首页 > 文章中心 > 电器专业技术总结

电器专业技术总结

电器专业技术总结

电器专业技术总结范文第1篇

本论文解决的技术问题是:提供一种针对400V供电系统中变、配、输、用各环节设备性能状态及供电质量的智能监测系统,主要解决400V供电系统短路故障、变压器环网故障的检测,总断路器自动合闸以及负载断路器分合闸状态的监测问题。运用电压测量技术、电流测量技术、开关量测量技术、PID计算方法、计算机技术、网络传输技术、数据端口协议技术等,整合集成各功能部件,以实现如下功能:变压器出线侧三相电压在线监测;输出回路断路器跳闸在线监测;输出回路供电电缆短路检测;末端用电器状态检测;总闸自动合闸送电;故障指示、报讯;利用以太网实现远程操控,为精细化管理和物联网提供电力系统的基础数据等。该智能监测系统结构简单、操作方便、监测结果可靠、降低故障带来的安全隐患,提高工作效率。

【关键词】短路故障检测 400V供电系统 自动合闸 环网故障

1 引言

近年来,随着规范化、精细化管理的要求以及物联网技术的发展,对自动化、智能化的要求越来越高,结合目前箱式变电站的使用情况。我站组织技术力量,对现有供电系统进行技术改造,研制一套400V供电系统智能监测系统,提供400V供电系统的各项基础数据,作为管理、维护工作中的重要依据;同时降低安全隐患,提高工作效率,降低工作强度,并实现对400V供电系统中变压器、供电电缆以及末端用电器等设备工作状态的远程实时监测控制功能。

2 谐波检测系统硬件平台实现

2.1 系统硬件结构

包括用于总体控制的中枢控制器模块,用于负责以太网通讯的以太网模块,用于检测短路故障的短路检测器及其末端模块,用于检测环网故障以及提示停电、来电的电压检测变送模块,用于负载端断路器跳闸检测的分和状态检测模块,用于控制总断路器合闸的总的自动合闸模块,用于本地监控的人机交互模块,用于远程实时监控的上位机,用于停电时给装置供电的UPS电源模块。结构如图1所示。

2.2 中枢控制器模块

中枢控制器模块由控制器单元连接电源单元、开关量单元。所述控制器单元由TMS320F2812组成,所述电源单元由电源变换模块与稳压芯片组成,所述开关量单元由达林顿管、分压电阻以及插针组成。

2.3 以太网模块

以太网模块由以太网控制器与以太网接口单元组成,所述以太网控制器选用ENC28J60,以太网接口使用RJ45。

2.4 短路检测器及其末端模块

由短路z测器连接末端检测器组成,二者通过电流信号通讯。所述短路检测器由控制器单元连接电源单元、信号采集单元与信号发送单元。所述控制器单元TMS320F28335组成,所述电源单元由电压变换模块与稳压芯片组成,所述信号采集单元由电压互感器、电流互感器、运算放大器构成。所述信号发送单元由交流变压器与水泥电阻组组成,所述末端检测器由1:500电流互感器与1:10电流互感器组成。

2.5 自动合闸模块

由中间继电器构成,当无故障时,中枢控制器发出接通指令,中间继电器线圈通电,常开开关闭合,使总断路器开关通电三秒,总断路器合闸。

2.6 分合状态检测模块

中间继电器组成,中间继电器线圈接负载断路器A、C两相,当断路器合闸时,常开闭合使中枢控制器开关量单元插针接通,从而完成负载端断路器分和状态的检测。

2.7 电压检测变送模块

由信号采集单元连接显示单元。所述信号采集单元依次由电压互感器连接运算放大器组成,所述显示单元由四个八位共阳极数码管组成。

3 结语

与现有技术相比,本论文专门针对400V供电系统的短路故障、环网故障、负载端断路器分合状态以及自动合闸而设计的。通过本装置能够准确地知道供电系统的状态,操作和使用情况,结构简单,检测结果可靠,并且具有更强的针对性、更加实用、稳定的优势,降低了故障带来的安全事故,控制器模块采用DSP芯片,具有强大的数字信号处理能力,能够保证本装置快速、精确对电流巨变进行检测,从而快速判断电缆是否处于短路状态。不仅能确定电缆是否有短路故障,更能够确定出现故障的具体设备。并且能够通过中枢控制器将数据和结果上传至上位机服务器,并进行web,配合人机交互模块,在远程和本地都能对供电系统进行监控。从而实现对整个400V低压配电系统网络化,智能化的实时监控。

