首页 > 文章中心 > 生物信息学的方法

生物信息学的方法

生物信息学的方法

生物信息学的方法范文第1篇

关键词:蛋白质-蛋白质对接;分子动力学模拟;蛋白质-蛋白质相互作用

Abstract:Proteins that play a critical role in many cellular processes often perform their functions by interacting with other proteins. Therefore, the studies of protein-protein interactions are vital to exploring the essence of life, understanding the mechanism of diseases and developing new drugs to improve human health. With the sustained development of bioinformatics, more and more computational methods have been applied to structural and functional research of proteins. Protein-protein docking and molecular dynamics simulation are both widely applied to the studies of protein-protein interactions. This article reviews the theory of computational methods, softwares and the application in protein-protein interactions.

Key words:Protein-protein docking; Molecular dynamics simulation; Protein-protein interactions

众所周知,蛋白质在生物进程中扮演着重要的角色。蛋白质通过与其他生物大分子(如蛋白质,DNA和RNA)相互作用介导细胞内各种重要的生理过程,如基因的复制、转录、翻译以及细胞周期调控、信号转导、免疫反应等,其中,蛋白质-蛋白质相互作用尤为常见。因此蛋白质-蛋白质相互作用的研究有助于人们探明其细胞内功能,从而了解各种疾病发生机制,为进一步的新药研发提供帮助。目前为止,研究蛋白质-蛋白质相互作用主要有酵母双杂交、免疫共沉淀、亲和色谱、质谱、核磁共振等多种实验方法,这些技术为蛋白质相互作用研究做出了重要贡献,积累了宝贵的数据资源。

随着计算机处理能力的不断提升,生物信息学的理论模拟方法得到迅速发展和广泛应用。生物信息学整合数学,物理,化学,信息学等众多学科的优势,以计算模拟手段进行生物学相关研究。自Janin和同事们[1]首次运用自动化对接算法预测牛胰蛋白酶抑制剂-胰蛋白酶复合物3D结构至今,蛋白质-蛋白质对接领域已取得很大进步。该方法常用于蛋白质结构及功能研究,分析配体与蛋白质间或者蛋白质-蛋白质间的相互作用模式,便于研究者从原子水平探究受体-配体间作用机制。分子动力学模拟在诞生至今的几十年中不断随着计算机软硬件技术的快速提升而愈加发展完善,已经成为研究蛋白质、核酸等生物大分子的结构和动力学特性的重要工具。本文将对蛋白质-蛋白质对接和分子动力学模拟的基本原理及其在蛋白质间相互作用研究中的应用进行简要概述。

1 蛋白质-蛋白质对接

准确的蛋白质-蛋白质复合物结构是进行蛋白质-蛋白质相互作用研究的基础。然而,通过实验方法测定蛋白质-蛋白质复合物结构比测定单个蛋白质更加困难。随着计算机水平的不断发展,人们开始希望用计算模拟手段来预测蛋白质复合物的真实结构,并希望从原子层面来分析蛋白质-蛋白质相互作用的内部机制。蛋白质-蛋白质分子对接是一种常用的方法。它是指利用两个单体蛋白质的三维空间结构,来预测蛋白质-蛋白质复合物结构。解决蛋白质对接问题有两个关键因素:打分函数和搜索算法[2]。打分函数应能够区分出正确的或近似正确的蛋白质对接复合物,而且搜索算法需严格地探索由相互作用的蛋白质形成的巨大构象空间。

1.1打分函数 蛋白质-蛋白质对接可以被归类为一个全局最优化问题,其主要目的是找到蛋白质分子间最稳定关联结构。使用打分函数是准确评估结合蛋白间的相互作用所必需的。打分函数有两个作用:构象采集和母板选择及精制。打分函数的根本目的是从错误的对接取向中区分出正确或近似正确的对接取向。打分函数主要有两种类型:基于物理原理的函数和基于实验知识的函数。通常,基于物理原理的能量函数用分子力场如CHARMM[3]和AMBER[4]描述蛋白质-蛋白质相互作用。

打分函数可能包括几何学与化学的互补,静电力、范德华力和氢键的相互作用以及解相关能量项。最常用的打分函数是形状互补。经常将形状互补与FFT算法联合应用于详尽的全局搜索。静电场在带电粒子或极性分子间的相互作用中扮演着重要角色。泊松-玻尔兹曼方程常被用来解决从原子水平获得溶剂化生物分子系统的静电电位问题。打分函数包括了极其重要的离散和核心相互作用,通常用范德华力相互作用来描述。

