首页 > 文章中心 > 常用数学建模方法

常用数学建模方法

常用数学建模方法

常用数学建模方法范文第1篇

摘要:综述 数学建模方法

前言:数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。数学模型是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。在21世纪新时代下,信息技术的快速发展使得数学建模成了解决实际问题的一个重要的有效手段。

正文:自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。而数学建模作为数学方面的分支,在其中起到了关键性的作用。

谈到数学建模的过程,可以分为以下几个部分:

一.模型准备

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

二.模型假设

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

三.模型建立

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构。

四.模型计算

利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。其中需要应用到一些计算工具,如matlab。

五.模型分析

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

六.模型检验

将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学建模中比较重要的是,我们需要根据实际问题,适当调整,采取正确的数学建模方法,以较为准确地对实际问题发展的方向进行有据地预测,达到我们解决实际问题的目的,

在近些年,数学建模涉及到的实际问题有关于各个领域,包括病毒传播问题、人口增长预测问题、卫星的导航跟踪、环境质量的评价和预测等等,这些就能说明数学建模涉及领域之广泛,针对这些问题我们需要采取对应的数学建模方法,采用不同的数学模型,再综合起来分析,得出结论,这需要我们要有一定的数学基础和掌握一些应用数学方法,以适应各种实际问题类型的研究,也应该在一些数学方法的基础上,进行不断地拓展和延伸,这也是在新时代下对于数学工作者的基本要求,我们对数学建模的所能达到的要求就是实现对实际问题的定性分析达到定量的程度,更能直观地展现其中的内在关系,体现数学建模的巨大作用。

而在对数学建模中的数据处理中,我们往往采用十类算法:

一.蒙特卡罗算法

也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。如粒子输运问题。

二.数据拟合、参数估计、插值等数据处理算法

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具,而在其中有一些要用到参数估计的方法,包括矩估计、极大似然法、一致最小方差无偏估计、最小风险估计、同变估计、最小二乘法、贝叶斯估计、极大验后法、最小风险法和极小化极大熵法。最基本的方法是最小二乘法和极大似然法。数据拟合在数学建模中常常有应用,与图形处理有关的问题很多与拟合有关系。

三.线性规划、整数规划、多元规划、二次规划等规划类问题

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。它尤其适用于传统搜索方法难于解决的复杂和非线性问题,在运筹学和模糊数学中也有应用。

四.图论算法

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,其中,图论具有广泛的应用价值,图论可将各种复杂的工程系统和管理问题用“图”来描述,然后用数学方法求得最优结果,图论是解决许多工程问题中算法设计的一种有效地数学模型,便于计算分析和计算机存储。

五.动态规划、回溯搜索、分治算法、分支定界等计算机算法

动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解。分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

六.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法

模拟退火算法的依据是固体物质退火过程和组合优化问题之间的相似性。物质在加热的时候,粒子间的布朗运动增强,到达一定强度后,固体物质转化为液态,这个时候再-进行退火,粒子热运动减弱,并逐渐趋于有序,最后达到稳定。

“物竞天择,适者生存”,是进化论的基本思想。遗传算法就是模拟自然界想做的事。遗传算法可以很好地用于优化问题,若把它看作对自然过程高度理想化的模拟,更能-显出它本身的优雅——虽然生存竞争是残酷的。 遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索 。

神经网络从名字就知道是对人脑的模拟。它的神经元结构,它的构成与作用方式都是在模仿人脑,但是也仅仅是粗糙的模仿,远没有达到完美的地步。和冯·诺依曼机不同-,神经网络计算非数字,非精确,高度并行,并且有自学习功能。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

七 .网格算法和穷举法

对于小数据量穷举法就是最优秀的算法,网格算法就是连续问题的枚举。网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

八.一些连续离散化方法

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

九.数值分析算法

在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、 函数积分等算法就需要额外编写库函数进行调用。

十.图像处理法

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

这十类算法对于数据处理有很大的帮助,甚至从其中可以发现在它们中的很多算法都是数学某些分支的延伸,可能我们不一定能掌握里面的所有算法,但是我们可以尽可能学习,相信这对我们今后的数学学习有很大的帮助,然后,就是数学模型的类别。