专利申请: 北京路浩知识产权有限公司 案号:KHP161210918.2Q

注明:

《400V供电装置智能监测系统研制》论文成果已申报国家专利申请,国家知识产权局已受理,于2016年6月27日发出专利申请受理通知书,相关信息如下: 申请号或专利号:201620639072.5 发文序号:2016062700551610 申请人或专利权人:贵州中烟工业有限责任公司 发明创造名称:针对400V供电系统的监测装置

作者简介

王明江(1967-),男,贵州省安龙县人。大学专科学历。现为贵州中烟工业有限责任公司工程师。研究方向为生产设备技术改进和管理工作。

李淮(1967-),男,贵州省贞丰县人。大学专科学历。现为贵州中烟工业有限责任公司助理工程师。研究方向为生产设备技术改进和管理工作。

电器专业技术总结范文第2篇

关键词:电子信息工程;嵌入式;教学改革

分类号:G420 文献标识码:B

文章编号:1672-5913(2007)12-0043-03

1引言

嵌入式系统是指以嵌入式处理器和嵌入式操作系统为核心组成的专用计算机系统,通常具有高性能、低功耗、可移动、软硬件可裁减等特征。电子信息工程专业是一个电子和信息工程方面的较宽口径专业,专业主干学科为电子科学与技术、信息与通信工程和计算机科学与技术。该专业涉及的各学科一直保持快速发展的势头,并在一定程度上出现了相互融合的趋势,最有代表性的是通信与网络技术、嵌入式技术、信号处理技术、微电子技术的快速发展和相互渗透,以嵌入式系统作为上述技术的载体。从计算机科学与技术的角度看,嵌入式技术是后PC时代计算机技术发展的一个重要方向,嵌入式系统作为重要的计算机软硬件平台,将应用到越来越广泛的领域;从信息与通信工程的角度看,以嵌入式系统平台来实现信号处理、网络通信、移动计算等是一个非常有前途的技术应用方向;从电子科学与技术的角度看,嵌入式系统综合运用了电子技术,还集成了软件技术,并向可编程片上系统(SoPC)和片上系统(SoC)方向发展。总之,将嵌入式系统作为电子信息技术的综合载体是信息技术发展的趋势之一,因此在电子信息工程专业进行嵌入式教学改革是十分必要的。

2专业培养计划修订

按照教育部本科专业目录和专业介绍,电子信息工程专业学生主要学习信号的获取与处理、电子设备与信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的基本能力[1]。由于电子信息工程专业具有宽口径的特征,各高校结合自身的办学条件和办学经验,在基本要求是相同的前提下,形成了各自的专业特色,如有的侧重现代电子技术,有的侧重通信技术,也有侧重信号处理等。笔者所在学院电子信息工程专业定位如下:以电子技术基本理论和基本技能为基础,以信号和信息处理理论为指导,以计算机硬件和软件系统为平台,以通信、网络及多媒体信号处理为应用领域,既强调基本理论和基本知识的学习,又注重锻炼实践和创新能力,同时要了解技术和应用的新动向。具体设计专业培养计划过程中,根据培养目标及特色定位,确定本专业的知识架构,并以此为线索设计整个课程体系,使各门课程之间相互衔接,具有系统性和连贯性,在强调基础理论的同时,要求课程内容不断与技术发展和社会应用需求相适应。

嵌入式技术与电子信息工程专业主干学科密切相关,国内不少高校纷纷在本专业开设嵌入式相关课程,也有人提出了一些具体想法[2]。按照上述电子信息工程专业特色定位,其专业培养计划只需做较少的修改,即可满足嵌入式教学需要,主要是适当加强软件课程教学,并增加以嵌入式系统为载体的专业综合课程。具体方案是,将开设的“计算机软件基础”课程分解为“数据结构与算法”和“操作系统”两门专业基础课,将“计算机软件基础”课程中涉及到的数据库知识通过增设选修课程“数据库原理与应用”供部分对数据库感兴趣的同学选修;然后在第7学期增设“嵌入式信息系统”课程及课程设计,主要目标是综合运用嵌入式系统、网络通信、信号处理知识,软硬件一体化,理论与算法相结合。经修改后本专业主要课程可分为以下几类:

(1) 公共基础课,包括两课、数学、英语、体育等;

(2) 电子技术基础课程,包括电路分析、模拟电子技术、数字电路与逻辑设计;

(3) 通信与网络技术课程,包括电磁场与电磁波、高频电子线路、通信原理、计算机通信网络;

(4) 信号与信息处理课程,包括信号与系统、信息论与编码、数字信号处理、数字图像处理;

(5) 计算机硬件技术课程,包括微机原理与接口技术、单片机原理与应用;

(6) 计算机软件技术课程,包括C语言程序设计、数据结构与算法、操作系统;

(7) 专业综合课程,包括信息系统集成、嵌入式信息系统。

3实验室和课程建设

嵌入式技术适用于多个本科专业教学,如计算机科学与技术、电子科学与技术、通信工程、电子信息工程、自动化等电气信息类专业。由于专业培养目标不同,相应的实验室建设思路也不一样,例如对自动化专业而言,就应考虑以嵌入式处理器加上实时操作系统(RTOS)为重点来建设实验室。对于电子信息工程专业来说,首先依据专业培养计划要求,确定实验室的技术方向和远期发展目标,进而确定具体建设方案。实际工作中结合自身办学条件和专业特色,建设了“嵌入式网络系统实验室”,其技术定位是将嵌入式技术和计算机网络技术相结合,以信号与信息处理理论为支撑,以网络、通信和多媒体信号处理为应用领域,通过实践培养综合运用电子信息技术的人才。

电器专业技术总结范文第3篇

关键词: 生物医学工程专业 医学信号检测与仪器 产学研人才培养模式 课程群

在美国及欧洲等经济发达国家,早在上世纪50年代就指出生物医学工程的重要性,目前海外知名高校均设有生物医学工程专业,本专业世界排名前三位的高校分别是美国约翰霍普金斯大学、哈佛大学和宾夕法尼亚大学。生物医学工程专业招生分数在这几所学校中也往往远高于其他专业,其毕业生也受到其他各大高校研究室、大型生物医学研发企业和各大医院青睐,毕业后发展前景良好。

目前,全国设置生物医学工程专业的高校达140所左右,在天津市开设生物医学工程专业的高校仅有天津大学、天津医科大学、河北工业大学和天津工业大学,其他天津市市属高校均未开设该专业。其中天津大学以光学仪器为专业特色,天津医科大学以医学背景为主解决一些临床存在的工程问题,河北工业大学以电磁计算为专业特色。

天津市把医疗器械产业作为调整经济结构,促进经济转型升级过程中重点培育的新兴产业,加强医药器械研发的产、学、研联合,支持医疗器械产业走“专、精、特、新”道路,着力培育医疗器械特色产业。天津市人才的需求情况:2013年,天津市生物医药产业工业总产值突破1000亿元。生物医药企业2000余家。2012年,主营业务收入超过百亿元企业3家,50~100亿元企业3家,10~50亿元企业6家,1~10亿元企业58家。天津市医疗器械生产企业284家(2013年底统计),其中规模以上企业共36家,医疗器械注册企业2500余个。技术服务企业:行业产值近亿元。因此天津市急需这方面的高端专业人才。

生物医学工程专业是21世纪最具发展前景的专业之一,为适应我国和天津市“十三五”经济建设和科技发展的需要,推动“天津市医疗仪器产业”的发展,天津工业大学设置了天津市首个专门以培养医学信号检测及仪器方向高端专业人才为主的“生物医学工程”本科专业。本专业在与学校办学定位和专业结构布局相统一的基础上,以培养复合型人才,增强学生工程技术和工程实践能力为目标,逐步形成产学研相结合的人才培养模式。为了适应这种发展趋势,天津工业大学生物医学工程专业2012年本成为“天津市生物医学工程学会”理事单位;2013年成为“天津滨海新区转换医学产业技术战略联盟”理事单位;2014年与中国医学科学院生物医学工程研究所共同组建“天津市医学电子诊疗技术工程中心”;2015年成为“中国生物医学工程学会健康工程分会”成员,这些发展都是为了加快发展产学研相结合的人才培养模式。

