首页 > 文章中心 > 监测技术论文

监测技术论文

监测技术论文

监测技术论文范文第1篇

现代生物技术作为环境监测的主要技术,其监测水平的高低将直接影响到环境监测的精确度。现代生物技术也叫做生物工程。在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。其特点主要包括以下几点:

(1)可以将物种之间的界限打破。在传统观念中,遗传育种过程中如物种亲缘关系较远,进行杂交成功的可能很小。更无法做到动物与植物之间的结合、细菌与动物之间的结合。但基因工程可以将这些都变为现实,可以打破的障碍;

(2)可以遵循人的意志、目的对生物遗传特性进行定向改造,甚至进行新物种的创造,改变整个生态环境,影响到人类的进化过程;

(3)这种技术可以在遗传物质核酸上直接进行操作,进而新生物类型创造的速度也越来越快。因为现代生物技术的特点,已经成为世界各国专家研究的焦点问题。近年来,这项技术在环境监测中已经取得了不错的成绩。本文主要对环境监测中现代生物技术的生物芯片、生物传感两种技术进行了分析与探究。

2 环境监测中生物芯片技术的应用

目前生物芯片已经可以对公共饮用水内的微生物改变进行实时监测,RhodeIsland大学研发出可以对水中的沙门氏菌与大肠杆菌进行瞬时监测的一种生物芯片技术。细菌检测与鉴定系统的建立可以通过DNA芯片进行,这种方式可以对细菌的种类、浓度进行及时监测,并通过将大量的寡核苷酸探针增添到芯片上可以增强本系统的精准度、扩展其检测范围及提高其鉴定能力。

3 环境监测中生物传感技术的应用

在环境监测中生物传感技术也要进行大气内二氧化碳、二氧化硫等含量与浓度进行分析。点位传感器的制作可通过自养微生物与氧电极进行有效制作,起到多种离子、与挥发性酸的抗干扰作用,并对大气环境内二氧化碳含量进行不间断自动在线分析,这种技术具有较高的灵敏度。安培型生物传感器的制作主要硫杆菌属与氧电极进行有效制作,这种设备可以进行酸雨酸雾样品内二氧化硫含量的检测,微生物传感器主要通过多孔气体渗透膜、固定化硝化细菌及氧电极合成,可以对样品内亚硝酸钠含量进行测定。

4 结束语

监测技术论文范文第2篇

1.1监测任务名称的标准化处理

以目前的全国业务化海洋环境监测任务为基础,对上报的监测任务进行标准化命名,如海洋生物多样监测、海洋大气监测,对不同填报的名称进行标准化处理。

1.2组织单位名称的标准化处理

各地上报的组织单位比较混乱,有的上报了监测机构名称,有的上报了其隶属的行政部门名称,不利于监测任务的考核。根据国家海洋环境监测工作任务以及各海区年度海洋环境监测工作方案,目前组织单位主要包括国家海洋局局属单位、3个分局、11个沿海省(自治区、直辖市)海洋行政管理部门和5个计划单列市海洋行政管理部门,如国家海洋环境监测中心、国家海洋局北海分局、辽宁省海洋与渔业厅、大连市海洋与渔业局,对不同填报的组织单位进行标准化处理。

1.3监测区域名称的标准化处理

由于各地方上报的监测区域不够规范,且很难表现出更多的区域信息,同时考虑到区域统计分析,因此需对监测区域进行规范化命名。监测区域命名结构为:沿海地区/海区+沿海城市/特定区域+名称,其中沿海地区/自然海区和名称字段不能省略,沿海城市/特定区域字段若无可以省略。如,辽宁葫芦岛赤潮监控区,广东近岸、福建厦门近岸、东海近海及远海,对不同填报的监测区域名称进行标准化处理。

1.4监测要素名称的标准化处理

每个监测任务里包含了不同的监测要素,且不同的任务可能会监测相同的要素,因此需对监测要素进行规范命名,以便对相同的要素进行统一分析、数据量统计等。以目前的业务化海洋环境监测要素为基础,对上报的监测要素进行标准化命名,如水文气象、海水水质、沉积物质量、浮游植物和浮游动物等,对不同填报的监测要素进行标准化处理。