1.2搜索算法 搜索算法的主要目的就是在势能图上定位最稳定的状态。对接复合物可能解的构象搜索可通过两种不同的方案执行。第一种方案是进行全空间搜索,第二种是随机地或按一定顺序只搜索局部空间。快速傅里叶变换是最为著名的用于全空间的搜索算法之一。Katchalski-Katzi[5]和助手首次将快速傅里叶变换法用于蛋白质对接,确定受体配体间几何契合。该方法被应用于许多程序,如GRAMM[6], FTDock[7],3D-Dock[8]以及ZDock[9]。局部搜索算法包括模拟退火,蒙特卡洛法及遗传算法等。Vieth和助手们[10]发现分子动力学法最适于进行大空间搜索,而遗传算法比其他算法更适合进行小空间搜索。大多数情况下,蒙特卡洛算法和分子动力学算法都用来进行蛋白质柔性处理。

1.3对接过程 蛋白质-蛋白质对接一般通用的过程包括:①尽可能多的从全局或局部搜索中生成对接复合物;②筛选和评估复合物;③精制和重排。这三步可被细分为更多步。第一步完成刚体的全局搜索,尽可能多的生成对接蛋白质-蛋白质构象。在第二步中,采用生物或实验信息和打分函数来扫描并评估第一步得到的对接复合物。错误对接复合物的得分比接近X射线结构复合物的得分高是很常见的,许多得分高的结构并不实际存在。应过滤掉这些不实际存在的结构,将剩下的对接复合物进行评估。第三步涉及到侧链及可能骨架的柔性。柔性处理时主要进行重排侧链。

2 分子动力学模拟

分子动力学模拟是一门利用经典力学来模拟大分子体系运动的方法,它综合了数学、统计物理、化学、计算机等多门学科的内容。分子力场是分子动力学模拟的基础。它采用简单的函数来描述分子能量与结构之间的关系。分子力场的基本函数形式包括了原子之间的成键相互作用与非键相互作用。非键相互作用主要包含了范德华力与长程静电力。

2.1分子动力学模拟过程 分子动力学模拟的步骤主要包括了四步:第一步是确定初始构象,初始构象尽量选越接近模拟系统的结构越好,通常是能量较低的构象。通常采用分子力学方法对其构象进行优化;第二步平衡相过程,在前一步中已经确定的模拟体系将进行平衡相过程。在构建平衡相的过程中,须对其构象以及温度等参数进行调控并加以监控,还要判断体系是否已经达到平衡;第三步生产相过程,模拟体系中的分子以及构成分子的原子开始根据初始速度运动,此时根据牛顿力学和预先给定的粒子间相互作用势来对各个粒子的运动轨迹进行计算,并从这个过程中抽取计算分析时所需要的数据和样本;第四步将对计算结果进行深入分析处理。

2.2研究进展及常用软件 Tajkhorshid等成功的模拟了水分子通过不同通道亚型的过程[11]。Xu等在水溶液和磷脂双层中对β淀粉样多肽进行了多次长时间分子动力学模拟,发现在生物膜和有机溶剂中以α螺旋为主,在水溶液中则以无规则卷曲为主[12]。京都大学医学研究科的岩田想[13]成功分析了存在于细胞的,负责将物质运送到细胞内的一种蛋白Mhp1的构造,运用该结果通过在计算机上模拟,在分子层次上弄清了Mhp1将物质运往细胞内的机制。

目前,用于分子动力学模拟的软件越来越成熟。较为常用的主要有:GROMACS,NAMD, AMBER,CHARMM,TINKER、LAMMPS等。GROMACS[14]是用户界面友好的分子动力学模拟软件,模拟中的参数条件和基本功能已经趋于成熟,里面包含多种力场,非常适用于模拟生物大分子这种复杂体系。同时由于其速度快,在非生物体系统中也得到了广泛的应用。AMBER[15]不仅是一个程序,而是包含了从体系准备到动力学模拟,再到轨迹分析等一系列程序的集合。同时,AMBER 还是一系列力场的名称,这些力场涵盖了蛋白质、核酸、糖类、脂类等众多生物大分子。NAMD同样适用于模拟计算蛋白质、核酸等生物大分子体系,而且并行计算效率非常高。

3 展望

目前,蛋白质分子对接及分子动力学模拟等计算手段虽然已广泛用于蛋白质-蛋白质间相互作用的相关研究,但还是存在一些值得改进的地方。例如,蛋白质-蛋白质对接过程中,蛋白质柔性的相关处理,构象搜索的合理性及打分函数的准确度;分子动力学模拟中力场的种类和所研究体系的匹配度等。随着计算机技术不断的发展,这些生物信息学方法有待进一步优化和相关软件需要进一步完善,从而使其更适用于蛋白质等生物大分子的模拟研究。总之,将生物信息学方法与传统实验手段相结合来进行蛋白质间相互作用等生物大分子体系研究,是一条有待进一步发展的有效途径。

参考文献:

[1]WodakS J,puter analysis of protein-protein interaction[J].Journal of molecular biology,1978,124:323-342.