课程建设总体思路是按照目前的专业定位进行课程的建设,形成以《生理学》、《生物医学电子学》、《传感器与医学工程》、《医学电子仪器设计》、《嵌入式系统》、《医学成像新技术》、《医学仪器概论与标准》等为核心课程,构建医学信号检测及仪器为方向的课程群,带动整个生物医学工程课程体系的建设和发展。

本专业开设的主要理论课程有:高级语言程序设计(C)、大学物理、电路理论、模拟电子技术、数字电子技术、信号与系统、高频电子、生物医学电子学、人体解剖、生理学、工程光学、传感器与医学工程、医学电子仪器设计、医学成像新技术、医学仪器概论与标准、嵌入式系统、数字信号处理及DSP技术、EDA原理及应用、电磁场与电磁波、通信原理、虚拟仪器技术、光电检测技术与系统、电磁兼容、生物医学光子学、医学图像处理、生命科学导论等。

主要实践课程有:电路理论实验、模拟电子技术实验、数字电子技术实验、生物医学电子学实验、生理学实验、传感器与医学工程实验、医学电子仪器设计实验、医学成像新技术实验、电工实践、电子实践、电子系统设计与工程实践(1,2)、嵌入式系统设计专题实践、生物医学工程实践1(偏重医学信号检测原理与方法)、生物医学工程实践2(偏重医学电子仪器的开发与实现)、毕业实践、毕业设计。

本专业毕业生可以在培养具有生命科学、医学信号检测理论与方法、医学电子仪器设计等方面知识和能力,德智体全面发展,能在生命科学研究领域、医疗仪器及器械领域、健康产品领域、医疗卫生事业单位等从事研究、设计、市场、销售、教学、管理和服务等方面工作,具有医学信号检测及仪器方向的创新型、复合型、应用型人才,适应国家和天津市“十三五”的医疗仪器产业的发展需求。本专业学制四年,学生毕业后可获得工学学士学位。

电器专业技术总结范文第4篇

关键词:传感器;高职教学;实验实训

中图分类号:G712 文献标识码:B 文章编号:1002-7661(2013)24-025-01

传感器技术及应用是我院电子信息工程、应用电子技术、机电等专业的一门重要的专业基础课,是一门综合性很强的学科,该课程涉及了电子、材料、机械、控制、光学、磁学等知识,涉及知识面广。

一、传感器的工作原理及重要性

传感器相当于人的感官,称为“电五官”,外界信息由它提取,并转换为系统易于处理的电信号,微机对电信号进行处理,发出控制信号给执行器,执行器对外界对象进行控制(其工作原理见图一所示)。现代社会中,传感器作为抓取自然界信息的主要手段和途径,被广泛地应用于家用电器、汽车、医疗、工业、航天、电动工具以及高端电子消费产品等应用领域,成为了信息技术的三大支柱之一。

(图一 传感器的工作原理图)

二、课程特点、开设现状及改进措施

传感器技术作为现代信息技术三大支柱之一,已经成为高职院校电子信息工程、机电、电气等专业的专业课程。它不仅与高等数学、电路、电子等基础课程密切相关,而且还设计到电学、材料、力学等知识。该课程涉及知识面广、内容分散、缺乏系统性和连续性、实践性强。学好本课程,不仅要求学生具有扎实的基础理论知识,较宽的知识面,而且对教师知识的全面性也提出了较高的要求。在教学上存在着一些难点。

1、学时少与内容多相冲突。考虑到我院的实际情况,应用电子技术专业开设58学时。利用这么少的学时让学生掌握整个课程体系的内容,必须对课程的教学进行合理优化。

2、课本内容陈旧与更新速度快的冲突。随着科技飞速发展,各种新型的传感器及其相关技术也发展的非常迅猛。而教材的更新相对来说比较缓慢,所选教材不能跟上传感器最新的发展趋势,一些新型传感器可能没有涉及到。

