首页 > 文章中心 > 航天技术的变化

航天技术的变化

航天技术的变化

航天技术的变化范文第1篇

【Abstract】Based on the general situation of artificial intelligence, this paper puts forward the application significance of artificial intelligence in aerospace measurement and control technology according to the equipment requirements in aerospace measurement and control technology. According to the feasibility of the application of artificial intelligence in aerospace measurement and control technology, this paper analyzes the intelligence of the space measurement and control technology, finally puts forward the application environment and target of artificial intelligence in aerospace measurement and control technology.

【关键词】人工智能;航天测控技术;应用探究;智能化

【Keywords】artificial intelligence; aerospace measurement and control technology; application inquiry; intelligent

【中图分类号】V55 【文献标志码】A 【文章编号】1673-1069(2017)05-0141-02

1 引言

人工智能在航天领域的应用具有巨大潜能。航天测控技术实际上是通过测控,实现对卫星的控制,这是一份较为复杂的工作过程。随着卫星功能的不断增多,航天测控技术要求也越来越高。虽然我国已经在航天事业方面位于先进的水平,但是航天测控设备多只是实现遥控与测控的自动化,与智能化的实现还有一段距离。因此,人工智能的应用还有待挖掘,人工智能在航天测控技术中的应用还有待研究。

2 人工智能的应用概述

近年来,我国在人工智能的研究领域也有了较大的进展,不少国内学者发表了有实用价值的研究著作。人工智能在医学诊疗方面取得了广泛的应用。随着航天器的多功能发展,智能化的转变,成为发挥航天事业多用途、系统化的决定性因素。因此,我国逐步加大了人工智能在航天测控技术中的研究,希望航天测控技术能够自动处理探测故障、自行进行飞行规划和路线设计等[1]。

3 航天测控技术中的设备应用要求

第一,卫星轨道测试及其引导系统。第二,航天侧控技术的安全控制。第三,根据航天侧控任务要求对卫星的形态进行分析,对其卫星轨道实施控制。第四,航天侧控系统要实时监测卫星内部的设备工作情况。第五,航天侧控技术要求能够对卫星上设备发生的故障,及时采取定位、排除和检修。航天的侧控应用,对设备的响应速度与可靠性都具有很高的要求,不仅要具有极强的通用性质,还要能够在规定时间内完成对相关设备的检测与通信,使设备间保持联系,保证遥测技术数据正常处理流程。对设备故障等任务提出控制指令,进而进行执行[2]。

4 人工智能在航天测控技术中的应用意义

传统的航天y控软件是通过算法结构和计算机而实现推理功能的,对于很多问题还无法提供最精确的答案和描述,数值的计算能力也不够强,有时只能定性推理。而人工智能的应用,可以提升其生存能力,包括航天器的自主检修能力、故障排除能力、定位能力等。对于航天器的轨道设计,自动化网络智能预先对故障检测的定位等设置好,用编程进行控制。随着航天测控技术要求的不断提升,传统的编程控制已经不能满足当代的应用需求,若不向智能化测控技术进行靠拢,其航天测绘中的数据与通信的可靠性与有效性都会受到不同程度的影响,导致接收到的数据不准确、不完整。因此,我国很多专家专门成立研究小组,对航天测控技术进行数据分析,分析其指令的序列、故障检修、定位等信息,将人为的管理逐渐转化为智能化管理。

用人工智能控制航天测控技术,不仅能够提升航天工作的安全系数,还能够减少航天器的使用寿命,降低人工控制费用,减少人工管理精力,具有很明显的优势。第一,人工智能能够代替测控专家进行智能化操作与工作,减少专家的脑力劳动。第二,人工智能中收藏了所有测控专业的各项经验,整合了测控技术的专业知识。第三,人工智能使航天系统离开了人操控的固定模式,提高了操作的变通性和实时性,降低了人为操控影响因素。第四,人工智能使航天机械更容易操控,提升了工作效率。第五,人工智能使航天系统的解决问题能力提升。第六,节约了航天器测控的维持状态的人力和物力,配置速度加快[3]。

5 人工智能在航天测控技术中应用的可行性

人工智能的应用过程,实际上是将人的思维活动进行机械化,使机械具有类似人工的处理问题的能力。人工智能在航天测控技术中的应用,是航天系统模仿测控专家的思维和操作,进行推理判断,使操控程序能够如同专家处理问题的规则一样,及时提供解决措施,根据我国现有条件可知,人工智能在航天测控任务中的应用是可行的。测控系统的功能有数据库和知识库。前者包含遥测数据、指令和故障信息。后者包括用户的接口、知识获取、知识表达等。通过外部输入数据,转换成系统能够识别的信息,进行格式压缩和处理,实现对航天器的控制,利用人工智能实现测控技术控制,减轻了人为负担,也能够提升航天测控能力。

6 航天测控技术任务中的智能化应用分析

我国传统的航天测控技术是采用一般算法实现自动化,该种方式具有封闭性,不利于技术的发展和扩充,故障维护方面也要采用人工方式进行解决,不适用航天事业发展。根据我国航天测控技术现状,我们首先要确定测控设备智能化系统,选择有针对性的部位,融合测控专家的思维,实现人工智能操作[3]。其次,使用智能化系统,还要将专家测控系统嵌入到设备中,再改变原本的算法与结构,使其逐渐适应航天事业的改变与发展。对于智能化测控系统中,可以确定的系统由遥测信息处理系统、通信跟踪系统、故障诊断系统、检测系统等。这些都是容易实现人工智能的部分,能够使遥测信息处理中,清楚航天器的轨道等情况。

7 人工智能在航天测控技术中的应用环境与目标

为了使人工智能在航天测控技术中具有可靠的应用,要遵循一定的应用环境和目标。在开发环境上,要选取经验丰富的建造及测控专家进行系统融合,先借助小型机进行专家智能系统开发应用,再根据需求进行专家系统开发。在目标方面,不仅要开发全面、智能化的航天测控大系统,还要在开发通讯上更加便捷,统一通讯接口,面向广大用户,逐步升级系统故障排除方案。真正实现系统在线实时工作。同时,人工智能在航天测控技术中的最终目标是将地面测控设备小型化,再将其移植到航天事业中,提升卫星的控制能力。

8 结论

人工智能在航天侧控技术中的应用与开发,有利于我国智能化的进一步发展研究,对于提升航天测控设备的可靠性具有重要意义。希望本文的研究,能为提升我国人工智能在航天测控技术中的应用水平提供借鉴。

【参考文献】

【1】钱卓昊.人工智能技术在电气自动化控制中的应用探究[J].中国高新技术企业,2016(16):51-52.