1.5监测参数及单位的标准化处理

由于每个监测要素需要监测不同的监测参数,如海水水质需要监测化学需氧量、氨氮和溶解氧等。而每个监测参数的名称在写法上有不同的形式,如化学需氧量也可写为COD,氨氮也可写为氨-氮或NH4-N等,给数据的统计、评价带来一定的不便,因此有必要规范不同监测参数的名称。另外,每个监测要素的单位也需统一规范。如重金属的锌元素,有的上报其参数单位为mg/L,有的上报为μg/L。在数据统一进入标准数据库时,需将单位统一。参照国际标准、国内海洋环境监测调查规范以及各地监测机构的填报习惯等,针对不同的监测任务和监测要素,对每个监测参数的名称及计量单位进行标准化处理。

1.6站位基础信息的数据类型标准化处理

监测数据的类型包括数值型、字符型、布尔型和百分比等。对站位基础信息如站位编号、经纬度、监测日期、水深和层号等的数据类型进行规范。(1)站位编号。上报的站位编号大部分为字符型,但也有站位编号为1、2、3等,为数据库的统一管理,需统一转换为字符型。站位编号不规范主要有以下几个方面:①站位编号英文大小写不一致;②监测机构各自命名;③在站位编号上加“临”“平行样”和“空白样”等字样。参照目前海洋环境监测站位编号规则,由任务编号、海区编号、类别编号和站位序号顺次排列组成。对站位进行统一编号。对于历史站位编号的确认,可通过核查相关的监测数据、核实年度监测方案、联系地方监测机构等方式,将站位编号统一。(2)站位的经、纬度。上报的经纬度有两种形式:一个是小数形式,另一个是度分秒形式。为便于计算机的计算方便,目前统一为小数形式。由于经纬度的小数位数不一致,会导致部分空间定位有细微的差别。结合监测任务计划和实际监测情况,统一经纬度的有效位数,目前保留到小数点后6位。(3)监测日期。上报的监测日期格式不一致,主要形式为:“2011-08-20”“2011/8/20”、或为时间型等。现统一其形式为“2011-8-20”,年份:填满4位;监测月份:1—12,月信息小于10,前位无需补零。注意检查,监测年份是否为该年度;月份是否大于12;日期是否在该月的自然日以内。(4)采样深度与层号。部分地方监测机构在该填报“层号”的地方填写了采样深度,同时层号不统一,有的为中文———“表层”“中层”“底层”;有的为英文———“S”“M”“B”。《海洋监测规范》中对水深和相应的采样层次进行了规范。对层号,统一用英文表示。其中:表层为S;底层为B;若只有一个中层用M表示,若为多个中层,则分别用M1、M2、M3等顺延表示。另需检查层号与层深的匹配情况,若层号为S(表层),则采样深度应小于或等于2m;层号为B(底层),则采样深度大于3m。部分填报机构填写层号时,出现表层填写“B”和底层填写为“D”的现象,可能是按“表层”和“底层”的首拼音字母填写造成的。

1.7监测参数不规范类型的处理

监测参数的不规范类型问题,主要应注意以下几点。(1)大于号、小于号。某些监测参数如重金属、大肠杆菌数等,其监测参数值上报中含有大于号或小于号。此类数据通常不影响其评价等级的判定,但会影响该类参数最大值、最小值、均值等统计的结果。可研究该参数的理化性质并联系地方监测机构,确认该参数的具体值大小。其缺省解决方法是删除大于号、小于号,以便该参数的统计及评价。(2)未、无、“-”等字样。结合年度监测任务,联系地方监测机构,确认该监测参数是未被监测,还是低于检出限。未监测用空值表示;低于检出限用“未检出”表示。(3)空格及其他无效字符。上报的监测数据中常含有空格及其他无效字符,使得计算机在识别、归类等过程中出现异常。可核查监测数据的内容和性质,确认为无效字符后,对数据值前、后含有的空格或其他无效字符进行删除处理。对经纬度空缺,可核查相关的原始上报数据集和年度监测工作方案,或联系地方监测机构;对层号空缺,可根据水深判断,或联系地方监测机构补缺;对某些监测参数值空缺,可结合年度监测任务,联系地方监测机构,确认该监测参数是未被监测,还是低于检出限,再根据判断结果给出规范填写。