常见的数学模型有离散动态模型、连续动态模型、库存模型、线性回归模型、线性规划模型、综合评价模型、传染病模型等数学模型、常微分方程模型、常微分方程的数值稳定性、人口模型、差分方程模型,这些模型都有针对性地从实际问题中抽象出来,得到这些模型的建立,我们在其中加入适当合理的简化,但要保证能反映原型的特征,在数学模型中,我们能进行理性的分析,也能进行计算和演绎推导,我们最终都会通过实践检验数学建模的正确性,加以完善和提升,在对现实对象进行建模时,人们常常对预测未来某个时刻变量的值感兴趣,变量可能是人口、房地产的价值或者有一种传染病的人数。数学模型常常能帮助人们更好的了解一种行为或者规划未来,可以把数学模型看做一种研究特定的实际系统或者人们感兴趣的行为而设计的数学结构。

例如人口增长模型:

中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。人口数量、 质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。 在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展, 进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。 政府部门需要更详细、 更系统的人口分析技术,为人口发展策略的制定提供指导和依据。长期以来,对人口年龄结构的研究仅限于粗线条的定性分析, 只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。 随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。

人口增长模型是由生育、死亡、疾病、灾害、环境、社会、经济等诸多因素影响和制约的共同结果,如此众多的因素不可能通过几个指标就能表达清楚,他们对人口增长的潜在而复杂的影响更是无法精确计算。这反映出人口系统具有明显的灰色性, 适宜采用灰色模型去发掘和认识原始时间序列综合灰色量所包含的内在规律。灰色预测模型属于全因素的非线性拟合外推类法,其特点是单数列预测,在形式上只用被预测对象的自身序列建立模型,根据其自身数列本身的特性进行建模、预测,与其相关的因素并没有直接参与,而是将众多直接的明显的和间接的隐藏着的、已知的、未知的因素包含在其中,看成是灰色信息即灰色量,对灰色量进行预测,不必拼凑数据不准、关系不清、变化不明的参数,而是从自身的序列中寻找信息建立模型,发现和认识内在规律进行预测。

基于以上思想我们建立了灰色预测模型:

灰色建模的思路是:从序列角度剖析微分方程,是了解其构成的主要条件,然后对近似满足这些条件的序列建立近似的微分方程模型。而对序列而言(一般指有限序列)只能获得有限差异信息,因此,用序列建立微分方程模型,实质上是用有限差异信息建立一个无限差异信息模型。

在灰色预测模型中,与起相关的因素并没有直接参与,但如果考虑到直接影响人口增长的因素, 例如出生率、死亡率、 迁入迁出人口数等,根据具体的数据进行计算, 则可以根据年龄移算理论,从某一时点的某年龄组人数推算一年或多年后年龄相应增长一岁或增长多岁的人口数。在这个人口数的基础上减去相应年龄的死亡人数, 就可以得到未来某年龄组的实际人口数。对于0 岁的新生人口, 则需要通过生育率作重新计算。当社会经济条件变化不大时, 各年龄组死亡率比较稳定, 相应活到下一年龄组的比例即存活率也基本上稳定不变。 因而可以根据现有的分性别年龄组存活率推算未来各相应年龄组的人数。

通过这样的实例就能很细致地说明数学建模的方法应用,数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。它是将研究的某种事物系统,采用数学形式化语言把该系统的特征和数量关系,抽象出一种数学结构的方法,这种数学结构就叫数学模型。一般地,一个实际问题系统的数学模型是抽象的数学表达式,如代数方程、微分方程、差分方程、积分方程、逻辑关系式,甚至是一个计算机的程序等等。由这种表达式算得某些变量的变化规律, 与实际问题系统中相应特征的变化规律相符。一个实际系统的数学模型,就是对其中某些特征的变化规律作出最精炼的概括。

数学模型为人们解决现实问题提供了十分有效和足够精确的工具, 在现实生活中, 我们经常用模型的思想来认识和改造世界,模型是针对原型而言的,是人们为了一定的目的对原型进行的一个抽象。

