指标、预警性指标这三种基本指标类型出发,体现代表性、敏感性、综合性、可行性、简易化、灵活性、经济性、阶段性、协调性等原则。统一的生态环境监测指标体系制定后还需实践中经过考查与检验,才能在大范围内推广和运用。

3.2 探索先进的生态环境监测技术以方法

在遵循尽量采用国家标准方法这一原则下,充分考虑生态问题的提出、生态环境监测台站选址、监测内容、生态系统要素及监测指标确定、现有方法和设备、监测的场地频度及周期描述、数据整理等方面的问题,从实际情况出发,通过制定技术路线、确立最佳方案,探索先进的生态环境监测技术方法。

3.3 在交流与推广中发展生态环境监测技术

为了使生态环境监测技术人员的业务素养及业务知识面能得到持续不断的提高及拓展,可以定期或不定期地组织生态环境监测单位和相关人员进行技术讲座培训,组织学术交流。还可以组织举行先进经验交流会,组织行业内部经验交流;为了使系统的生态环境监测能力得到逐步的推广和实践,可以考虑在基层监测站和专业监测站推广已在实践中发展成熟的生态环境监测技术和经过验收证明是质量合格、适用度好的仪器;为了在基层落实生态环境监测技术,要从当地的现实情况出发,在优先监测重点问题的基础上要强化动态研究,不断积累资料,有步骤地拓宽监测项目和监测范围。

4 生态环境监测发展展望

生态环境监测是一项对环境监测工作者提出了更高要求的、复杂的系统工程。对环境质量进行评价进而提出污染治理方案是环境监测的最终结果。通过提出生态环境规划、生态设计方案等方式为更深层次的生态环境管理服务及决策部门服务,实现生态环境监测所追求的建立人和自然和谐相处的生态环境的最终目标。时至今日,人口、资源、环境等问题随着经济的发展已显得日益严峻,监测生态环境质量已不能单纯依靠理化、生物等指标,生态环境监测必将得到广大环境监测工作者的重视与掌握。

结语

总之,探讨生态环境监测及其在我国的发展具有较强的意义。作为生态环境监测人员,应紧密结合本工作的特点,分析存在的不足,并采取相应的措施,才能促进我国环保事业的可持续发展。

参考文献