2监测数据的齐全性检验

海洋环境监测数据的齐全性检验,是以海洋环境监测方案为依据,检查监测方案中规定的监测数据是否全部上报完整。首先对国家海洋环境监测工作任务以及各海区年度海洋环境监测工作方案进行分析,对监测工作方案进行信息解析,按空间维度、指标维度和时间维度对监测任务进行细化,空间维度包括监测站位、监测区域、管辖区域等,指标维度包括监测参数、监测要素等,时间维度包括监测时间等。其中监测站位、监测参数、监测时间是空间维度、指标维度和时间维度的最小单元,通过对最小单元的数据量统计,可获得其上一统计单元的数据情况。因此对海洋环境监测方案的解析按监测站位、监测参数和监测时间3个方面进行分解。对照监测方案,检查接收的数据是否存在区域、站位或频次等有空缺监测的情况。记录缺失的原因:可能由于某些缘故未能进行监测、地方调整了监测方案或地方漏报。仔细核查年度监测任务计划,联系地方监测机构确认。

3站位基础信息数据质量控制

3.1空间位置检验

空间位置检验主要针对调查单位在站位信息汇总过程中可能出现的录入错误。将调查站位经纬度转换为十进制的单位后,通过利用GIS生成站位图的方式检查站位落点所在位置,看其是否落在规定的监测区域,对于断面上的调查站位,还要检查其是否明显偏离断面沿线。同时还需检查“相同的站位编号,经纬度不同”和“不同的站位编号,经纬度相同”等数据空间位置精度的问题。对于该类问题,可通过核查相关的监测数据、核对年度监测任务、联系监测机构确认等方法,予以更正。

3.2站位基础信息一致性的检测

根据站位基础信息一致性检验方法,即监测区域、站位编号、站位经纬度、监测日期等基础信息决定一条数据记录,根据不同的监测任务和监测要素,分析站位基础信息一致性是否符合。针对站位编号和经纬度不一致的情况,从空间位置检验是否合理,并核实监测方案进行解决。针对监测日期相同且站位编号相同等情况,判断两条记录的监测参数值是否完全一致,若完全一致则认为是重复记录;若不完全一致,可认为是平行样记录,并进一步核实。

3.3数据记录重复的处理

海洋环境监测数据的上报过程中存在很多重复的数据记录,产生这种重复记录的主要有如下原因。(1)地方上报数据时,重复上报了监测数据集,如8月份上报了5月份和8月份两份数据;年底将全年的监测数据再次上报。(2)不同监测机构报送的重复数据,如属于上下两级监测机构(省、计划单列市)重复报送。(3)地方监测机构监测人员填写报表时,将某些记录重复填写。(4)地方监测机构监测人员填写报表时,将平行样的数据填写。(5)数据集合并时,将曾经合并过的数据集再次合并。对于重复的记录数据,在建立环境监测数据库中应做剔除处理。

3.4平行样的处理

平行样数据只作为监测数据质量保证的辅助,在实际统计、评价和监测数据时需区别对待。一般来说,只有少数站位上报的数据是平行样。为了数据量统计、环境质量评价等的需要,对于平行样的记录数据,可将监测参数值进行求平均处理。

4监测参数数据质量控制

4.1值域一致性检验

在海洋环境监测中,每个监测参数有其对应的经验值域范围,通过值域检测规则对填报的监测数据按不同监测要素分别对每个监测参数值进行检验,对于超出值域范围的值,需进一步分析该区域其他站位、其他频次、周边站位的参数值情况,并结合监测任务性质以及超出值域比例,从而判断该参数值的可靠性。

4.2逻辑一致性检验

某些监测参数间存在一定的逻辑关系,即监测参数与监测参数间存在某种相关关系,有些关系具有一定的规律性,根据逻辑一致性检验方法,对于不符合逻辑一致性的监测数据记录,应进一步同监测机构进行核实。

4.3数据输出

对文件进行批量检验处理,对于检验结果,给出合理且足够详细的错误提示,并保存质检日志,使得数据便于修改。为了区别一个数据是否进行了质检、是否通过质检,以及了解质检的情况,需要对质检过后数据增加一个质量控制符号,简称质量符。综合参考“国标GB/T12460-2006海洋数据应用记录格式”以及“908海洋化学标准记录格式”等质量符格式。其中,“908海洋化学标准记录格式”中质量符2表示可疑倾向正确,3表示可疑倾向错误,本研究将这两者综合考虑,记为可疑;另外,“908海洋化学标准记录格式”中质量符8表示痕量,由于与“未检出”有一定的重叠,因此本研究只采用“未检出”。表1给出海洋环境监测数据的质量符及说明。一般来说,数值型的监测参数数据,对其质量检验出有问题的只能作为“可疑”处理,不宜随意修改或删除。除非经过专家经验检验,并经监测单位核实,可明确其为错误的,其质量符方可标注为“4”。对于监测站位基础信息,如监测日期、站位编号、经纬度、层号等,检验出有问题的,可根据检验情况,标注其质量符为“4”或“3”等。按步骤完成监测数据处理流程后,可分年度或季度对处理的文件形成数据处理报告,并制作经标准化处理和质量控制后的标准数据集。