[2]Taylor,J.S.and Burnett,RM.DARWIN:A program for docking flexible molecules[J].Proteins. 2000,41:173-191.

[3]Brooks,B.R.,States,D.J., S.andKarplus,M.CHARMM: a program for macromolecular energy, minimization, and dynamics calculations[J]put.Chem.1983,4: 87-217.

[4]Ferguson, D.M., Kollman,P.A.A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. J. Am. Chem. Soc,1995, 117: 5179-5197.

[5]Katchalski,Vakser,I.A.Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques[J].Proc.Nat.Acad.Sci.USA,1992.89: 2195-2199.

[6]Tovchigrechko, Vakser, I.A.Development and Testing of an Automated Approach to Protein Docking[J].Proteins,2005,60:296-301.

[7]Gabb,H.A.,Sternberg,M.J.E.Modeling protein docking using shape complementarity, electrostatics and biochemical information[J].JMB.1997,272:106-120.

[8]Moont, Sternberg,M.J.E.Modelling protein-protein and protein-DNA docking[J].In Bioinformatics - From Genomes to Drugs,2001,1:361-404.

[9]Chen, R.and Weng,Z.A novel shape complementarity scoring function for protein-protein docking[J].Proteins,2003,51:397-408.

[10]Vieth, M., Hirst.Assessing search strategies for flexible docking[J]put.Chem,1998,19: 1623-1631.

[11]Tajkhorshid,E, Schulten, K.,Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science, 2002, 296: 525-530.

[12]Xu ,Y.,Jiang, H.Conformational transition of amyloid beta-peptide[J].PNAS.USA,2005,102: 5403-5407.

[13]Shima mura,T.,Beckstein. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1[J].Science.2010,328:470-473.

生物信息学的方法范文第2篇

【关键词】高中物理 信息提取错误 矫正措施

教育事业的发展,让更多教育工作者放宽了自己的教学眼界,除了关注学生学科知识的丰富,也开始关注学生各项能力的提升。高中物理教学中培养学生的信息提取能力,是引导学生正确审题,快速提升自身物理学习能力的重要环节。许多高中学生在信息提取方面存在缺陷,影响了自己的学习质量。深入分析高中生物理信息提取错误的原因,明确教学方法,实施针对性教学,有利于高中物理课堂教学质量的提高。

一、高中学生物理信息提取错误的原因

影响高中学生物理信息提取错误的原因,既包括智力因素,又包括学习态度、学习方法、学习习惯等非智力因素。笔者将将展开较为详细的论述。

1.智力原因

首先,部分学生的信息理解力不足。高中学生不能有效提取信息的原因有两点。其一,部分学生的文字理解能力较差。他们在阅读物理题目的时候,不能理解如“带弧形轨道的小车放在表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切”这类句子的具体含义,直接影响了他们的信息提取行为。其二,一些学生没有完全掌握物理概念及物理规律,基础知识的积累不足,使学生的信息识别能力有限。在阅读时,学生没有基础支撑,很难完成信息的有效提取。

其次,部分学生的观察能力不足。观察能力,是信息提取能力的重要组成部分。在阅读一段文字或者审一道物理题时,要有效提取信息,学生需要快速找到信息中的关键点,明确物理题目的题眼。一些学生的信息处理能力不足,还有一些学生是因为阅读信息经验较少,无法明确信息中的关键点与非关键点。

2.非智力原因

首先,部分学生信息提取的态度不端正。虽然物理是一门重要的学科,但并非所有的学生都具有学习物理知识的积极性,总有一些学生在做题时怀有侥幸心理,不关心自己的审题过程,只要解题结果。在高中物理学习过程中,学生要解决许多应用题目。部分学生认为解决应用题目就是利用题目中的信息,将物理公式套到题目中。这样的态度极大地影响了学生的信息提取能力。

其次,部分学生的信息提取方法不当。在社会快速发展的今天,许多学生的思维越来越开放,他们接受到不同的思想方式,个人逻辑思维结构也不尽相同。随着社会发展节奏的加快,部分学生过分追求做事的速度。