航天技术的变化范文第2篇

1.航空气象技术的发展历史。从二十世纪六十年代开始,我国的航空气象技术有了很大的发展,其主要标志是航空港的形成,地面设置了自动化观测网络,监测气象就可以了解起飞地和着陆地的气象状况,将观测的数据告知给气象工作人员、飞行工作人员以及航班管理人员,能够为空中交通管理提供巨大的帮助。改革开放以来,我国民航事业发展得非常迅速,但是航空气象技术仍然无法满足民航事业的要求。现在,我国的航空气象技术得到了很大的进步,气象工作部门在获取航线的天气预报时采用的是制作网格点数据的方法,这种方法能够增加天气预报的准确性。

2.航空气象技术运用的对象。航空气象技术的主要工作是收集气象信息,并且整理和公布气象信息,让航班管理人员了解天气状况,确保航班飞行安全。空中交通管理的内容是空中交通管理的规章制度以及领空区域管理等。航空气象技术应用的对象主要有航空公司、机场、空中交通管理机构以及空中区域管理机构。航空公司在计划航班的时间前,要得到准确无误的气象信息。所以,运用航空气象技术能够准确地了解天气状状况,航空公司根据气象信息,可以调整航班计划,并且在紧急事件发生时。还能够制定应急措施。机场的天气状况会影响航班的起飞时间,所以,机场要准确地了解天气情况,如果天气状况不佳,就要采取合理的措施来应对。空中交通管理机构的主要职责是保证航班空中交通的安全与稳定,相关工作人员要通过了解气象状况来管理航班飞行区域的天气状况。空中区域管理机构通过管理领空区域来选择航班的飞行路线,而且还要对航线内的天气状况进行预测。这也需要借助航空气象技术对气象进行预测,以此来保证航班的安全。

二、目前航空气象技术在空中交通管理中的应用情况

1.预测气象状况。预测航空气象状况和普通的天气预报是不一样的,其不同点在于前者所应用的科学技术更加的先进,预测结果也更加准确。航空气象状况所包含的主要是机场和航线的天气情况。在预测气象状况时,主要对风向,云量以及空气的温度等作出准确的预测。在紧急情况下要及时采取措施解决问题。

2.对天气的实时情况进行报告。天气的实时情况指的是全面地预测天气。要对天气进行不断地观测,得出观测报告,还可以运用雷达技术,得出云雨的降水量以及风的强度等,根据这些,能够制定合理的航班计划。此外,卫星云图可以观测出云的变化特点,这也会影响航班的飞行。

3.对特殊的天气情况进行报告。特殊的气象情况是指对航班的飞行有着严重阻碍作用的天气状况,比如冰雹、强热带风暴等。出现这种情况时,必须及时利用航空气象技术,观测天气状况,及时将信息传达给相关部门,通过制定相关措施,比如延迟或者取消航班,来保证乘客的人身安全。

4.对恶劣的天气进行报告。当通过观测天气状况,发现有某些恶劣的天气可能影响航班的安全飞行时,就要通过天气预警来对航班进行调整;如果天气的发展趋势是良好的,就可以安排航班按正常时间运行。空中交通管理工作部门要及时对天气情况做出预警,保证航班的安全。

三、如何航空气象技术应用到空中交通管理中去

1.统一气象信息。航空气象技术能够将在不同模式之下得到的气象信息进行处理,得到统一的气象信息,这就可以让不同的用户在不同的地点得到一致的气象信息了。航空气象技术能够应对天气的急剧变化,并且可以对气象数据资料进行整合与分析,形成航空气象资料的共享平台,这有利于空中交通管理机构在一致的气象信息之下做出合理的决策。如果空中交通管理机构需要在不同的时间来收集气象信息,并且对航班的时间进行决策,航空气象技术就能够对可能严重影响航班正常运行的相关因素进行概率性预报,这样也可以对决策的风险性进行分析和判断。

航天技术的变化范文第3篇

关键词:航天器;故障诊断技术;数据挖掘

引言

故障诊断技术是指不进行设备拆卸的情况下,通过相应的方法和技术手段,在设备运行过程中掌握其运行状态,确定是否发生故障并分析出发生故障的原因,预报故障未来的发展趋势。故障诊断技术在各个工业领域都得到了国内外的充分关注,并取得了丰厚的研究成果。

自1957年第一颗人造地球卫星上天以来,全世界发射的航天器已经多达5000多颗。据统计,从1957年至1988年的30年间各国发生灾难性事故的卫星约140颗,造成了重大的经济损失。近十几年来,随着我国发射的卫星越来越多,也出现了很多故障,针对航天器的故障诊断技术已经引起航天领域专家学者的重点关注。

1航天器故障诊断技术的研究现状

航天器作为光机电一体化仪器的设备,由于其规模大、复杂度高、航天器的资源和人工干预能力有限,且太空环境日趋恶劣并存在着大量的不确定性因素等,这些都对航天器的故障诊断技术提出了挑战难以进行有效维护,经常会出现系统异常运行甚至出现故障的情况。因此,航天器故障诊断技术对提高航天器的可靠性、安全性和有效性具有十分重要的作用,已经成为航天领域主要研究方向。

美国和俄罗斯(前苏联)为代表的国家,在航天器故障诊断技术方面做了大量且深入的研究工作。美国国家航空航天局(NASA)从上个世纪七十年代以来便开始研究航天器的在轨故障诊断技术。经过几十年的发展,NASA利用建立的航天器故障诊断平台,对大量故障航天器进行了成功的诊断与维修,保证了航天器的可靠稳定运行,延长了航天器的使用寿命,除了保障航天器可靠稳定的运行外,故障诊断技术对于减少地面工作人员的工作量、航天员的培训时间以及发射与运行成本都具有重要意义。近几年美国投入大量的资金用于航天器系统故障诊断技术研究。尤其是在航天飞机方面,将飞行风险降低了50%,同时运行预算降低了1/3,而且还可能进一步降低。