随着科学技术的快速发展,数学在自然科学、社会科学、工程技术与现代化管理等方面获得越来越广泛而深入的应用, 尤其是在经济发展方面, 数学建模也有很重要的作用。 数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中,从而使人们逐渐认识到建立数学模型的重要性。数学模型就是要用数学的语言、方法去近似地刻画实际,是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、 图形或算法。也可以这样描述:对于一个现实对象,为了一个特定目的,根据其内在规律,做出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学建模的作用在21实际毋庸置疑,我们通过不断学习数学建可以掌握解决实际问题的强大武器。

参考文献:数学建模方法与案例,张万龙,等编著,国防工业出版社(2014).

常用数学建模方法范文第2篇

【关键词】数学建模;水文预报;水资源规划

中图分类号:TV12 文献标识码:A 文章编号:1006-0278(2013)07-202-01

近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。

数学建模在水文与水资源工程专业中更是发挥着重要的作用,尤其是在水文预报和水资源规划方面。

一、数学建模的介绍

(一)数学建模概述

数学建模是在20世纪60和70年代进入一些西方国家大学的,我国清华大学、北京理工大学等在80年代初将数学建模引入课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。

(二)数学建模的应用

数学建模应用就是将数学建模的方法从目前纯竞赛和纯科研的领域引向商业化领域,解决社会生产中的实际问题,接受市场的考验。可以涉足企业管理、市场分类、经济计量学、金融证券、数据挖掘与分析预测、物流管理、供应链、信息系统、交通运输、软件制作、数学建模培训等领域,提供数学建模及数学模型解决方案及咨询服务,是对咨询服务业和数学建模融合的一种全新的尝试。

(三)数学建模十大算法

1.蒙特卡罗算法,该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性。2.数据拟合、参数估计、插值等数据处理算法,通常使用Matlab作为工具。3.线性规划、整数规划、多元规划、二次规划等规划类问题,通常使用Lindo、Lingo软件实现。4.图论算法,这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决。5.动态规划、回溯搜索、分治算法、分支定界等计算机算法。6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7.网格算法和穷举法,网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。8.一些连续离散化方法,很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要。9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。10.图象处理算法。

二、数学建模在水文与水资源中的应用

(一)数学建模在水资源规划中的应用

全国水资源综合规划的目的是为我国水资源可持续利用和管理提供规划基础,要在进一步查清我国水资源及其开发利用现状、分析和评价水资源承载能力的基础上,根据经济社会可持续发展和生态环境保护对水资源的要求,提出水资源合理开发、优化配置、高效利用、有效保护和综合治理的总体布局及实施方案,促进我国人口、资源、环境和经济的协调发展,以水资源的可持续利用支持经济社会的可持续发展。

(二)数学模型在水文预报中的应用

水文预报是水文学为经济和社会服务的重要方面,特别是对灾害性水文现象做出预报,对综合利用大型水利枢纽做出短期、中期和长期的预报,作用很大。中国已开展预报服务的项目有:洪水水位与流量、枯水水位与流量、含沙量、各种冰情、水质等。

水文预报的方法,在产流方面常用降雨径流相关图,在汇流方面常用单位线。现在的发展方向是应用流域水文模型,根据流域上实测的降雨或降雪资料预报流域出口的流量过程。

在实际应用中,通过建立模型并求解,做出短期或中长期的预报,对防洪、抗旱、水资源合理利用和国防事业中有重要意义。

常用数学建模方法范文第3篇

1.生源的角度来说

目前独立学院招收的数学基础好的学生比例越来越少。而大学数学的好坏与高中数学基础密不可分。数学建模对学生的数学基础要求非常高,对计算机也有较高要求,所以在独立学院进行数学建模的选拔、培训、参加竞赛等都受到了很大的影响。

2.从独立学院的角度上来说

一般的重点院校都有数学建模的传统,有一套完善的数学建模体系。然而大量的独立学院是没有这个传统的,如果有都是依托本部资源,整合到本部去(当然这个是一个好办法)。独立学院如果想要在数学建模上有所收获的话,投入是很大的,比如师资、资金等等。这个收获的过程也是非常漫长的,一般的独立学院基本上不太愿意这样做。