二、高中学生物理信息提取错误的矫正方法

1.引导学生掌握正确的信息提取步骤

信息提取作为学习与审题的重要前提,成为许多高中物理教师关注的重点。需要对学生信息提取能力进行培养。在阅读物理信息时,教师要引导学生遵守以下步骤:

首先,教师要引导学生浏览信息,全面分析信息。每看到一个物理题目,学生都需要对题目本身进行精细地阅读,明确自己要做什么,解题的目标是什么,在第一时间思考解决问题的多种方法。

其次,教师要引导学生细读信息,从中提取有利于解题目标实现的信息。物理问题的解决途径要么从条件入手,要么从结论入手。引导学生从条件与结论两个方面入手去提取必要的信息,有利于信息提取过程的简单化。

最后,信息提取是否正确,需要在解题过程中进行验证。提取的信息过多,会加大解题的难度。在完全理解物理信息后,将未知的信息与已知的信息联系,利用物理知识的支持去发现其中的关系,有利于提高信息提取的质量。

2.传授正确提取信息的思维逻辑方法

在高中物理学习中,许多学生因为定势思维,总是抓不住关键信息,只有一种信息提取的思路。学生会遇到信息提取思维僵化与思维混乱的问题,大多数学生无法理解信息中的物理概念。在物理教学中,教师可以借助物理概念进行教学,培养学生的信息提取能力。物理概念的推导过程与审题过程极为相象,让学生在物理概念学习中掌握信息提取的思路与方法,能够让学生的信息提取能力自然而然提高。

3.引导学生反思信息提取的行为

信息提取错误的矫正,需要学生反思自己的信息提取行为。在每一次提取信息之后,教师都要引导学生进行反思,对信息提取行为进行讨论,让学生更加全面地认识题目信息,在反思中规范自己的解题过程。在讨论中,学生可以分享他们的信息提取技巧。一些学生会分享“划关键词”的方法,一些学生会分享“将条件与结论连线”的方法。反思中产生的信息提取技巧,往往能给学生更多的信息提取思路,也会简化学生的信息提取过程。

三、结束语

综上所述,信息提取是审题的第一步,也是学习的重要环节。学生只有具有良好的审题能力,才能对信息进行进一步地分析与处理,使提取到的信息转化成为自己的学习能力。信息提取能力的培养需要长期训练,更需要教师的引导与纠正。更新物理教学观念,在课堂活动中有意识地培养学生的信息提取能力,才能促进高中学生物理信息提取能力的提高。

【参考文献】

[1] 唐安平. 高考物理如何审题[J]. 高中数理化,2014(05).

生物信息学的方法范文第3篇

[关键词]高职院校;物流信息管理;教学效果

doi:10.3969/j.issn.1673 - 0194.2015.18.173

[中图分类号]F252-4;G712.4 [文献标识码]A [文章编号]1673-0194(2015)18-0-02

物流信息管理是基于物流产业对信息系统的应用和分析设置的一门课程,也是高职物流管理专业的一门核心课程。通过学习,使学生掌握物流信息管理方面的知识和技能,让学生了解物流信息系统开发的过程,能够使用主要物流信息技术与设备,具备物流管理信息系统初始化、操作和日常维护能力,培养学生自主学习和分析解决问题的能力,为学生顶岗实习夯实基础。

1 当前高职院校物流信息管理课程教学存在的问题

传统的物流信息管理课程教学主要存在以下问题:一是课程内容只注重物流信息技术和物流信息系统的理论介绍,而没有重视其在物流管理中的应用,脱离实际,不符合高职院校培养应用技能型人才的要求;二是课程教材与教学内容更新较慢,教学内容的前沿性和创新性不足;三是教学方式简单,尤其是实训环节,仍以教师讲为主,学生只会照搬照抄,缺乏独立思考和分析,不利于培养学生的自主学习能力;四是实践教学环节薄弱,缺少专门的物流信息系统操作实训室及相关教学软件,不利于培训学生的实际操作能力。

因此,如何引起学生重视、激发学生学习兴趣,如何在教学中提高高职物流信息管理课程教学效果、体现高职院校物流管理专业的教学特色,如何培养学生的综合素质和创新能力,真正突显出这门课程在物流管理课程体系中的重要性,对于培养适合时代要求的现代物流人才十分必要。笔者通过这几年的课程改革与教学实践,认真思考,就如何提高物流信息管理课程教学效果浅谈几点看法。