自上世纪70年代我国成功发射第一颗卫星以来,我国航天领域的技术人员便开始研究航天器故障诊断技术。但是一直以来,相关的研究所和日常管理部门没有建立专业的航天器故障诊断平台,主要依托某卫星测控中心组织实施,在技术上还局限于依靠人工手段对航天器进行在轨管理。航天器发生严重的故障后,需要组织航天领域相关专家和航天器研制人员到故障处置的现场一起进行分析,制定相应的维修方案,并对维修方案进行仿真验证确认后才能根据制定的维修方案对故障航天器进行维修,无法形成一个通用化的航天器故障诊断平台。直到2014年我国首个航天器在轨故障诊断与维修实验室才在西安某卫星测控基地宣告成立。

目前,航天器在轨故障诊断与维修问题,已经成为国际航天领域的热点之一。建立航天器在轨故障诊断与维修通用化平台已经成为各个国家进行航天器在轨管理发展的实际需要和必然趋势。

2航天器故障诊断的基本方法

故障诊断技术最早起源于美国。作为一门学科进行系统研究从上世纪60年代的美国宇航局(NASA)开始,1961年美国开始实施阿波罗计划后出现了一系列的设备故障,促使美国海军研究室主持美国机械故障预防小组开始把故障诊断作为一种技术进行研究开发。1971年,麻省理工学院的Beard发表的博士论文和Mehra和Peschon发表在Automatica上的论文,创新性的提出了运用软件冗余代替硬件冗余的新思想,开启了故障诊断技术研究的开端。

根据系统采用的特征描述和决策方法的差异,形成了不同的故障诊断方法,应用于航天器故障诊断的方法有很多种,其中应用较多的有:基于模型的方法、基于信号处理的方法和基于人工智能的方法。

2.1基于模型的故障诊断方法

基于模型的故障诊断方法是提出最早、研究最为系统的一种方法。基本思想是运用软件冗余代替硬件冗余。基于模型的故障诊断方法分为基于参数估计的故障诊断方法和基于状态估计的故障诊断方法。

2.1.1基于参数估计的故障诊断方法

基于参数估计的故障诊断方法的基本思想是不需计算残差序列,而是根据模型参数及相应物理参数的变化量序列的统计特性来进行故障诊断,更利于故障的分离。因为被诊断对象的故障可以视为其过程参数的变化,而过程参数的变化又往往导致系统参数的变化。1984年Iserman对基于参数估计的故障诊断方法作出了完整的描述。目前研究得较为广泛的有强跟踪滤波器方法和最小二乘法。

2.1.2基于状态估计的故障诊断方法

基于状态估计的故障诊断方法的基本思想是由于系统被控过程的状态直接反映出的是系统的状态,因此只需估计出系统的状态并结合适当的模型即可对被控对象进行故障诊断。这种方法首先利用系统的解析模型和可测信息,重构系统的被控过程,构造残差序列,残差序列中包含丰富的故障信息,再对残差进行分析处理,从而实现故障的检测与诊断。主要有三种基本方法:Beard首先提出故障诊断检测滤波器的方法;Mehra和Peschon提出了基于Kalman滤波的方法;Massoumnia提出的广义一致空间法。在实际应用中,由于系统越来越复杂,很难建立十分精确的数学模型。目前研究较为广泛的是将模型参考自适应的思想引入状态估计中,从而提高系统鲁棒性。

2.2基于信号处理的故障诊断方法

基于信号处理的故障诊断方法,通常是利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,从而检测出故障,不需要精确的解析模型,有很强的适应性。

2.2.1基于输出信号处理的故障诊断法

基于输出信号处理的故障诊断法的基本思路是系统的输出(幅值、相位、频率等)和故障存在着一定的联系,可以通过数学的方法(频谱分析)进行描述。当发生故障时,可以通过系统的输出分析出故障发生的位置及其严重程度。常用的有:将时域信号变换至频域加以分析的方法称为频谱分析的频谱分析法;研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度的先关分析法等。

2.2.2基于小波变换的故障诊断法

小波变换属于时频分析的一种,是一种新型信号处理方法,是一种信号的时间-尺度(时间-频率)分析方法,具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。基本思路是首先对一系统的输入输出信号进行小波变换,利用该变换求出输入输出信号的奇异点。然后去除由于输入突变引起的极值点,则其余的极值点对应于系统的故障。

目前国内已经有所研究应用的基于小波变换的故障诊断方法主要有三种:利用观测信号的奇异性进行故障诊断;利用观测信号频率结构的变化进行故障诊断;利用脉冲响应函数的小波变换进行故障诊断。基于小波变换的故障诊断方法对输入信号的要求低,对噪声的抑制能力强,灵敏度高,运算量适中,可以进行在线实时检测,在机械系统的故障诊断中取得了不少研究成果。

2.2.3基于时间序列分析的故障诊断法

基于时间序列分析的故障诊断法的基本思想是选取与故障直接相关的状态变量,建立时间序列过程模型,以模型参数作为特征矢量来判别故障的类型。过程模型参数与系统(设备)的内在特性和输入输出隐含着复杂的联系,在长期的设备运行实践中可以用统计的方法得出模型参数与系统典型故障之间的关系,作为故障识别的依据。这种方法可以在缺乏先验诊断知识的情况下,通过对机组运行过程数据序列的统计认识,逐步积累识别故障的能力,建立有效的诊断体系。

2.3基于人工智能的故障诊断方法

基于人工智能的故障诊断方法是故障诊断领域的发展的重点,是现阶段应用最广泛,研究的最多的方向,不需要精确的模型,适用于不确定性的问题。下面介绍几种航天器故障诊断方面比较常用的方法。

2.3.1基于定性模型的故障诊断方法

基于定性模型的诊断方法是由人工智能领域学者提出的一类诊断方法。基于定性模型的故障诊断方法的不需要系统精确的数学模型。基本思想是根据系统组成元件与元件之间的连接(或参数间的依赖关系)建立诊断系统的模型;将过程特性的外部表现和人类专家对故障判断和处理的经验,通过抽象化方法直接建立各种过程变量与故障模式之间的定性模型,对系统进行推理,预测系统的定,通过观测的系统实际行为与预期行为的差异,检测系统是否存在故障,并诊断故障的原因。

在实际应用中,NASA开发的基于定性模型的诊断推理软件先后在深空一号、对地观测卫星EO-1、x-37飞船等实际型号中进行了科学验证或应用。国内在航天领域基于定性模型的诊断技术主要在液体火箭发动机的故障诊断领域取得了一些研究成果。