在教学过程中,怎么才能更好的让学生理解、掌握相关知识,且举一反三地用到实践当中去,是需要高职教师思考的问题。在近几年的教学中,本人根据高职学生实际情况,归结了一套适合现代高职学生的教学形式(如下图所示)。

现代教学形式多样化,应用了理实一体化教室,摒弃了传统的单一化,在实验实训方面不仅有少量验证性实验,还有实训,激发学生的创新意识、培养学生的动手能力,这样就大大提高了学生的学习兴趣,并且在课后:有老师推荐的虚拟实验、网络视频教学等。虽然现代教学形式多样,但传统理论授课也是必不可少的,需要我们教师在教学过程中增加学生的学习兴趣。传统的与现代的教学形式应用比较,归结如下三点:

(1)传统的教学形式是教学活动最基本的教学手段;

(2)运用现代化的教学形式是对学生课余学习的补充;

(3)为两级分化的学生提供了更多的学习舞台,为他们成才提供了坚实的基础。

三、课程教学思路方法

基于课程的特点及教学上的难点,本人在这几年的教学实践中总结出一套适合本专业学生的教学模式,该模式主要是将各类传感器的理论知识和实践进行了整合,实现理实一体化教学,主要有以下几个方面。

1、课程结构采用模块化结构。由于各种传感器的工作原理不同,我们根据专业特点对课程结构进行了调整,采用模块化结构,一种传感器就是一个模块。然后根据专业特点及学校实验实训设备选择其中几个适合本专业的模块进行讲解,这样教学实施比较紧凑也比较灵活,同时也弥补了课时量的不足。对于课本上没有涉及到的新型传感器,以课后作业的形式分组布置下去,主要是了解其应用情况,教师除了要检查电子版的作用,还要在课下抽查询问学生的完成情况。这样既锻炼了学生查找、总结知识的能力,又了解了其他传感器的应用情况。

2、课程实践分为验证性实验和实训制作。通过近几年的教学实践,根据高职院校人才培养方案及高职学生特点,自编《传感器技术及应用实验实训指导书》一书,分两大部分:验证性实验和实训制作。通过近几年的摸索实践教学,教学质量有所提高,同时提高了学生学习兴趣和积极性。

四、课程考核

考试考核不再以试卷确定成绩,而以实验实训中对原理的掌握、动手能力及传感器的应用扩展的表现为主要依据进行评分。目前,传感器已渗入到各行各业。传感器技术具有较强的生命力和良好的发展前途,作为一名高职教师,前面的道路任重道远。本文结合自己教学的切身体会,对传感器的理论教学及实验实训方式进行了探讨,提出了提高教学质量、实践教学效果的一些建议,希望通过这些改革,能够进一步提高学生学习的积极性和动手能力,为将来的就业奠定良好的基础。

参考文献:

电器专业技术总结范文第5篇

特色专业是办学思想、科学研究、培养模式等方面具有较高声誉、个性风貌的专业,是教育目标、师资队伍、课程体系、教学条件和培养质量等方面具有较高的办学水平,已产生较好的办学效益和社会影响,是“人无我有,人有我优,人优我精,人精我新”的个性化专业。2007年至2010年,教育部、财政部先后分批在全国本科高校立项建设了3376个特色专业建设点(涉及特色专业310个),清华大学、浙江大学、南方医科大学、上海交通大学、首都医科大学、东南大学、清华大学、东北大学(自筹)、湖北科技学院、西安交通大学、天津大学等10所高校的生物医学工程专业是其中的特色专业建设点之一[1]。

(一)研究对象的选择

我国现有127余所高校从事生物医学工程专业本、专科人才培养工作,其中96余所为综合性或单科性理工类院校,31所单科性医科院校。所有院校专业课程体系结构中都开设了人文社科课程、医学类基础课程、理工类基础课程、工程类核心课程及其与其相关选修课程,不同院校在学分、学时与实施上有着不同程度的侧重。一般来说,多数综合性或理工类高校偏向于电子类、计算机类等理工方向,多数医科类高校侧重于生物材料与生物力学、影像工程、医学物理、医学仪器等领域。本研究以南方医科大学与湖北科技学院为例,对生物医学工程专业课程体系进行比较分析。