2 高职院校提高物流信息管理课程教学效果的建议

2.1 从企业实际需求出发确定课程教学目标

培养高素质技能型物流管理人才是高职院校物流管理专业的培养目标。而物流信息管理本身又是一门理论与实践并重的课程,理论性、技术性内容较多,对于高职院校学生来说比较抽象、难学,加上目前高职院校学生知识结构不完善、学习方法不科学等诸多不利因素,使得物流信息管理教学难度加大,学生缺乏学习兴趣,达不到理想的教学效果。

因此,在设计高职院校物流信息管理教学目标时,应紧密对接物流企业对物流信息技术人才的知识能力与素质要求,不再强调传统教学目标中一些理论性过强、应用率不高的内容。若按照企业管理层次划分高职学生就业岗位,他们处于执行层;若按照在信息系统的层次划分,他们处于运行控制和业务处理层(见图1)。

作为这一层级的员工,在学生阶段除应掌握基本的信息技术应用和操作,如办公软件、物流信息系统等软件的使用以及条码设备等硬件的使用外,还应具备一定的综合素质和认知能力。通过以上分析,确定物流信息管理课程的具体教学目标如下。

首先,知识目标:

①了解物流信息化发展情况及相关基本概念。

②理解信息系统开发和信息平台搭建的过程及原理。

③熟悉各物流信息技术的应用及原理。

④熟练掌握物流信息系统的结构和操作规程。

⑤掌握物流信息安全管理的内容。

其次,能力目标:

①能够快速适应物流信息化发展。

②能够组织物流信息系统开发。

③能够熟练使用各种先进的物流信息技术。

④能够熟练操作物流信息系统。

⑤能够构建物流信息安全体系,重视物流信息管理的安全性问题。

最后,素质目标:

①培养学生团队合作的意识。

②培养学生友善沟通的作风。

③培养学生诚信处事的态度。

④培养学生爱岗敬业的精神。

⑤培养学生踏实肯干的品质。

2.2 结合具体工作岗位职责开发课程标准

2.2.1 课程标准设计理念

物流信息管理应打破传统学科课程模式,以黄炎培提出的“手脑并用,教学合一”的观点为基本指导思想进行课程设计,即:以提高学生职业能力为课程目标,以校企合作为平台共同开发课程,以企业真实工作任务作驱动,以学生为主体,多种教学方法并用组织课程教学实施,用职业技能比赛促进学生实践技能的提高,充分体现培养学生综合职业素养的育人理念。

2.2.2 课程标准设计思路

首先,聘请物流行业企业专家、物流基层管理技术人员和物流专业优秀毕业生与物流管理专业专职教师共同组建课程开发团队。

其次,深入企业进行调研,以物流信息岗位需求为导向,结合物流企业生产实际,分析不同类型行业、企业对物流信息管理人才需求的层次、工作岗位职责、标准、能力以及职业素质的要求,然后由校企双方合作确定该门课程的知识、能力、素质目标及教学内容和课程体系。

最后,依据物流行业各职业岗位的职责和标准,结合职业资格考试的相关内容,设计制定物流信息管理课程更具科学性、操作性和规范性的课程标准,其中包括课程目标、课程任务、课程内容、学习情境、教学模式、评价方法、教学建议等内容(见图2)。

2.3 按照物流信息作业的基本顺序设计课程内容

其教学内容主要包括以下几个方面。

物流信息识别与采集:运用条码技术、射频技术学会采集货物信息。

物流主要信息技术应用:运用企业的仓储和运输等管理信息系统以及数据库、物流信息分类编码等技术对采集的数据进行加工;运用EDI技术、EOS技术进行物流信息的传递;运用GPS技术、GIS技术对物流信息进行动态跟踪与定位。

物流主要业务环节信息管理:运用所学物流信息技术及方法对包括仓储、运输、配送在内的物流主要业务环节进行信息管理。

物流信息系统开发与安全管理:物流信息系统的开发及安全管理。

2.4 采用“教、学、做”一体化的课程教学模式

高等职业教育培养的是高技能实用型的专业人才,理论联系实际,学以致用是其最大的特点。而当前高职物流信息管理课程大多采用传统教室教学与上机实训交替进行的教学模式,即:实训和理论是在两个不同的空间和时间完成的。上机实训时,理论基础不扎实的学生可能会由于不熟悉理论知识而盲目操作;而对于理论扎实的学生,则可能在短时间内就能完成实训内容,大部分课堂时间又被浪费。