2.3.2基于专家系统的故障诊断方法

专家系统是人工智能的一个重要分支,能够在一些特定的领域内模仿人类专家的推理能力,来解决复杂的实际问题。基于专家系统的故障诊断方法的基本思路是将某一领域长期的实践经验和大量的故障信息知识,模仿人类专家的推理方式,总结归纳成规则知识库使计算机能够识别,然后将需要诊断的实时的数据输入计算机的数据库中,专家系统利用已经归纳生成的知识库对实时数据进行分析和推理,从而推算出可能的故障,如图1所示。

使用专家系统进行故障诊断的方法在日常的工程应用中已经有了大量的实践,也较广泛的应用于航天器故障诊断领域,如:CLIPS、EXSYS、G2等。

2.3.3基于数据挖掘的故障诊断方法

基于数据挖掘的故障诊断方法的核心思想是利用海量的历史数据进行处理从而获取系统的行为模型,通过结合先验知识可及时发现系统出现或者即将出现的故障,如图2所示。

人工神经网络(Artificial Neural Networks,ANN)能够有效地实现输入到输出的非线性映射,是数据挖掘最常用的技术之一。当系统为非线性系统,这类系统一般难以有效建立模型,因而用本身就是非线性映射的ANN来模拟难以建模的非线性系统恰好解决了这一难题。

模糊技术:即利用模糊集理论对实际问题进行评判、决策、模式识别和聚类分析。适用于系统状态及故障状态具有不确定性,并可采用模糊集描述的情况。其主要方法有四种:基于模糊模型的故障诊断方法,基于自适应模糊阈值的残差评价方法,基于模糊聚类的残差评价方法和基于模糊逻辑的残差评价方法。

在航天器故障诊断应用中,利用数据挖掘技术对历史测控数据进行规则挖掘,从海量的样本数据中获取故障诊断的规则,及时发现故障征兆并采取有效措施就可能避免航天器出现重大的故障。NASA领导下的Ames Research Center(ARC)的Inductive Monitoring System(IMS)主要采用聚类的方式对数据进行自动状态分类。通过对哥伦比亚航天飞机失事前数据的分析,发现IMS能比航天飞机控制中心更早发现故障,并于09年用于国际空间站控制中心的ISS管理。

3航天器故障诊断技术的发展趋势

近年来,基于人工智能的航天器故障诊断方法已经成为主要的研究方向,尤其是基于数据挖掘的航天器故障诊断方法不需要建立对象的模型,依靠分析已经积累的海量历史数据,提取出其中的关联关系和趋势特征作为识别故障的依据。

航天器遥测数据包括了航天器运行和控制过程中的各种性能参数数据、状态分析数据、二次计算结果等多种状态数据,这些数据反应了航天器的运行状态。由于航天器系统复杂,参数众多,大多包括成千上万的传感器测量参数,这些参数在设备发生故障之前的一段时间可能就会有一定变化,如温度、压力等参数的异常变化,其也会导致测控过程中的一些其他数据发生异常变化。基于数据挖掘的航天器故障诊断的方法,通过以航天器的遥测数据为研究对象,构建航天器遥测数据的训练库和测试库,利用数据挖掘分类方法训练故障分类器,经测试库数据验证分类器的有效性后,生成对应的故障诊断规则,并利用历史数据对规则进行测试和优化。在故障诊断中,将设备实时的数据与的诊断规则和诊断知识一起代入诊断运算过程,得到故障是否存在、产生的原因和处理的方法。这种方法可从海量的数据中及时发现异常情况,并对异常情况进行预警、诊断并发现一些深层次的故障原因,并将故障重新输入训练库中,提高后续故障诊断的准确度和精度,是今后研究的一个重点。

航天技术的变化范文第4篇

在管理结构上,大部分航天数字文化企业依旧袭用行政机关的部门构成,企业各部门行政事务和业务交叉较多,总体行政机关味浓重;为了产业的长远发展,一部分航天数字文化企业勇于改革创新,大胆施行现代企业管理制度——总经理领导下的事业部制,具体模式为:总经理下设事业部经理,事业部内部设总监,事业部经理独立负责各事业部经营管理,总监实质抓产品制作进程和质量,在分配机制上也全部按岗论绩付酬。

人员、专业构成为满足业务的拓展和专业的需求,航天数字文化企业从业人员构成基本为:航天在编职工+专业社招人员。航天企业在用人制度上进行了突破性尝试,并取得了良好效果。按才用人,在严格政审的前提下,大量的专业社招人员进入航天企业,他们与在编员工同工作,同生活,同待遇。社招人员的进入,不仅充实了企业的专业需求,更重要的是给航天数字文化企业带来了当前数字文化业界最新的思想、活力和技术,使企业始终跟得上业界的步伐。航天数字文化企业的专业大多集中在数字多媒体技术、影视动画、广告设计、数字印刷等几个方面,这是由企业的“辅助科研”特点决定的,多数航天数字文化企业在拓展、转型或重组前也都是从事相关专业。

业务经营概况为配套服务科研生产,航天数字文化企业继承航天工作作风,产品的策划、制作、营销各环节都有着严格的运作程序。“严、细、慎、实”工作作风,赢得了社会客户的青睐,再加上航天品质的保证,企业除系统内客户外,还与不少社会客户保持了密切联系。

航天领域数字文化运作特点

1注重树立航天特色企业发展观航天数字文化产业的发展与社会数字文化企业有所不同。在“军民融合”的整体思路下,需要树立系统性的思维方式、开放性的全局视角、市场化运作、差异化管理。系统性的思维,强调要从企业的整体出发,突破闭塞的纯技术路线,以技术促文化,以文化带技术,达到从内到外推动航天事业整体发展的远景目标。开放性的全局视角,强调视野的开阔,不能孤立地看待某件事情,要进行全面的审视和思考。市场运作、差异化管理,强调要按照不同的体制、机制和运行模式,坚持市场运作的原则,只有这样,才能实现对市场快速反应,有效降低运行成本,快速实现研发生产转化,实现军品项目和民品项目的互相促进。