5结束语

监测技术论文范文第3篇

(1)通过告警接口适配器来对光传输设备网管中的故障告警信号进行采集,一旦采集到了相关的故障信心,那么设备就会告警,然后启动OTDR进行故障的扫描判断,判断出故障的大致位置,并进行定位,以便于工作人员比较准备的找到故障位置进行维修,但是,网管告警中经常会有一些非光缆中断的因素,所以这就对告警接口适配器提出了一些要求,必须能够支持多种接口和协议,可以比较精确的翻译出报警信息。

(2)跨段监测和跨段故障扫描。通过对无源光器件或在光缆跨接处跳纤,就能够实现监测多段连续的光纤线路的远距离在线或者空闲纤芯的工作,针对不同的监测方式,则必须要根据实际的情况对检测的方法进行重新的设计,以实现跨段监测,在线监测只能测试一段业务信号,不能实现跨段监测,只能实现跨段故障扫描,当使用在线检测模式的时候,由于OTDR故障检测信号和业务信号共用纤芯,跨段设计需要在跨段点上增加两套无源的波分复用设备(FCM),使测试信号可以旁路。上面介绍的所有的测试方法,空闲芯检测方法不影响相关光纤的正常工作,也不会对相关的传输信号造成干扰,系统的稳定性高,且构造比较简单,性价比高,且空闲芯检测支持跨段监测和跨段故障扫描,能够扩大监测的范围,因此,当前这种方法应用得最多。

2光缆通信监测系统的硬件平台

光缆通信检测系统式整个电力通信网络中一个非常重要的子系统,为了确保电力通信系统的正常运行,因此应该有一个个系统能够对大规模的光纤网络资源进行管理和维护,且应该支持多级管理和维护,以保证系统运行的稳定性。

(1)一级监控中心。一级监控中心主要负责大区域的监测,去监测多级多层的光缆网络,并且要有一个与检测规模相对应的监测中心,数据通信网可以将各级的监控中心有效的连接起来,并且将他们各自监测到数据传送到总的监测中心,然后对故障进行分析判断,并生成统计报表。

(2)二级监控中心是一级监控中心下面的一个子系统,它主要负责一定区域内的光纤通信监测系统,对这个区域之内的光缆网络进行自动的监测、进行故障定位、数据管理等,并且接收来自相关监测站点的告警信号和相关的数据,对发生的故障进行有效的统计和处理,并且生成报表。

(3)远方监测单元。远方监测单元主要是实现对相关纤芯的监测,并对监测的数据进行采集,然后根据采集的数据绘制出数据曲线,然后进行初级的分析,根据分析的结果对光缆线路进行远程的控制等工作,通过DCN与上一级别的监控中心数据服务器的通信,支持上级监测中心对本监测站的光缆和RTU设备实施监测和管理功能。主控单元:主控制单元主要指的是远方监测单元的主控制板,或者是负责远方监测单元监测控制和数据通信的一个服务中心,它具有网络接口,以便于更好的进行数据的交换,进行远程测试等工作;光切换单元:主要有两种,分别是机械式光路切管开关和电磁式光路切管开关,机械式光路切管开关稳定性好,且抗干扰,但是它的精度比较低,电磁式光路切管开关精度高、体积小、抗震性好,且不耗电不发热,对于降低整个远方监测单元的发热有帮助。

(4)光缆自动监测系统的最大监测距离计算。实际上,光缆自动检测系统的最大监测距离就是OTRD的极限有效检测距离,因为在传输的过程中可能会有光缆熔接头损耗、传输衰耗等因素,所以它的最大有效传输距离应该考虑这些因素。

(5)波分复用模块。波分复用模块主要是由光合波器和光滤波器等这些光纤被动元件组成的,针对和纤在线测试方式,FCM可以将OTDR故障扫描信号波与业务信号波耦合在一起注入到受测光纤中。通过在远端光缆交叉点上设置FCM,可以实现跨段在线故障扫描。