因此,结合高职物流专业物流信息管理课程特点,我们采用“教、学、做一体化”教学模式:在理论课程的教学环节中,融入实践教学内容,而基本理论的讲解则主要是服务于实验和实践,最终目标是提高学生信息处理和技术运用的能力。该课程针对每一学习情景,结合实际需要,采用“课堂内深化理论知识+校内模拟实践操作+校外参观演示认知及顶岗实习”的课程教学模式,实现“教、学、做”一体化,将学生从原来被动的学习转化为主动学习,突出学生的主体作用,彻底改变教与学分离的现象。具体做法如下。

首先,课堂内通过教师讲解、学生自学拓展、动手体会理解的方式实现理论知识的深化。其次,校内模拟实践操作充分利用校内物流信息实训基地,让学生在模拟环境下接触使用各物流信息技术,操作物流信息管理系统,掌握物流信息管理工作流程。最后,在校外通过参观认知真实作业环境,使学生先具有感性认识,在校外企业进行顶岗实习,在真实环境下运用所学知识,解决实际问题,提升学生职业能力,加强学生就业适应能力。

2.5 灵活运用多种先进的教学技术和教学方法

根据课程内容和学生特点,灵活运用各种教学方法,引导学生积极思考、乐于实践,提高教学效果。在采用各教学方法时,建议将学生分组,以组为单位完成各项任务,但同时也要突出个人自我分析和解决问题的能力。

2.5.1 引导文教学法

在布置某项任务时需要让学生掌握必备知识时,采用引导文教学法。教师可先根据知识点设计引导文,在引导文中提出问题即任务,并讲明任务要求和能力要求,然后按资讯、计划、决策、实施、检查和评估6个步骤引导学生自学,最后教师负责解答学生的疑问(见图3)。

2.5.2 模拟实践教学法

在进行物流管理信息系统综合操作时,采用模拟实践教学法。模拟实际情境,将每组学生分角色,按角色完成岗位任务,看哪一组完成的又快又好。在介绍各物流信息技术操作使用时,采用模拟演示法,充分利用实训室的仪器设备、录像、PPT等教学设备进行模拟演示,观看演示后让学生自己操作。演示时不仅对各物流信息技术进行操作演示,还要讲解其工作原理,加深学生对物流信息技术的理解。

2.6 采用多元评价和过程考核和结果考核相结合的考核方式,调动学习积极性

该课程考核分四部分:一是平时学习表现占10%,根据学生在学习过程中的表现进行成绩评定,主要根据学生的学习态度和参与积极性高低;二是平时作业占10%,根据课程教学安排和学习测评的要求,规定学生必须按时完成相应的任务和作业,按完成情况考评;三是理论知识测试占30%,利用网上教学资源,进行自主学习,并自行进行网上测试,主要考核学生对理论知识的掌握和自学能力;四是课堂实践操作技能考核占50%,主要考核学生的实际操作能力及实际解决问题的能力。

3 结 语

高职院校物流信息管理课程在教学过程中要努力将理论知识学习和实践应用合二为一,并尽量运用多种教学方法和教学手段来调动学生参与积极性,才能达到提高课程教学效果的目的。

主要参考文献

生物信息学的方法范文第4篇

【关键词】职业教育;整合;信息技术

一、信息技术与物理教学整合的原因分析

在当前的教育体系中,信息技术与学科教学的整合是教师教学关注的重点。职业教育中的物理学作为大部分自然学科学习的入门知识,在工程建设的工程技术部门具有广泛的应用前景。物理学内容的概念多、知识面广、应用性强等特点使它在锻炼学生的逻辑思维、学习后续专业课等方面起到了良好的铺垫作用。在物理教学中融入信息技术可以提高课堂上的教学效率,帮助学生充分认识物理教学的重要性,让信息技术更好的支持课堂物理教学。