(二)研究资料的来源

湖北科技学院的研究资料主要来源于原咸宁学院教务处编印的本科人才培养方案(2010年版)和学院主页及其它查询调研;南方医科大学资料来源于该校提供生物医学工程专业培养方案的电子版及其该校专业建设点主页。

(三)主要研究方法

基本研究方法参照作者前期生物医学工程专业课程体系研究的思路[2],收集研究文献材料采用系统研究法、比较法、统计法对院校学科专业、课程设置多维要素质点,进行多方面的比较分析,找出特点和存在的问题,以提出课程体系改革与优化措施和建议。

二、南方医科大学生物医学工程专业本科课程体系

(一)生物医学工程专业本科背景简况

南方医科大学(以下简称南医大)生物医学工程专业本科及其相关专业有医学影像工程、医学信息工程、医学仪器检测、医学物理、电子信息工程和计算机科学与技术等专业办学方向,还有“卓越工程师培养计划”。2007年获教育部高校第一类特色专业建设点,并建设有部级精品课程1门、省级精品课程和研究生示范课程多门,出版部级教材多部,多次获得广东省教学成果奖。

(二)课程体系的核心课程群

主干学科是生物医学工程;主要课程包括高等数学、大学物理、电路分析、模拟电子技术、数字电子技术、C语言与程序设计、人体解剖学、生理学、信号与系统、医学传感器、医用X线机原理、CT成像原理与技术、MR原理与技术、医疗器械质量体系与法规、医学电子仪器原理等。

(三)本科毕业生的就业方向

课程体系中的主要课程决定毕业生未来的就业岗位和就业方向,毕业生的就业方向主要是在医疗仪器的质量技术监督部门、医疗仪器检测机构、医疗仪器企业的研发机构、三甲医院的设备中心、生物医学工程及相关学科的科研单位从事仪器检测、生产研发和质量控制等工作,也可以攻读本学科或相关学科的硕士学位。

(四)生物医学院工程专业的课程结构

课程体系结构分为政治理论与人文素质课程、公共基础课、学科基础课、专业课四段式课程构架模式。课程总学分/总学时为14分/2644学时,理论课与实验实践学时比例为2183:461/1:0.21。必修课与专选课学分比例是104:45/1:0.43,学时比例是1820:824/1:0.45。

(五)集中实践训练环节

南医大集中实践训练折合成32周,1280学时,其中模电课程设计1周,40学时;模电课程设计1周,40学时;医疗仪器综合课程设计2周,80学时。毕业实习4学分,160学时;生产实习4周,160学时;毕业设计(论文)14周,560学时;军训与劳动2周,80学时;创新课程4学分,160学时。

三、湖北科技学院生物医学工程专业本科课程体系

(一)生物医学工程专业本科背景简况

湖北科技学院(以下简称湖科院)生物医学工程专业本科及其相关专业方向有医学仪器、医学影像工程、医学物理、医学信息工程、听力学、眼视光学、医学信息工程(注:医学信息工程、眼视光学、听力学方向没有正式纳入人才培养计划实施)等6个培养方向。2007年被评为省级品牌专业,2009年获教育部财政部高校第一类特色专业建设点。近年来出版医用传感器、医疗器械营销实务等10余部部级规划教材,多次获得湖北省部级、教育厅教学成果奖。

(二)课程体系的核心课群

主干学科生物医学工程的主要课程包括高等数学、普通物理学、模拟电子技术、数字电子技术、微机原理与接口技术、数字信号处理、医学图像处理、基础医学概论、医用传感器、医用检验仪器、医学影像仪器、微机在医学仪器中的应用等。

(三)本科毕业生的就业方向

本科毕业生的就业方向主要是二级以上医院、其他医疗卫生保健机构、医疗器械公司从事医疗仪器、设备使用维护与维修,仪器设备管理,医疗器械营销策划与推广,也可以攻读本学科或相关学科的硕士学位。