3.学生学习的角度上来说

独立学院的学生思维活跃、兴趣广泛。有较强的组织能力和协调能力,在开展文体活动、知识竞赛等方面尤显突出,其水平一般不低于甚至超过普通本科高校的学生。由于数学抽象,逻辑性强,容易使部分学生望而生畏。但是,目前独立学院的公共数学基础课程中存在诸多问题。

二.适合独立学院的数学建模竞赛组织与辅导的系统方法

1.公共数学课程的教学改革

为了让学生对数学感兴趣,不害怕数学,对数学建模感兴趣,日常数学课程的教学非常重要,所以,公共数学课程的教学改革势在必行。数学建模首先要用数学的语言把实际问题翻译、表达成确切的数学问题。通过数学计算,然后把数学问题的解用非数学语言表述出来,这种“双向”翻译的能力恰是应用数学的基本能力。数学建模思想可以培养学生学学数学的兴趣,提高学生解决实际问题的能力。在教学过程中如何培养学生学习数学的兴趣,并提高他们学以致用的能力,这是我们各个大学数学教师所面临的一个难题,而数学建模为我们提供了一个很好的途径。数模思想还可以扩大学生的知识面,提高学生综合能力。同时,数模思想引入到数学课堂上可以提高大学的数学教学质量、丰富教学手段和教学内容,激发广大学生的求知欲,有效地培养学生的创新能力。

2.逐步建成完善的数学建模课程体系

2.1数学建模课程建设现状分析。

2.1.1教师素质参差不齐

独立学院大多都以青年教师为主,教学经验还处在一个不断积累的阶段,专业知识还有待提高,开展数学建模课程建设或者指导数学建模竞赛都有一定难度。在这种现状下组织与培训学生参加数模竞赛只能依葫芦画瓢,照搬母体高校的培训模式,如有的开设数学建模培训班,有的以学生自学为主,布置大量练习,以练代训,有的则通过数学建模协会普及建模思想与方法等,以保证培训质量,加快数学建模课程建设。

2.1.2学生数学基础薄弱

独立学院学生自身的高中基础知识系统性较差,理论功底普遍来说比较薄弱,在学习中对于抽象的理论讲授方式强烈排斥,课堂学习效率低下。而数学建模竞赛涉及的知识面很广,要学习的内容非常多,很多都是以前学习过程中没有涉及到的领域,比如新的数学方法、数学软件的应用、其他专业领域问题的背景等,指导教师受到自身专业的限制,不可能面面俱到地讲解,有时需要学生自己进行自学,这对自学能力欠佳、基础薄弱的学生来说无疑是一种挑战。

2.2数学建模课程建设探索及实践。

2.2.1开展数学教学课程改革

将数学建模思想和方法融人大学数学课程。把数学建模的思想和方法融人大学数学课程,以帮助学生初步掌握数学建模的思想和方法,是目前大学数学课程改革的重要方面。

2.2.2在有条件的班级开设数学建模相关课程

比如数学、计算机等理工科专业。没有系统的数学建模的学习,就是简单的数学公共基础课的数学基础是远远不够的,只有系统的学习数学建模才能出成绩。

3.充分发挥学生的重要作用

常用数学建模方法范文第4篇

微积分是现代数学和古典数学的分水岭,数学的发展和应用自此发生根本性变化.[1]经典的微积分方程建模方法在力学、声学、电磁学、热传输和扩散理论中,甚至在现代量子力学和相对论中取得巨大成功.然而,社会学家、经济学家、物理学家和力学家也发现愈来愈多难以用经典微积分方程建模的所谓“反常”现象[23],如在扩散和耗散中广泛观察到的幂律现象[34]以及非高斯非马尔科夫过程[56]等.