二、信息技术与物理教学整合的方法探究

(1)研究教学方法创新。在物理课堂教学实践中,并不是要求用信息技术来支撑原来的教学,要结合学生日常的学习特点和教师的教学内容,探寻一种新的教学方式。第一,建立虚拟实验室。实验室教学是提高学生对物理实践认识的重要手段,可以帮助学生进一步理解和掌握课堂上的理论知识,为将来的实践打下良好的基础。当前物理实验室教学主要存在实验原理理解难度大、不能观察到微观现象、实验步骤繁琐,危险性高,部分实验无法完成等问题,说明目前的物理实验教学已不能满足当前物理教学的要求。为此,就必须对实验方法进行创新,这个过程并不是仅仅依靠传统的实验手段就可以完成的,要与信息技术相结合。因此,建立虚拟实验室是提高物理实验教学比较理想的途径。第二,开发教学专用工具。在物理教学中,名称符号、图表、公式和图形等使用的频率非常高,教师编辑这些内容时要耗费很多时间。为了解决该问题,可以开发专用的教学工具,借助这些软件,可以实现学生自主学习,提高学生的动手能力。(2)研究信息技术的优势。第一,激发学生的学习热情。由于物理学习的难度较大,当前的职业教育学生往往存在厌学、基础薄弱等问题,学习兴趣的缺失是首先要解决的难题。在物理教学中融入信息技术,可以提高学生参与教学的热情,通过看到和听到演示实验演示看不到、听不到的物体或物质的内部的变化,这样可以提高学生的逻辑思维能力,培养其想象力,可以激发学生学习物理的学习热情。第二,创设学科教学情境。借助信息技术,可以创造一个良好的学科教学情境。采用多媒体技术创设教学情景,可以帮助教师突破电工教学中的一些难点知识,多媒体教学打破了时间和空间的限制,将课本上理解难度大、过于抽象的知识直观的展现在学生的面前,降低物理学习的难度。第三,培养学生创新能力。通过多媒体技术模拟实验的辅助,模拟一些重要的,但在现实实验环境下难以完成的电学实验,可弥补常规实验仪器的不足,提高电工实验的演示效果。第四,建立仿真实验室。在当前,一些物理电学仿真软件已经被开发出来。应用这些电子元件,可以搭建自己的电路。连接串联与并联电路、用伏安法测试电阻、测量路端电压、用惠斯通电桥精确测量电阻、用电磁继电器实现对电路的简单控制。(3)信息技术与物理教学整合的要点。第一,以学生认知为中心。在实际的操作中,要把学生认知作为整合工作的中心,强调信息技术是为实现学生的学习目的服务的。第二,以物理教学为主体。在整合过程中,要正确认识信息技术与物理教学的关系,信息技术只是用来支撑物理教学的,因此,整合的主体还是物理教学。要根据物理学科的特点,利用信息技术弥补课堂教学的不足,实现创新教育,让信息技术为物理教学提供良好的后盾支持。第三,课内课外相结合。物理课本上的知识是满足不了学生的学习要求的,还必须注重课外知识的了解。为此,可以利用信息技术,把内容相近的学科知识按照专题按照学科专题网站建设,建设网络学习资源库、智能化模拟演示库等支撑环境,全面补充学生的课外知识。

综上所述,信息技术与职业教育物理教学的整合是十分必要的,是提高教学质量和教学效率的有效手段。在整合过程中,要考虑多方面因素的影响,不能仅仅只是用信息技术来支撑原本的教学形式,要在教学方法不断创新的基础上,利用信息技术来为该创新方法提供最佳的技术支持。

参 考 文 献

[1]秦建国.职业教育物理实验教学初探[J].技术与市场.2008(9)

生物信息学的方法范文第5篇

人类基因组计划的实施为分子生物学家提供了大量的生物组学数据,分析和处理这些数据以探索其中隐藏的生物学奥秘需要综合利用数学、信息科学与物理学等知识,生物信息学由此应运而生[1]。它是分子生物学与上述学科交叉结合的产物,其研究已经渗透到生命科学的各个领域并极大促进了生命科学及相关学科的发展,已成为生命科学研究者强有力的辅助工具之一。国内很多医学院校已开办生物信息学课程,多种专业选择其作为必修课或选修课。该课程旨在培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理和分析的能力,但该课程的教学研究仍处于起步阶段,缺乏完善的教学模式和有效的教学方法,如何在医学院校开展生物信息学教学还有待进一步探索。

1 课程开设的重要性

生物信息学跨越了整个生命科学领域,是一门实用性很强的学科,也是未来生物医学的重要研究工具。生物技术、计算机和互联网的飞速发展引领了一个生物医学大数据时代,生物信息学在生命科学领域的地位也愈发重要。利用生物信息学的知识和方法能够深入挖掘和剖析海量生物学数据,进而探索隐藏在数据背后的生物学奥秘。无论是从分子生物学的角度阐述疾病病因,还是对疾病的预防、诊断、防治与药物设计,生物信息学均发挥了十分重要的作用,掌握该课程的基本知识和理论无论对以后的科学研究还是从事一线医务工作都具有比较深远的意义。因此,在医学院校部分专业(如:生物统计、药学等)开设生物信息学课程具有重要意义。