(四)生物医学院工程专业的课程结构

课程体系分为通识教育课(通识必修课、通识选修课)、学科基础必修课、专业课(专业必修课、专业选修课)三段式五层次课程构架模式。课程中总学分/总学时为158学分/2810学时,理论课与实验实践学时比例为2200:475/1:0.22;必修课与专选课学分比例是117:42,学时比例是2180:630/1:0.34。见表2。

(五)集中实践训练环节

湖科院集中实践训练共47周,其中专业实习26周,毕业设计(论文)10周,就业实践8周,军训3周;而劳动教育,医学仪器等课程、模电、数电课程设计教研室分散实施,没有载入训练周,这也是与南医大的不同之处。

四、生物医学工程专业本科课程体系的比较分析

(一)专业课程体系架构的比较分析

南医大生物医学工程专业本科课程结构由政治理论与人文素质课程、公共基础课程、学科基础课程、专业课程四段式课程构成。公共基础课程只开设必修课,其他每段课程均开设必修课、选修课,段内必修课与选修课交织在一起。而湖科院本科专业课程结构是由通识教育课程、学科基础课程和专业课程三段式、五层次课程结构组成。学科基础课程只开设必修课,通识教育课程、专业课程均设有必修课、选修课两层次。南医大没有开设医用化学、电子工艺实习,是为数不多的院校,未开设医用化学课程显示远离生物与高分子材料类。将高等数学、大学物理学列入公共基础课程,可能是因为该校属于单科性医科院校,将其列入所有专业的公共课之故。南医大公共基础课程没有选修课,湖科院是学科基础课程未开设选修课。这意味着在公共基础课、学科基础课段建立大一统具有相对稳定性的课程教育平台,有利于实现大基础、宽口径、后分流的人才培养模式选择与创新,适合于发展专业培养方向,南医大更能体现出平台宽口径。

(二)课程体系学分、学时分配的比较分析

1.专业课程总学分、总学时比较分析。两院校生物医学工程专业课程总学分/总学时,理论课与实验学时比例分别见表1、表2,通过比较可以看出,湖科院学分、学时、理论课与实验学时比例分别高出南医大分/166学时,比例高出1:1:0.07,但差异相差无几。两校分别与上海交通大学生物医学工程专业课程学时比较,总学时1831学时,实验课学时为243,占总学时13.3%[3]。两校均高于上海交大,这数据显示出211工程大学人才培养既重理论教学,又重实践研发、自主学习之缘故。2.必修课与专选课学时比较分析。选修课是课程结构中的重要组成部分,是对必修课的优化和适时、适宜性补充和调节,弥补人才培养方案中课程内容的不足,调和、衔接课程内容的顺序性,适应市场与社会发展的需要。南医大必修课与选修课学分、学时比例分别是1:0.43、1:0.45,而湖科院是1:0.34、1:0.34。数据显示,南医大选修课学分、学时比例高于湖科院而偏高的现象,且选修课偏重于学科基础课程和专业课,容易造成学科、课程与教材建设方向性不明,建设稳定性差。由此建议,开设选修课学时数应以不超过必修课的10%为宜,有些课程还可以专题讲座的形式进行[4]。3.学科基础课程学分、学时分配比较分析。学科基础课程学分、学时分配数据从表1、表2看出,学科基础课开设门数、学分、学时及理论与实践学时的比例,与全程教学课程总学分、学时基本平行,基本上分析内容要素都是湖科院高于南医大,只有一项有意义的数据是理论与实践学时的比例差异性大,湖科院高出南医大的1:0.13,显示出湖科院在学科基础课程教学中重实践教学,着重培养学生的基本技能。这种差异性说明,从总体上看湖科院更重视实践教学,反映出其是综合性院校,涵盖医学、理学、工学等十大学科门类,组建17个教学院部,给实践教学创建了良好条件和宽厚的共享资源。4.医学课程学时比较分析,课程体系中医学课程开设情况与比较。南医大开设医学课程4门,总学时是212学时,分别是人体解剖学、生理学、病理学和临床医学概论。湖科院开设医学课程也是4门,总学时是297学时,分别是基础医学概论(解剖、生理、生化)和临床医学概论。从学时比较看,湖科院医学课程学时高出南医大85学时,高出率约占9%。值得讨论的问题是南医大是单科院校,医学基础条件好,该偏医的却偏工;而湖科院是综合院校,有较强的理工教学条件却偏医。两校与赵娜等人报道的“医学院校开设的医学基础课程比例高于理工院校的论点不相符合[5]。从邓军民等人报道资料看[6],首都医科大生物医学工程学院开设的医学课程有6门共472学时,远高于同类的南医大260学时,也高于综合类的湖科院175学时。