2注重内容与民族文化、传统文化的融合自2008年全球金融危机以来,数字文化产业一路逆流而上,直接影响了世界经济的发展格局,众多发达国家由生产型主导社会向内容型主导社会逐步转变。与此同时,世界的人文观也在数字文化的影响下发生了前所未有的改变,而数字技术与民族传统文化的融合就成了新时期科学与人文融合的具体体现,它将对民族传统文化和科学技术的发展产生深远的影响,它们的分离和对抗则会导致传统文化创新乏力和科学技术人文缺失。以民族振兴为己任的航天企业对民族文化、传统文化十分重视。2010年上海世博会上,太空家园馆播放了由航天数字文化企业制作的3D(立体)动画电影《万户飞天》和《太空侠》,博得了中外观众的高度好评。在最初的官方遴选时,这两部作品之所以能在众多影片中脱颖而出,就是因为它们蕴涵着纯正的东方文化,最能代表中国的航天精神。反观我国动漫市场,有些企业已经迷失了方向,大量的模仿、翻制,终于让外国人用《功夫熊猫》给狠狠地将了一军。《万户飞天》、《太空侠》以及《功夫熊猫》的成功,再次证明了我国数字文化产品要走出国门,必须植根于中国的民族文化、传统文化,也再次坚定了航天数字文化企业的发展方向及路线。

3注重人才队伍的培养人才是文化产业的核心,文化产业可持续发展需要人才培养的与时俱进。数字文化产业是将高科技与文化艺术相结合的创新型产业,是否能够建立一支适应产业发展乃至推动产业发展的人才队伍,关系到产业的长期和纵深发展。近年来,航天数字文化企业十分重视对知识和能力结合的“复合型”、“创新型”人才的吸收,并与部分高校联合开展了人才输出合作,增加人才储备;注重对员工成长的培养,追求科研能力和专业能力的同步提升。在选用人才时,航天数字文化企业优先选择那些具备较强学习能力的优秀人才,这是人才进入航天需要将自身艺术能力和高科技相结合必需的素质要求,也是由数字文化产业飞速发展更新换代的特征决定的。

4注重产业多元发展的合理性航天数字文化产业尽管发展起步较晚,但发展速度却是稳中有快,除体制特殊性外,得益于在有限专业中的合理多元发展。诚然,放眼业界,数字文化企业多元发展例证数不胜数,然而就合理的多元发展方面,航天数字文化企业大多做得很好。目前,航天领域文化传媒企业几乎都涵盖影视动画、艺术设计、展览展示、广告策划几个业务板块,这就是考虑到影视动画可以应用于展览展示,艺术设计可应用于影视动画和展览展示,展览展示又可以反过来带动影视动画和艺术设计业务的发展,无形中相互拉动了各专业成长,扩大了业务范围。不贪多,顾合理,在可以掌控的有限几个行业中不断做大、做强,航天数字文化产业的精兵路线,值得一些有志在数字文化产业热潮中,作为一般的中小企业借鉴。

5注重正确处理业务开展与保密工作的关系航天数字文化企业生存和生长在航天事业之中,而航天的设计、工艺、技术、设备、产品甚至于典型人物,无不存在保密问题,有些密级还相当高,这就给大部分不具备国家保密资质的航天数字文化企业,带来十分的困难和极大的制约。在“国家利益高于一切”核心价值观指导下,航天数字文化企业一方面坚持对员工进行经常性保密宣教、培训和考试,建立严格的保密规定和制度,严把设备、载体特别是重点部位的保密关,同时注重处理好市场拓展与保密的关系、时间节点与保密的关系和社招人员多与保密的关系等,在各个环节牢固树立“保密至上”的思想。

航天领域数字文化建设的前景思考

随着数字文化的进一步发展,航天数字文化产业及其衍生行业将多姿多彩地展现在世人面前,给未来时代一个难以想象的惊喜。通过有关数据可以预见,航天数字文化产业将在数字幻象、虚拟体验系统、数字长廊、全息互动幕墙、幻影成像、增强现实、3D影院、4D影院等多领域实现创新突破,推动肩负神圣使命的航天事业可持续健康发展。#p#分页标题#e#

1加速发展数字文化助推军民融合“军民融合”的内涵是把国防和军队现代化建设,深深融入经济社会发展体系中去,使经济建设与国防建设相互兼顾、相互促进。对航天工业来说,走军民融合发展之路,是应对国防科技工业体制和武器装备采购体制改革,实施全面体制机制建设和整体资源结构调整,利用军品资源壮大民品发展,利用军民品协调发展提升核心能力,实现科学发展的必然选择。早在2006年初召开的《全国文化体制改革工作会议》上,中央领导就指出:“要积极运用高新技术改造传统文化产业,运用电子出版、数字影视、网络传输等现代技术,催生新的文化业态……”在掌控着国家最尖端科技的航天领域发展数字文化产业,是落实和推动“军民融合”发展战略的最好体现,航天民品应有数字文化产业的重要席地。设想,当航天民品若将数字幻象、虚拟体验系统等先进数字技术全面开发利用,无疑会成为“军民融合”的巨大助力。

2加速发展数字文化助推科研生产科技的发展改变了人们的生活习惯,当有更加先进、更加便利、更加符合人类审美的事物出现时,旧事物毫无疑问将被以最快的速度取代。在航天科研生产中,数字技术已经被广泛应用。2011年,航天某院展厅全面实现数字化展示,其中有大量数字展板,可以在虚拟屏幕实现360度展示,虚拟装配、拆解,适合任何类型受众观赏参与,实现产品虚拟现实演示,无论预研模拟、毁伤效果、技术剖析等等,都可以用虚拟现实或三维技术演绎得真真切切。将飞速发展的数字文化产业衍生出的更为先进的数字技术应用于科研生产,必将对航天领域的发展带来极大的助推作用。

航天技术的变化范文第5篇

【关键词】航天器 航天器集群 群智能 太空探索 微纳卫星

【中图分类号】 V423.9 【文献标识码】A

【DOI】10.16619/ki.rmltxsqy.2017.05.003

自20世纪80年代以来,随着微电子、微机械技术迅猛发展,信息产业发生了翻天覆地的变化,计算机外型越来越轻巧,功能也越来越强大。依靠这些技术的进步,航天器也逐渐向小型化、低成本的方向发展。90年代以硇∥佬羌际醭鱿郑其优势也越来越明显。一方面,以美国、欧盟为首的航天大国已经将现代小卫星技术列为航天技术发展的重点领域之一;另一方面,多颗小卫星协同工作完成复杂太空探索任务已成为当今国际航天领域的一个研究热点,航天器集群的应用与开发必将成为未来国际太空发展的战略重点。