非线性微分方程模型是描述复杂物理过程的常用方法,已得到充分研究,其基本思路是假设线性力学本构关系或物理定律中的系数是依赖应变变量的.目前,复杂问题的非线性模型愈加复杂,参数很多.例如,岩土力学中的热电化力耦合模型需要四十多个参数,这些参数的物理意义和确定本身就是一个很大的问题.[7]

近年来引起广泛关注的分数阶微积分方法是复杂现象建模的另一个有力的数学工具,在一些领域获得引人注目的成功.[2,4]但是,该方法也有其局限性.首先,非常重要的空间分数阶拉普拉斯算子的定义并不统一,有关数值计算也困难重重[2,8];其次,分数阶导数阶数的物理解释还不成熟.绝大多数分数阶导数模型都是经验模型或唯象模型.[2,4]

由于实际复杂问题的微分方程模型经常难以建立,因此笔者对这些问题就放弃微分方程建模,直接采用统计模型来描述和分析.[6,9]但是,统计模型不能清晰地描述问题的因果性,物理概念和规律经常不很清楚,结果不精细,一些情况下难以满足实际工程的需要.[5,10]

在微分方程数值模拟方面,目前标准做法是先确定控制方程和边界条件,然后采用某种数值方法做仿真计算.相应的反问题则涉及确定边界条件、控制方程参数和边界形状等,但基本上是先有控制微分方程,然后再求数值解.如上所述,建立复杂问题的微分控制方程并不是一个简单的问题.而且,非线性控制方程和分数阶微分控制方程的数值求解也不是一个容易的任务.例如,边界元法利用微分方程的基本解,能够高效高精度地获得数值解.但是,绝大多数非线性模型的基本解很难找到[11],而现有的分数阶微积分控制方程的基本解又极为复杂,甚至没有显式表达,也不易得到[2].

为解决仿真这些复杂问题的微积分建模难题,本文提出隐式微积分方程建模方法.基本思路是边界元的逆向思维,即不需要知道微积分控制方程的表达式,而是先确定物理问题微积分方程的基本解或通解,相应的微积分方程存在但不一定能够推出其显式表达式.在数值模拟方面,仅需微积分控制方程的基本解和边界条件就可以进行数值仿真计算,得到模型的数值解,不需要从基本解来推导控制方程.这里“隐式”是指控制方程的显式表达式可以不需要或难以推导出来.在具体实施中可以利用描述一类物理问题的广义基本解或统计分布密度函数.

由于基本解和通解一般可表达为径向基函数,因此本文求解隐式微积分方程模型的主要数值技术是基于径向基函数的配点方法.[12]该类方法以距离为基本变量,不依赖于问题的维数,本质上是无网格无数值积分的方法,编程容易,能够计算高维复杂几何形状问题.

本文考察2类应用实例.首先,考虑多相软物质热传导的幂律行为.,特别是反常扩散行为中快扩散过程的统计建模.本文运用列维密度函数构造反常扩散现象的时间空间隐式微积分方程模型.本文模型比现有模型简单,物理和统计概念清晰.

本文第1节通过多相软物质幂律热传导建模,引进隐式微积分方程建模方法,并采用奇异边界法给出仿真数值结果,然后在第2节给出列维稳态统计分布的隐式微积分方程模型,最后在第3节总结隐式微积分方程建模方法的特点和优势,以及若干有待研究解决的问题.

①证明过程包含在向J Comput Phys投稿的文章“Threedimensional Rieszkernelbased fractional Laplacian equation and its numerical solution”中,作者为陈文和庞国飞1稳态幂律热传导的隐式微积分方程模型分数阶拉普拉斯算子(-Δ)s/2是一种典型的微分积分算子,能够用单参数s(0到2之间任意实数)表征物理力学系统的空间非局部性;作为经典整数阶拉普拉斯算子(s=2)的一般形式,可用于软物质中声波传播的能量耗散[13]、湍流扩散[16]、地下水溶质运移[1819]、分形空间中的电磁场[20]和非局部热传导[2122]等物理力学问题的建模.算子(-Δ)s/2满足傅里叶变换[8]F{(-Δ)s/2u(·)}=ksF{u(·)}(1)式中:k为频域中的波数.利用傅里叶逆变换直接推导算子的显式表达式很困难,现有的二维和三维分数阶拉普拉斯算子的显式定义不统一.[13,2224]文献中常用的向量积分显式定义与式(1)不符,是一个近似定义,算子的数值离散也较为困难.例如,有限元离散的弱形式含有二重向量积分,具有非局部性,生成的刚度矩阵不再是带状稀疏阵,而是满阵.[14,21]总之,目前尚无统一的且易于数值计算的分数阶拉普拉斯算子定义.