3结语

监测技术论文范文第4篇

通过计算机技术的融入,形成对数据共享的管理模式。尤其是在建立局域网的情况下,可以通过内部网络系统的方式,将监测到的环境指标与数据,通过文件共享、远程控制等方式,增强对数据共享的使用能力。不同部门可以形成对数据的共享模式,增强整个数据交流与处理的能力,并实现计算机操作模式下的无纸化办公模式。

通过计算机信息技术的融入,环境保护部门对于监测到的环境相关数据,环保部门通过网站、新闻媒介以及其他的方式,将环境信息进行有效的。从而有利于大众对环境监测信息的摄取,对于环境质量数据信息,在计算机技术的处理下,形成整理、分析、定期向环保部门传输的方式,能准确地传达有关的环境信息。

2计算机技术在环境监测信息管理应用中存在的问题

2.1监测数据处理能力相对较低

在对环境监测中收集到的信息内容,不管是在有计算机运用的部门,还是部门完全实现计算机管理,在数据的类型、格式、结构、存储方式还没有形成规范化的运用,虽然在局域网的操作模式中,还是不能对整个监测数据形成有力的运用。譬如,在水质检测中,对于某一个监测断面的监测数据通过文本形式存放,在进行质量控制的过程中,要对断面污染状况进行分析,就不能从中获取准确的数据,要重新录入,这样就增加了整个工作量,不能充分发挥出数据的有效性。

2.2计算机综合管理还存在弊端

在计算机技术的管理中,有些计算机网络还存在一定的安全隐患,由于在操作过程中,对于硬盘数据的访问相对频繁,在使用文件设置的过程中,就不能对整个硬盘数据形成共享的模式。这样可以在没有权限的情况下,对数据进行复制、修改等,造成网络管理的安全不强,容易造成网络病毒甚至是黑客的侵入,从而导致监测数据的丧失或者相关数据的泄密,产生更大的不良影响。

3计算机技术在环境监测信息管理中的应用

3.1整体技术的控制因素

由于生态环境质量与人类生活息息相关,开展区域生态环境质量评价要求快速、准确、合理。同时由于生态环境质量与植被、大气、水、噪声等多种因素密切相关,需要一种快速有效的技术计算出生物丰度指数、NDVI指数、植被覆盖度指数、水网密度指数、环境质量指数、污染负荷指数和生态环境质量指数来描述生态环境质量状况,并制定相关的对策。所以,根据《生态环境质量评价规范》,采用遥感和GIS技术,开发一个生态环境质量评价业务化运行系统势在必然。然而,经过调研,国内外虽然已经大规模的应用GIS和遥感技术进行生态环境质量评价,但成熟的、业务化运行的生态环境质量评价系统却寥寥无几。即使有也过分偏重于GIS,功能相对比较单一,大部分仅限于生态环境信息的查询与统计以及一些基本的GIS功能,不具备如图像裁剪、镶嵌、图像变换、几何纠正、分类等遥感数据加工和信息提取功能,而数据加工和信息提取在生态环境质量评价业务中必不可少,它为生态环境质量评价业务提供了有效的数据信息保障。

3.2数据一体化管理与共享

3.2.1数据互操作。遥感图像分析功能可以被用来作为一个核心组件和GIS的集成,我们必须解决数据在两个平台之间的互操作性问题。要注意两个方面的问题:首先,遥感数据和GIS数据存储都支持的标准格式。由于需要借助标准文件格式,处理过程变得复杂;其次,两种系统都支持对方的文件格式。这种方式不需要对已有文件进行格式转换,处理起来更方便。

3.2.2栅矢数据集中和分布式管理。遥感数据通常以栅格数据存放,而GIS数据通常为矢量格式,在一体化存储方案中,同时支持两种文件格式,并支持分布式管理。

3.2.3基于服务的企业级共享。遥感影像获取成本相对较高,且需要占用较大的存储空间,如果为每一用户都单独配备相应的影像将需要花费较大的代价。而遥感影像的使用特点是多个用户经常在同一幅影像上进行相应操作,也就是以共享方式使用影像。因此基于WebServices的共享方式能集中利用服务器的软、硬件资源,方便终端用户的使用。

监测技术论文范文第5篇

关键词:环境监测 现状 发展

Abstract: this paper elaborates the environmental monitoring in the role of the environmental protection work in China is analyzed, and the environmental monitoring work situation and the development tendency, points out the environmental monitoring ability made significant progress, and at the same time, but also put forward area differences, the overall level is not high phenomenon.