随着小卫星的发展,微纳航天器渐渐地成为了航天领域一个热点问题。由于微纳航天器采用了大量的高新技术,具有功能密度与技术性能高、投资运营成本低、灵活性强、研制周期短、风险小等优点,在计算机网络技术的启发下,由多颗微纳航天器编队飞行而构成的“空间飞行集群”的概念被广泛接受,并迅速成为航天领域学术研究的焦点。

目前,在天文观测、深空探测、对地勘测以及空间技术验证任务方面,美国国家航空航天局、德国宇航中心、欧洲空间局、日本宇航事业部以及中国航天局相继提出并逐渐实施各式各样的航天器集群计划。未来航天器集群飞行模式必然会成为宇宙探索和空间应用领域的主流。

航天器集群概念的产生

“航天器集群”这种新概念主要来源于对昆虫群体的观察。自然界存在很多集群性昆虫和生物,比如蜜蜂、蚂蚁、大雁和鸟等,即使没有明显的类似于人类社会的组织级别,这些生物在大群体中仍然可以共同合作,完成很多复杂的工作。未来,这种集群技术,可以用于清理海洋石油管道、深海探索、军事侦察以及行星探测。

根据文献分析结果可知,集群的概念已经引起国内外航天器设计和导弹设计领域的高度重视,如多弹拦截、智能卵石和小卫星编队等。如美国2008年启动的计划――“分布式模块化卫星系统”也含有集群的技术成分,尽管项目计划困难重重,并且目前已经终止了,但世界各国的权威专家认为:“项目计划终止不等于这种理念终止,而这种理念将永存。”

直到今天,航天器集群还没有统一定义,但有一个共识,即航天器集群是一片被控制的卫星云,一个航天器集群是由多个航天器单体所组成,它们共同合作完成一个任务。在执行任务时,它们形成一个松散的聚集族,本着简单的行为和原则聚集在一起,好像昆虫群体社会。而学术界认为“任何一种受昆虫群体或其他动物社会行为机制而激发设计出的算法或分布式解决问题的策略均属于集群智能范畴”。由此可见,所谓航天器集群,是指数量巨大,至少100颗,甚至数千颗航天器组成的群体。

对于成百上千颗航天器组成的群体,其控制和管理就显得尤其重要,采用常规的集中式的航天器管理模式来管理数量巨大的集群系统显然是不现实的。所以,结合集群理论研究航天器集群系统,探索集群系统的应用,将会丰富和推动空间探索技术的发展。迄今为止,在集群理论探索方面,自组织聚集、自组织分散、连接运动、协同传输、模式构成和自组织建设仍然是热点问题。

大多数的群体都存在一定的结构,内部耦合紧密的群体大多都有如层次等级结构,有些是社会分工造成,有些是以能力高低区分,这种结构使得信息在群体间传播快速且有效,促使集体行为快速执行。不同的群体结构中,个体所发挥的作用也不一样,个体与环境、个体与个体之间的通信效率和通信范围也随之不同,最终导致的群体效果也不同。集群系统应该具备一定的结构,这是建立信息通道、实现个体交互的基础。这里的结构关系包括了结构形式、连接关系以及个体的地位分工等。所以,未来航天器集群系统级也应该具有生物自然群的三种主要功能。

鲁棒性:航天器集群是在外界干扰和单体波动的情况下运行,协作是分散式的,且构成航天器集群的单体相对简单,载荷是分布的,因此集群对环境的扰动具有鲁棒性。

灵活性:航天器集群中的单体有能力协作其他单体完成任务,也有能力在不同的组里工作,且支持大量单体的自主行为。

扩展性和容错性:航天器集群是个冗余系统,单体的缺失可以立即由另外一个单体补偿,因此群中某一特定部分的故障不会使其停止工作。

纵观各式各样的航天器集群计划

欧空局的CLUSTER计划。CLUSTER于2000年8月发射,目前仍在运行。CLUSTER计划是由欧空局提出的,由四颗相同的卫星组成,这四颗卫星运行于大椭圆地球极地轨道,轨道近地点和远地点高度分别为19000km和119000km。在实施CLUSTER太空计划之前,一般情况下是采用单个航天器对空间环境的局部区域进行探测,当然也有特例,极少数的情况下采用了双星探测,因此在对地球近地空间环境进行探测时无法在三维的视角下完成。然而,CLUSTER计划的成功实施,为地球空间探测领域开辟出了新的路径。CLUSTER计划在太空中采用了一个四面体的空间队形进行编队飞行,并可根据不同探测任务对其星间距离进行调整。这种航天器集群能够监测太阳离子和地球磁场之间的交互作用,从而得到太阳和地球电磁交互的三维模型。

ST-5计划。2006年3月22日,美国成功发射了三颗卫星(Space Technology 5, ST-5),旨在验证未来科学任务试验的新技术。单颗ST-5卫星重24.75kg,采用机载发射方式入轨。三颗卫星排成星座,近乎位于同一轨道面内,每颗卫星相距约354km,通过微推进器实现轨道与姿态的联合控制。

ST-5计划中的卫星虽然在尺寸和重量上都小于其他卫星,但每颗卫星均可提供全套服务,具有动力、推进、通信、制导、导航和控制功能,以及搭载地磁场测量载荷的能力。该计划有效验证了利用星座进行极地极光研究的优势,小型无线电转发器与常规天线、计算机优化天线组成新型通信链路的可行性,小型动力系统的可行性以及地面系统制造技术的可行性。

ST-5计划作为NASA“新千禧计划”的一部分,它的成功实施为美国小型化航天部件、批量制造数十至数百颗微卫星打下了坚实基础。

MMS(Magnetospheric Multiscale Mission)项目。2015年3月,NASA通过“宇宙神”火箭成功发射了MMS项目的四颗卫星,用以实现对地球电磁场的高精度测量。该项目中卫星的结构和功能完全相同,卫星的有效载荷包括等检测设备高能粒子探测仪、电场仪器、数据处理设备离子分析仪、姿态敏感器磁强计和防干扰设备等。四颗卫星组成一个边长从1km到几个地球半径长度变化的四面体,能够在地球磁层中,在三维视角下对磁边界进行相关的测量,以此来分析研究磁重联现象。空间天气的混乱主要是由太阳风对地球磁层的影响造成,研究人员的主要任务就是结合MMS卫星编队对当前的主流磁场理论进行相关的实验验证。