(三)专业课程与就业方向比较分析

从课程与就业的关系看,从整体上讲,主要课程设置要面向市场、面向社会,在很大程度就决定、支撑着就业方向、就业岗位。两院校对就业方向总体的表述是在医疗仪器的质量技术监督部门、医疗仪器检测与研发机构、医疗卫生机构、生物医学工程及相关学科的科研单位、医疗器械公司等单位从事专业技术工作。而南医大就业方向偏重仪器设备的检测、质控与研发,而湖科院则偏重于仪器、设备的使用与维护,医疗器械公司从事仪器设备营销策划。

(四)集中实践教学环节比较分析

实践教学环节是集中培养学生动手能力的主要措施。南医大集中实践训练32周,与湖科院集中实践训练47周相比,从总体上少15周,由于集中实践教学环节各校各异,比较的实际意义不大。但要说明的要素是,湖科院的医学仪器类、模电、数电等课程设计在操作层面上由教研室分散安排,生产实习实际上是名义,也未开设创新课程。而两校的共性不足是实践教学环节都没有开设工程实践(金工实习)训练课;南医大未开设电子工艺实习课,开设电子工艺实习的湖科院也没有做好集中训练。实质上两校集中实践教学环节均不符合高校工科类人才培养的基本要求和标准。

五、创新专业人才培养方案,优化课程体系目标的建议

通过专业课程体系比较分析,参照生物医学工程专业人才培养的实际需要,引导建立国家专业本科教育标准,特色专业建设质量工程评估,配合专业认证制度与任务为载体的课程体系,提出以下几点建议。

(一)坚持办学理念创新,探究专业培养前沿,明确专业培养目标

理念创新与目标要求可参照东北大学生物医学工程专业培养目标,拟综合利用中外优秀的办学资源,发挥国内外企业、集团公司的科研、教学和市场优势,实现“产、学、研”合作与合作教育,培养适应生物医学工程学科前沿的科技领域发展需要,精通专业基础理论、专业知识与技能,具有创新意识、创造能力的高级专门人才。此外,高校可利用专业教育教学资源条件探索与完善“卓越工程师培养计划”、“生物医学工程本科专业文科学士培养计划”。

(二)深化课程体系改革,优化课程构架

第一,课程体系改革宜突破传统三段式课程结构,建议建立新三段式九层次课程结构,每段课程开设必修课和选修课,以西安交通大学生物医学工程专业课程体系为例,通识教育课程分为思想政治教育、国防教育、大学英语、计算机等公共基础通识教育课程;学科教育课程分为基础科学教育课程、专业主干课程、专业课程;集中实践教学分为毕业设计、课程设计、工程实践、课外实践(社会实践、科技与竞技活动)[7];第二,未来的任务是积极探索面向市场营销方向的生物医学工程本科专业文科学士培养方案,其专业课开设医疗器械管理、经济、营销类课程,学时不少于总学分、总学时的35%—40%;三是学习清华大学,结合本校特点探索夏季小学期制,满足学生个性化课程选修,拓展实践的时间、空间,采用多元教学及实践活动设计。

(三)优化课程体系,规范课程主导原则

课程体系设置可参照浙江大学生物医学工程专业课程设置计算机与网络技术、电子电路设计、传感器与及仪器设计、信息与图像处理、生命科学类等五大模块[8]。要求在课程体系结构、内容之间应该设置合理比例,淡化学科自身的重要性,打破学科界限,避免体系出现较大的偏颇局面,也应避免面向市场、就业岗位的选修课而冲淡学科基础或主干课程,对开设的选修课一定要突出个性化。鼓励将学科前沿的新知识、新技术、新成果快速引入主要课程内容中,拓宽学生的知识新视野。

(四)谋划课程体系策略,适应控制学时比例