Keywords: environmental monitoring the development present situation

中图分类号:X83文献标识码:A文章编号:

1、前言

当今的环境污染问题得到了全球的重视,以严重威胁着人们的身体健康,阻碍着社会的发展,我国也采取了各种措施来保护环境,从而也促进了环境监测工作的迅速发展。实现环境监测科学化成为当前和今后主要的发展方向。

2、环境监测在环境保护中的作用

环境监测是环境保护工作中的一个重要组成部分,是环境管理工作的基础,为环境监察提供准确的技术依据,为环境管理提供可靠的技术支持,为社会经济发展提供优质的技术保障,离开环境监测就无从谈起环境保护。环境监测早已经是一项政府行为,充分利用掌握监测信息才能更好地为社会经济发展服务。

3、环境监测的现状

我国的环境监测网络已经成为了国家、省、市、县4级环境监测体系。从70年代开始到现在已经取得了长足的发展,共有专业、行业监测站4800多个,环保监测系统监测站就有2200个,行业监测站2600个。国家控制的空气质量监测站、酸雨监测网站、水质监测网站均100多个,此外还建立有噪声监测网、辐射监测网、区域监测网等,为实现科学监测这个目标奠定了重要的基础。30多年来,环境监测经历了“认识不断深化,队伍不断壮大,能力不断培增强,技术不断提高,工作不断深入“的发展过程,我国的环境监测能力已经得到了明显的提升。总体体现在基础能力建设得到进一步加强,监测能力得到进一步提高,环境监测理论体系逐步得到完善,环境监测管理体系已经成熟形成,并形成了一整套完整的,具有中国特色的环境监测技术规范,环境监测分析方法,环境质量标准体系和环境质量报告制度。制定了种类监测方法标准400多项,很多项污染因子已经有了控制标准和监测方法标准。目前,自动连续监测技术和红外遥感监测技术得到了进一步的应用,应急监测能力和水平有了很大的加强和提高。监测信息日报、月报、季报和年报等定期,重点流域自动监测水质周报和污染源实时监控等工作产生强烈的反响,极大地提高了公众参与环境保护的意识。而开展的环境容量、污染源普查、污染源总量控制及空气污染预测预报技术等课题研究取得的成果,极大地推动了现在环境监测技术的发展。

4、环境监测存在的问题

首先是环境监测开展的广度和深度不够,具体表现在生态环境监测没有成熟,土壤、生物、放射性、电磁辐射、热污染、光污染等领域的监测没有得到卓有实效的开展。目前,环境监测的对象以水、气、声、渣为主,监测手段也以手工操作为体现,监测频次低,时效性差,监测项目较少,且以综合指标为主。水质监测项目主要是常规监测项目,大气监测项目并没有开展有机物污染物及国际关注的CO、O3、CH4等项目。其次是监测水平存在很大的地区差,发展不平衡。发达地区部分环境监测站正朝着科学监测的方向迈进,其中有的监测站已经拥有具有国际水平的实验室,而在不发达地区的监测站甚至不能有效的开展工作,已经严重制约了整体监测水平的发展和提高。

5结论和建议

环境监测的作用是如何加速及时、全面、准确地提供环境监测信息。为了更好地发挥环境监测的作用,针对目前环境监测地区差异大,整体水平不高的现象,今后应采取各种措施积极应对,努力促进环境监测运行机制和管理体制改革,加快推动环境监测科学化进程,掌握未来环境监测发展的趋势,主要应做好以下几个方面。

一是监测技术科学化。努力开发监测新技术、新产品、新方法。开展气溶胶、光化学烟雾及有害废物的焚化、填埋等处理处置安全性的监测技术;研究建立不同类型生态环境监测的指标体系和监测评价方法;积极参与全球性环境热点问题等环境保护方面的监测理论研究。

二是加快数据整理、分析和应用。

三是建立具有中国特色的行政区域,行业部门和环境区域管理相结合的环境监测管理体系。

四是更新观念,发展高科技的自动化、网络化、智能化、及时化的监测体系,提升整体环境监测队伍的素质,大力推动环境监测向着良性健康的方向发展。

参考文献

1、王文勇等2003年环境监测的作用与发展现状

2、王志军 最新环境监督管理与检测技术标准规范实务全书,中国致公出版社,3、厉军,论环境监测技术的发展。环境监测,2000,65-66