“天拓三号”微纳卫星集群飞行计划。2015年9月,由我国高校自主研制的微纳卫星“天拓三号”搭载火箭长征六号成功发射进入预定轨道。“天拓三号”卫星集群中包含6颗卫星,采用“一主五从”的模式进行编队飞行,其中主星的质量在20kg左右,从星中包含有1颗1kg级的手机卫星和4颗100g级的飞卫星。在整个卫星集群成功入轨之后,从星将与主星分离,以较为形象的“母鸡带小鸡”的方式在太空形成微小卫星的星间组网,实现6颗卫星在空间中的集群飞行。

“天拓三号”星群系统中的主星也称为“吕梁一号”,采用的l星体系结构与立方星类似,即模块化多层板式结构,该星群主要任务是星载航空目标信号监视(ADS-B)、新型星载船舶自动识别系统(AIS)的信号接收、20kg级通用化卫星平台以及火灾监测等一系列新技术验证和科学实验。星载ADS-B能够在全球范围内对航空目标进行准实时的空中流量测量,并实现对航空目标的准实时监测,为航空服务的空管系统提供高时效性的飞行数据,进而能够使得航空飞行的效率提高一个档次。

多规模磁性层测量任务的四星编队。2015年7月19号,美国宇航局执行多规模磁性层测量任务的四星编队首次排成三棱锥队形飞行,也称四面体编队飞行,这是美国宇航局第四个太阳探测任务。采用这种队形意味着科学家们可以利用这些探测器进行三维观察。三棱锥队形对于提供地球空间环境的三维信息是至关重要的,如果四个探测器都在一条直线或一个平面上运动,当它们飞经某个天体结构时,就不能观测到该天体结构的完整形态。

因为四星编队每个探测器的轨道可以单独调整,科学家们可以调节四个探测器之间的距离,类似于望远镜调焦,通过调整四星编队的队形,它们会让不同过程成为我们的焦点,这样就使得他们可以从很多不同的空间方位来研究磁重联。

飓风全球导航卫星器群。美国宇航局计划2016年12月中旬在佛罗里达州卡纳维拉尔角空军基地发射地球科学小型卫星群,其任务是勘测一些科学家感兴趣的关于地球科学的未知信息,从而更准确地理解热带气旋和飓风的形成和强度。

飓风全球导航卫星器群基于GPS道路导航技术,使用8个小型卫星群测量地球海洋的表面粗糙度。科学家将利用这些数据计算海洋表面风速,进而更好地分析风暴的强度。“飓风全球导航卫星群”聚焦于低成本、快速的科学勘测,是人类首次为地球飓风勘测,卫星群将完成单个探测器无法完成的任务,能够穿透“飓风眼壁”的暴雨,获得关于风暴强烈内核的重要数据。所谓“飓风眼壁”是雷暴云层的密集环状结构,它环绕平静的飓风眼,内核区域就像是风暴发动机,从温暖表面海水抽取能量,再蒸发至地球大气层。

“飓风全球导航卫星群”能够持续监测全球热带飓风带纬度海洋的表面风力。每颗卫星能够每秒进行4次风力测量,对于卫星群而言,每秒能够进行32次风力测量。

NASA拟派遣微型机器人舰队探索木卫二。“新视野”号探测器让全世界都知晓了它的任务,花了10年时间飞了50亿公里,确实够震撼。最近,NASA又向美国政府要钱,计划向木星发送一个庞大的微型机器人舰队。

目前,人类对木星探索已经进行了三轮,第一轮美国“旅行者号”飞掠了木星,第二轮伽利略探测器专门研究木星,今年“朱诺号”探测器又抵达木星,这还不算一些借力木星加速的任务。“朱诺号”探测器全副武装,使用了最先进的防辐射技术来抵抗木星辐射。现在,NASA已经开始着手下一轮木星系统的探索,并邀请了全美10所高校参与木星微型机器人舰队的研发,目标是木卫二。木卫二是太阳系中除了地球外,最有潜力拥有生命的星球,目前已经发现了冰下海洋,接下来就要对木卫二实地勘察。

至于NASA为什么要研发微型机器人舰队,这主要出于对经费方面的考虑。以立方星为架构的微卫星是一个方向,每个探测器任务专一,造价较低,比如可以收集木卫二稀薄大气的信息、携带高能粒子探测装置后可研究带电粒子的问题等。但NASA希望研制出更先进的微型探测器,而不是简约型的立方体平台,能够在太阳系内广泛部署。前期任务主要涉及对木卫二的探索,比如对木卫二大气、冰层以及冰下海洋进行针对性调查,后期将拓展至整个太阳系。南加州大学提出并且有能力开发出标准化的微型平台,比如适用于登陆小行星、彗星,以及较大的卫星等。NASA工程师打算研制一种飞往木星的微型机器人,称为“windbots”,这种微型机器人外形呈多面体,穿越木星大气层时,在木星大气的湍流作用下,旋转吸收能量,产生漂浮升力。它允许科学家详细地研究气体行星,也可以应用于地球上的飓风和龙卷风的研究。

美国的ANTS集群探测系统。美国NASA受昆虫社会行为的启发,计划于2020~2030年发射一个卫星集群探索小行星带,该计划暂命名为ANTS(Autonomous Nanotechnology Satellite)。ANTS系统由1000颗皮星组成,其任务是利用群智能技术,探索和勘测小行星带的小行星。ANTS系统运行在小行星带内,这其中,空间环境十分恶劣,传统的大卫星是不能生存的。小行星带介于火星和木星轨道之间,在这里估计有50万颗小行星。

ANTS系统的主要任务就是想利用价格低廉的皮卫星群完成小行星带的勘探。为了克服任务规划工作带来的挑战,NASA在系统设计时模仿昆虫的“无智能或简单智能的主体通过任何形式的聚集协作而表现出智能行为的特性”,ANTS系统按照不同等级进行管理,群卫星体系结构的等级划分包括“队”和“群”,“群”还包括“子群”等,不同卫星装载的仪器是不同的,所以需要协同工作和共享信息才能很好地完成任务。

在这个群卫星系统里,有几种不同类型的卫星,一类称为“Worker”,它们载有不同的载荷和仪器,如磁强计、X射线仪、质谱仪和可见光和红外相机等,每个“Worker”只能获取一种特定的数据;另一类称为“Ruler”,它们起统治作用,协调各个“Worker”工作,并确定勘测目标;还有一类称“Messenger”,仅仅起通信作用,它们是地球、“Worker”和“Ruler”之间的信使。每个“Worker”都会主动勘测所遇到的小行星,然后把信息发送给“Ruler”,“Ruler”评估这些数据,形成一个总勘测报告。