采用隐式微积分建模方法,笔者不考虑分数阶拉普拉斯算子的具体表达形式,而是从其逆算子(分数阶里斯势)出发,直接构造分数阶拉普拉斯算子的基本解.为不失一般性,三维空间中的分数阶里斯势核函数的定义[8]为u*(x,ξ)=1x-ξ3-s (2)式中:x-ξ表示点x与ξ之间的欧氏距离;s为分数阶势的阶数.经典整数阶拉普拉斯算子(s=2)的基本解是分数阶的一个特例,u*(x,ξ)=1x-ξ (3)以式 (2)作为分数阶拉普拉斯算子(-Δ)s/2的基本解.一般物理问题的分数阶拉普拉斯的阶数s是从1到2之间的实数.可以证明,这样定义的分数阶拉普拉斯算子满足傅里叶变换定义.①

复杂介质往往存,x∈ΩR3 (4)式中:u为无量纲化的温度函数;s表征材料的非局部性,刻画幂律特征;Ω为计算区域,如图1所示的圆柱.圆柱长为6,底面半径为1,圆柱的中心与坐标原点重合.在本项研究中,(-Δ)s/2按式(2)的分数阶里斯势基本解定义,因此就用这个问题验证基本解式(2)定义的分数阶拉普拉斯算子的隐式微积分模型.需要强调的是,这里并不需要知道分数阶拉普拉斯算子的显式表达式.

基于里斯势的分数阶拉普拉斯算子基本解表达式(2),采用奇异边界法[2526]可直接求解稳态方程式(4)和相应的边界条件的稳态热传导问题.奇异边界法是一种边界型径向基函数配点法,以基本解作为插值基函数.该方法假设基本解源点奇异时的源点强度因子存在.本文采用基本解积分平均计算源点强度因子.

为验证奇异边界法,先考察整数阶拉普拉斯方程(s=2)的数值解精度.图2给出精确解和数值解在圆柱中轴上的值.随着边界离散点数的增加,数值解逐渐逼近精确解,可见奇异边界法具有较好的收敛性.

一般情况下并不知道分数阶拉普拉斯方程式(4)的精确解,但可以通过指定与整数阶方程相同的边界条件考察分数阶方程的数值解是否逼近于整数阶方程的精确解(当s趋于2时).先考察圆柱中轴{(x,y,z)|x=0,y=0,-3≤z≤3}上的温度随式(4)中分数拉普拉斯算子阶数s的变化,数值结果见图3.在完全相同的边界条件下,当s趋于2时,隐式分数阶拉普拉斯方程的解单调趋近于整数阶拉普拉斯方程的解.此外,s越小,材料的非局部性越强,中轴的温度越低.

2基于列维统计分布的非稳态反常扩散问题的隐式微积分方程模型扩散现象广泛存在于自然界和工业界中,是极其重要的物质迁移和输运的物理力学过程.越来越多的研究发现,经典的扩散方程并不能很好地描述湍流,如高温高压下等离子体扩散,金融市场变化,高分子动力学,以及软物质的热传导、扩散和电子输运等反常扩散过程.所谓的反常扩散[19,27]是指不符合菲克(Fick)扩散定律的扩散行为,包含慢扩散(subdiffusion)和快扩散(superdiffusion)2种形式,通常表现出长程的时间空间相关性.近年来的研究发现空间分数阶扩散方程能较好描述反常扩散中的快扩散现象;但时间空间非稳态分数阶方程的显式表达式难以得到或不准确,且难以数值计算.

本节考虑用列维统计分布的密度函数构造非稳态空间分数阶反常扩散方程的基本解,进行隐式微积分方程建模.这不同于第1节所涉及的稳态问题.

