首页 > 文章中心 > 生物质研究

生物质研究

生物质研究

生物质研究范文第1篇

生化标记技术

目前,同工酶标记和贮藏蛋白标记在栝楼种质研究中比较常用。

1用于亲缘关系的判断

不同品种、产地栝楼的蛋白电泳图谱都会出现不同程度的差异[31]。孙稚颖等[32]采用SDS-聚丙烯酰胺凝胶电泳法,对山东栝楼农家栽培品种、野生种以及湖北栝楼的种子蛋白进行了分析。研究表明,山东优质农家品种仁瓜蒌、牛心瓜蒌的种子蛋白电泳谱图具有明显的相似性;小光蛋与野生栝楼的蛋白电泳谱图最相似;湖北栝楼与各山东品种在蛋白电泳图谱上有明显差异。这些结果结合性状特征从蛋白水平上说明:仁瓜蒌和牛心瓜蒌属于优质品种;小光蛋与野生品种较接近,品质稍差;湖北栝楼与栝楼是同科同属不同组别的物种。

2用于栽培品种的鉴定

同工酶电泳图谱谱带发生多态性变化,反映了生物在蛋白质水平上的多型性,可作为生物遗传变异的证据[33]。孙稚颖等[34]以过氧化物酶同工酶及酯酶同工酶分析为手段,以山东栝楼的各农家栽培品种以及野生种的幼苗为实验材料,进行了同工酶电泳分析,结果表明,各农家栽培品种间及与野生种之间的酶带数量、带级、位点及活性强度等的差异可作为品种鉴定的依据;根据其同工酶谱图的相似程度判断,牛心瓜蒌与仁瓜蒌,野生栝楼与小光蛋,大瓜蒌、八棱瓜蒌及地瓜蒌彼此间亲缘关系较近,这与贮藏蛋白电泳图谱相结合可以更准确的判断各品种亲缘关系的远近。

3用于雌雄性别的研究

栝楼种植时雌、雄比例对瓜蒌的产量起着关键性作用,在雌、雄植株区分方面生物技术优于传统的鉴别方法。于凤池等[35]对栝楼雌、雄不同器官进行过氧化物酶同工酶活性和电泳分析,成熟雌株叶片的过氧化物酶同工酶谱带比雄株多了第5条谱带(Rf=0.643);在成熟器官(叶片、卷须)中,雌株中的过氧化物酶同工酶活性比雄株强,但在幼嫩器官中两者差别不大。另有研究表明[29],雌、雄株的叶片、叶柄、卷须、茎尖的各种同工酶图谱均存在不同程度差异。过氧化物酶同工酶图谱分析:叶柄的图谱中出现了4条相关谱带;多酚氧化酶同工酶分析:幼苗叶柄、茎尖图谱中雄株各出现1条特征谱带,卷须、叶片、茎尖图谱中雌株各出现1条特征谱带。雌雄株的酯酶同工酶图谱、雌雄株不同部位的同工酶含量也表现出一定的差异性。

细胞学标记技术

细胞学标记技术主要是指染色体核型和带型分析,是细胞遗传学研究的基本方法。

1用于物种的鉴定

根据传统的理念,栝楼染色体的核型对称性、随体大小和数目等方面的差异可以作为分析栝楼不同基因型材料的亲缘关系及种质鉴定的方法。黄璐琦等[36]对国内栝楼属的8个物种进行了形态学观察和鉴定,发现了中药瓜蒌和天花粉的染色体特点为表现为八倍体,二倍体一般不能入药或甚至有毒副作用;并且,多倍体与器官特化以及地理分布尚未发现有规律的联系。