ANTS系统的皮卫星是依靠一艘飞船运载到小行星带附近的拉各朗日点,然后释放。在ANTS系统中,80%的皮卫星是“Worker”,当“Worker”收集到数据时,它们首先把数据发给“Messenger”,同时这些数据也可以判断“Worker”是否被毁坏,大约70%的“Worker”穿过小行星带时被毁坏。这就要求它们有足够的队伍重构能力,同时还要有很好的自恢复能力。

ANTS系统飞越小行星时,需要完成许多工作。它们首先要确定小行星的大小、旋转轴、小行星的卫星/月亮、轨道和盘旋点等。随着获取小行星数据量的增大,ANTS还会派更多的子群,参与协作搜集更详细和更全面的小行星数据。

为了实现高度的自主性计划,基于社会结构的推理方法必须运用先进的人工智能技术,如神经网络、模糊逻辑和遗传算法等。为了辅助和维持高水平的自主性,更重要的任务还要考虑自主运行的修正能力,以便适应环境变化、远距离操控和低带宽通讯等问题。

英国的“天基镜群”方案。英国拉斯哥大学Massimiliano Vasile教授在分析小天体变轨的几种流行技术方案的基础上,提出了一种基于航天器群建立“天基镜子”的方案。该方案的部署是通过火箭将航天器群从地球发射升空,进入预定轨道,然后航天器集群再自主地逐渐徘徊于目标小天体附近,依靠协同控制技术,进行优化部署后,将太阳光能聚集到小行星表面的某一点上。

首次提出这种方法的并不是Massimiliano Vasile教授。早在1993年,美国亚利桑那州立大学的Jay Melosh曾建议将一面非常大的镜子安放在一颗大卫星上,以此来达到上述目的。

“天基镜群”的工作原理是发射一个航天器集群,集群中航天器都是纳型重量级的,每颗纳型航天器携带一个小镜子,一颗纳型航天器就是一个镜子模块,然后通过统一的星务系统进行管理,建立一个天基群镜系统,这样就可以把反射太阳光聚焦于小天体表面的某一指定点,将小天体的表面加热到至少2100°C,使得小天体汽化。汽化后的小天体内部会喷射出气体,由牛顿定律可知,小天体将会产生一个与喷射方向相反的推力,进而改变小天体的轨道。

基于全球卫星定位系统对航天器集群进行导航,结合自主控制技术,采用数十颗小卫星组成集群,使直径为数百米的小天体变轨是可以完全可行的。若利用10颗纳型航天器群,每颗航天器均承载一个20m宽的充气镜子,大约可以在六个月内使一个直径约为150m的小天体发生变轨;若增加到100颗纳型航天器,只需几天的时间就可以完成上述任务;假如要使直径为20km的小天体变轨,则需要集合5000颗纳型航天器,汇聚太阳光至该小行星表面长达3年的时间就可以使其发生变轨。尽管目前控制5000颗航天器的技术有很多困难,但随着群智能理论及其应用技术的深入发展,对于数千颗航天器的协调控制,未来将不再是问题。所以航天器群的概念未来一定具有巨大的应用前景。

航天器集群的管理

目前,从航天器集群的管理技术来看,不同的航天器集群具有不同的技术特征,归纳起来有四类:轨道跟踪法、领航跟随法、虚拟结构法、蜂拥控制法。

轨道跟踪法。单个的航天器一般都采用周期性轨道控制方法将航天器时刻保持在某特定轨道上,该方法也适用于微小型航天器集群的飞行任务,即将群系统中的成员航天器都控制在预先指定的期望轨道上。这种方法无需航天器间的信息交互,适用于群系统规模较小的情况,但对于数量较多的群系统来说,该方法不太现实。

领航跟随法。在领航跟随法中,引领航天器在规划好的参考轨道上按计划运行,利用传统的周期性机动,使得跟随航天器跟踪引领航天器,保持稳定的相对运动状态。该方法的优点在于群系统中大多数微小型航天器可以按照引领航天器的绝对轨道自然飞行,只需定期控制就能实现相对状态的维持。在领航跟随法中,由于引领航天器处于一种参考状态,跟随航天器保持整体构型就需要消耗更多的燃料,因此未来需要围绕能源消耗问题做进一步的改进。

虚拟结构法。虚拟结构法,即根据实际需求,给整个群系统分配一组合适的期望状态,使得系统的整体状态误差最小。与领航跟随法相比,这种方法的主要优点在于群系统中所有的微小型航天器都有误差存在,但该方法可以从宏观角度考虑这些误差,并引入燃料消耗加权,从而使得星间燃料消耗达到均衡状态。该方法的关键技术是需要保证微小型航天器之间信息交互的畅通性,并强调整体的协同。

蜂拥控制法。群体系统蜂拥控制方法是近年来受到国内外众多领域高度重视热点研究问题,主要借鉴仿生领域关于群体蜂拥行为的研究成果,集中在个体之间交互形成的网络拓扑结构已知条件下的控制问题。当微小型航天器集群系统中航天器个体数量较多时,若区域信息的交互能够形成一定规则的形状,则可以利用启发式控制算法。大规模的航天器集群往往会带来较为繁重的通信和计算负担,而蜂拥控制法采用分布式并行处理模式,能够很好地解决这个问题。但是蜂拥控制方法也存在着一定的缺陷,该方法没有将碰撞规避的问题纳入研究范围,且该构形下不是燃料最优的。

结束语

相比于传统的大卫星,微纳卫星的研发成本低、设计周期短、功能密度高。成百上千颗微纳卫星构成的集群灵活性高、鲁棒性高,能完成大卫星无法完成的任务,应用前景广阔,而发展微纳卫星集群的关键就是高集成模块化技术和分布式协同控制技术,相信在不久的将来,随着其功能的不断完善,将会逐渐取代传统卫星成为空间应用的主流。

从历史上看,航天系统工程的发展将会带动其他学科发展。上世纪60年代美国阿波罗登月所研制的新材料、新技术和新工艺推广到各个领域,如果说美国的计算机水平一直领先于世界,可以说是得益于阿波罗计划的推动。所以,类似地,今天航天器集群的技术也将推动其他科学技术的发展。