以上分析表明:高斯分布是整数阶菲克扩散模型的基本解核函数,一维列维分布是一维问题分数阶快扩散模型基本解的核函数.列维稳态统计分布是经典扩散方程和空间分数阶扩散方程基本解核函数的两类特殊情况.因此,可以用列维稳态统计分布的概率密度函数构造多维分数阶时间空间扩散方程的基本解,并用于建立快扩散过程的隐式微积分建模.由n维s稳态列维分布概率密度函数得到的n维空间分数阶扩散方程基本解为G(x,y,t)=H(t)tn/sLx-yt1/s (15)这里列维分布是空间分数阶扩散方程基本解的核函数,深刻揭示多维快扩散过程的统计本质和空间相关性.利用隐式微积分方程模型的基本解式(15),可以用试验或观测数据确定扩散过程所对应的列维统计分布中的稳态指标参数s得到基本解,然后根据可测边界上得到的边界条件值进行数值仿真计算,避免显式表达微积分方程模型的很多困难.

3结论

传统的数学物理方程和数值计算方案一般先根据问题的物理特征和理论采用数学微积分方法建立控制方程和边界条件,然后采用数值方法求解这些偏微分或微分积分方程问题.不同于标准的理论建模和数值仿真方案,本文提出的隐式微积分建模思路是先有问题的基本解,然后直接求解问题.微分控制方程表达式本身不再是必需的环节和对象.

隐式微积分建模的基本解或统计分布可以相当广泛,可极大地推广微积分建模的适用范围.例如,不同于传统的先有微分方程模型再寻找基本解的边界元法,可以直接根据问题的物理特征构造不均匀介质的基本解或通解,甚至可以直接构造非线性问题的基本解,而不用考虑微积分方程的表达形式,可将数学力学建模和数值建模更加紧密地结合起来.

此外,隐式微积分建模方法也将微积分建模与统计模型深刻紧密地结合起来,可由复杂问题的统计分布构造确定性的微分方程模型的基本解,建立确定性模型和随机模型内在联系的桥梁.基本解可以理解为物理场中的影响函数或势函数,由此可建立连续介质的隐式微积分建模与微观尺度的分子动力学和介观尺度的耗散粒子动力学的内在联系.

如何根据复杂问题的物理性质或统计分布构造基本解或通解等影响函数仍是有待深入研究的课题.

致谢:本文的第1节和第2节分别得到博士研究生庞国飞和博士傅卓佳的帮助,在此表示感谢.

参考文献:

[1]莫里斯·克莱因. 古今数学思想[M]. 张理京, 译. 上海: 上海科学技术出版社, 2009: 342383.

[2]陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010: 8285.

常用数学建模方法范文第5篇

关键词: 独立学院 数学建模 必要性

一、数学建模在高等数学教学中的重要作用

(一)数学建模融入数学教学中可激发学生学习数学的兴趣。现今大学数学教学普遍存在内容多、学时少的情况,为完成教学进度,很多教师在内容处理上,偏重理论与习题的讲解,忽略应用问题的处理与展开,使学生对数学的重要性认识不够,也不知道该如何应用,影响了学生的数学学习的兴趣。而数学建模是社会生产实践、医学领域、经济领域等生活当中的实际问题经过适当简化、抽象而形成的某种数学结构或几何问题,它体现了数学应用的广泛性,所以教师在教学过程中利用所学的数学知识引导学生积极参与到数学建模实例中,可以使学生感受到数学的生机与活力,感受到数学无处不在,感受到数学思想方法的无所不能,同时也体会到学习高等数学的重要性。把数学建模融入数学中教学可以充分调动学生应用数学知识分析和解决实际问题的积极性和主动性,使学生充满把数学知识和方法应用到实际问题中的渴望,把以往教学中常见的“要我学”真正变成“我要学”,从而激发学生学习数学的兴趣和热情。

(二)利用数学建模培养学生的创造能力,联想能力,洞察能力,以及数学语言的表达能力。由于数学建模没有统一的标准答案,方法也是灵活多样的,学生针对同一问题可从不同的角度、用不同的数学方法解决,最终寻找一个最优的方法,得到一个最佳的模型,因而有利于发挥学生的创造力。而对一个实际问题在建模过程中能否把握其本质,抽象概括出数学模型,将实际问题转变成数学问题,需要敏锐的洞察力和数学语言的表达能力。建模的过程同时也是将实际问题用数学语言表述的过程。