2 生物信息学教学存在的问题

2.1 课程内容与教学课时不成比例

生物信息学是一门综合性学科,理解和掌握该课程需要具有一定的计算机、数学和分子生物学等的背景知识。医学院校学生普遍存在理科知识比较薄弱,因此,讲解透彻该门课程需要教师在课堂上花费一定的时间普及相关背景知识。然而由于医学院校学生课程门类众多,客观条件决定无法为生物信息学安排足够多的课时。较之生物信息学繁多的内容而言,课时分配明显不足。在课时相对较少的情况下,无法深入讲解将每个章节的内容。

2.2 教学师资力量薄弱

生物信息学作为一门交叉学科,要求任课教师精通生物学、计算机和统计学等相关知识。由于国内生物信息学兴起时间较短,培养人才数量有限,且有限的人才都流向了一流的学校,普通高校无法招到专业对口的教师。因此,能够胜任生物信息学教学任务的老师十分匮乏。以该校为例,生物信息学课程没有固定的任课教师,基本由生物学、医学统计学教师完成,这些老师中大多数无法完全胜任生物信息学的教学任务。最终致使生物信息学教学质量不高。

2.3 教学模式落后

虽然多媒体已被广泛应用于生物信息学的教学中,但由于该课程涉及内容多且有大量的数据库和软件知识,导致多媒体课件的容量非常大,教师在课堂上基本是照本宣科的读完课件完成教学任务而已,忽略了学生的接受能力。这种教学模式虽然运用了先进的教学工具,但实质上采用的还是传统的“灌输式”教学,学生仍然是被动地学习。

2.4 实践教学流于形式

生物信息学是一门实践性很强的学科,实践课程非常重要。然而在教学过程中,由于各种原因实践课往往流于形式,原因主要包括:(1)教学设备及手段落后。虽然有些学校有计算机室,但计算机配置较低且未提供连网服务,生物信息学很多知识的学习需要借助互联网,例如:各种数据库、在线软件等,导致学生无法亲自操作而降低实践课学习效果;(2)课时少、内容多。生物信息学的章节往往涉及到很多软件和平台,甚至有些软件需要编写程序。在实践课时少的情况下,无法在短时间内让学校亲自操作每一种软件。

3 教学改革

3.1 针对不同专业精选教学内容

针对生物信息学内容繁多的事实,应针对不同专业特点精心挑选课授课内容,在有限的课时中让学生学到最基本且重要的生物信息学理论知识。另外,要善于挖掘课外时间,组建课外兴趣小组,设置研究课题作为课外作业,巩固和加深学生对生物信息学的理解。

3.2 培养和引进专业人才

教师知识的渊博程度和教学水平的高低对教学效果的影响十分明显。因此,在教师队伍建设上应采取“走出去,引进来”的措施,一方面挖掘该校教师的潜能,支持和鼓励该校年轻教师到国内外知名高校访学和进修,着力提高该校教师自身的知识素养与技能;另一方面提供丰厚条件引进国内外生物信息学高层人才,为生物信息学教学队伍增添新鲜血液。此外,还可通过定期或不定期举办讲座等方式创造机会加强该校教师及与兄弟院校的交流合作,加强学科建设,提高生物信息学教师的综合素养。

3.3 推进“教、学、研”一体化创新教学模式

针对生物信息学课程的特点,一方面根据课程内容设计小型科研课题激发学生的科研兴趣;另一方面鼓励并指导学生申报学校、省级或部级大学生科研项目,并鼓励学生参与教师的科研项目,积极开展“教、学、研”一体化的创新教学模式,即融教师的“教”和学生的“学”,以及教师和学生共同参与到“研”的过程于一体[2]。通过这种教学模式能够极大激发学生对生物信息学课程的兴趣和创造力,促使学生快速高效地掌握生物信息学理论和实践知识,有利于学生变被动的学习为主动探究式学习。与此同时,也能够让学生尽早地融入到生物学科学研究的大环境中来,学会合作、学会创造,真正地做到学以致用。

3.4 加强实验课教学

生物信息学实验课教学离不开计算机和网络,加强实验课教学需要在现有设备的基础上,升级计算机配置,并为每台计算机提供上网功能,保障实验课教学顺利进行。积极鼓励学生自带计算机,方便课后继续学习。此外,充分利用发达的互联网技术,创建网上教学平台并将教学内容,最新分析软件等传递给学生,通过教学平台加强与学生的交流互动,及时解决学生学习过程中遇到的问题。在教学内容上,要精简实验课内容,选择有代表性的软件和数据库进行深入讲解,将其它的软件、数据库等相关知识设计成小型研究课题作为作业布置给学生,提高学生自主探索的学习能力。