(三)数学建模可以培养学生团结合作的精神,交流、表达的能力。建模过程中学生每人的思想都必须通过交流才能达成一致,其结果还要用语言表达清楚。好的想法、大胆的创新,如果不表达出来,就不会被人们所理解和接受。

(四)数学建模可以提高学生数学软件的应用能力。利用数学建模竞赛前的培训和课外数学软件上机的实践,使大学生能够熟练掌握并应用数学软件,使数学软件应用能力得到一定程度的提高。同时有效利用培训时间,开设数学软件的专题教学,使学生更熟练地掌握并应用多种软件的操作和编程方法,有助于促进大学生综合运用软件知识、数学建模知识和数学基础知识解答现实问题的能力,也是对大学生动手和动脑能力一种综合培训,更是数学软件应用和大学数学应用等综合能力提高的有利时机。

(五)数学建模是提高青年教师业务水平的好帮手。通过数学建模竞赛,很多青年指导教师获益匪浅。这主要表现在两个方面:一方面,让自己在高等数学、概率论与数理统计、线性代数的教学过程中底气更足,理解更深。在上课进行讲解的时候可以理论联系实际,使得教学生动饱满,也可以提高学生的学习兴趣。另一方面,通过数学建模培训和竞赛,逼迫自己学习数学软件,特别是spass、matlab等数学建模常用软件,在边学边用的过程中,软件操作能力得到大大提高,这样又会反哺给下一届参赛学生,使得学生能够共同进步。

二、数学建模可以推动高等数学教学改革

(一)数学建模可以促进高等数学教学内容的改革。目前,大多数高校在高等数学的教学过程中偏重理论和计算,而忽略了概念产生的实际背景和对数学方法的实际应用。因此,在实际的高等数学教学中我们可以增加部分概念的现实背景材料和贴近实际生活的案例,使学生认识数学概念、原理和方法的形成过程,体会到数学思维的美妙,提高学生的学习兴趣。同时在课堂教学中还可以适当介绍运筹优化、统计与数据建模、决策分析等方面的知识。这些教学内容的改革可以使学生感受到数学来源于生活的本质。

(二)数学建模可以促进教学方法和教学手段的改革。传统数学教学基本沿用“老师讲、学生听,下课完成作业”的刻板模式,在教学中引入数学建模思想,增加数学建模内容,采用启发式教学和案例式教学,以学生为中心,以问题为主线,学生自己动手解决实际问题,充分激发学生学习数学的热情。例如:在以前的教学中,经常是上课讲什么下课就做什么的方式。但在数学建模教学过程中,教师可以根据学生实际情况布置建模题目,题目没有固定的方法,也没有固定的答案,可以让学生自由发挥。课后学生以小组为单位完成作业,以报告或者论文的形式提交上来。通过教师讲评和小组间同学间的相互交流和讨论,达到学生相互启发、相互学习、共同提高的目的。同时,数学建模也可以促进教师教学手段的改革,因为数学建模的过程中会遇到大量的数据、公式、图形、报表、文字、计算需要处理单纯靠手工是很难完成的,必须借助计算机和各种数学软件包完成,自然教师在演示案例时传统的黑板和粉笔以满足不了教学要求,必然导致教学手段的升级。

高等数学作为高校理工科甚至部分文科专业的基础课程,在培养学生的数学素质和创新能力起着重要作用,作为一种重要的数学思想和方法,数学建模在理论和实际应用之间建起了一座桥梁。在高校开展数学建模课程,开展数学建模竞赛,以及将数学建模的思想融入到数学类课程的教学实践中是非常必要的,它可以有效提高学生用数学知识解决实际问题的能力,增强学生应用数学的意识,激发学生的创造欲望和创新精神。

参考文献:

[1]谭永基.将数学建模思想融入通识教育数学核心课程[J].高等数学研究,2009.

[2]王茂之.数学建模培训课程体系设计探讨[J].数学教育学报,2005.