2用于染色体倍数与次生代谢物质相关性研究

杨福红等[37]人研究了人工诱变不同倍性染色体栝楼的生长发育及果实糖、酸含量变化,结果表明四倍体栝楼的长势、叶片中叶绿素含量、果实中总糖和总酸的含量明显优于二倍体;四倍体栝楼果实大小、质量、结实率和百粒重明显小于二倍体,差异极显著。黄秋波等[38]以五个不同产地的9种栝楼品系为实验材料研究了染色体倍性与物质积累之间的关系,9个品系中一类是染色体数目为2n=6X=66的六倍体,另一类是染色体数目为2n=8X=88的八倍体。八倍体栝楼在整个生长发育时期其叶片可溶性糖含量均高于六倍体,在盛花期时的差异达显著水平;二者叶片可溶性蛋白含量无明显差异,总体来看,以盛花期为限,之前,六倍体栝楼叶片可溶性蛋白质含量高于八倍体,之后,八倍体栝楼叶片中可溶性蛋白质含量相对更高;八倍体栝楼叶片叶绿素含量都低于六倍体,不同发育时期的相对差异幅度为4%~10%。这为栝楼优良品种的培育和多倍体育种提供了指导依据。

种苗快繁技术

1外植体选择研究

在已有的关于栝楼试管苗快速繁殖体系[39]和外植体取材研究[40]的基础上,杨晓伶等[41]以栝楼茎段、叶片、块茎幼苗的茎尖和带芽茎段进行了快繁外植体选择研究。结果表明,培养基MS+2mg/L苄氨基腺嘌呤(BA)+0.5~0.05mg/Lα-萘乙酸(NAA)可诱导块茎幼苗茎尖及带芽茎段产生丛生芽,在培养基MS+0.1mg/LNAA+0.2mg/LBA作用下生根,能够在移栽后实现快速繁殖,而茎段和叶片可形成愈伤组织,但不能形成根。

2最佳快繁条件研究

余慧琳等[42]通过对茎段腋芽的离体快繁研究,确定了形成无菌试管苗的最佳培养基为MS培养基+BA0.2~0.3mg/L+NAA0.1~0.2mg/L组合;继代增殖最佳培养基为MS培养基+BA0.1mg/LNAA0.1~0.2mg/L组合;生根最佳培养基为1/2MS+NAA0.2mg/L组合。陈惠等[43]研究发现将不定根根尖,接种在MS+BA4mg/L的培养基上光下培养效果最佳。兰伟等[44]研究并确定了适宜栝楼芽诱导、愈伤组织诱导与繁殖、生根的最佳培养基条件。有研究[45]对不同激素对栝楼试管苗生根影响进行了研究,6-苄基氨基嘌呤(6-BA)为1.5mg时对芽的诱导效果最好;采用MS培养基附加6-BA1.0mg/L+IBA0.3mg/L+NAA0.05mg/L增殖效果好;IBA比NAA更能促进生根。各种最佳条件的确立对于栝楼优质种苗选育、大规模细胞培养以提取有效成分的研究有着重要意义。

生物质研究范文第2篇

    研究中药的作用机制必须清楚中药作用后的物质变化,生物质谱可以用来对中药作用后的相关蛋白等大分子物质进行分析。刘鹏等[v]采用腹腔注射内毒素(LPS)复制内毒素肝损伤模型,清热解毒凉血化疲中药干预,用SELDI-TOF一MS技术分析大鼠血清差异表达蛋白,共获得与芯片结合的11个有效蛋白质峰,各组大鼠的血清内存在的差异表达蛋白,有助于内毒素肝损伤的进一步研究。此项工作需更进一步对产生差异的蛋白进行鉴定,才可揭示此类蛋白在中药干预机制中的意义或作用。

    2中药与生物大分子的相互作用

    研究中药化学成分与生物大分子的相互作用可以找到中药与靶分子的作用机制,进一步阐明中药的作用机制。生物质谱的软电离技术可以测得中药小分子与蛋白等大分子相互作用的化学计量比,计算二者之间的结合强度、确定药物的结合位点以及获得反应动力学等多方面的信息。主要有两种思路:(1)通过测定复合物的相对丰度比较中药小分子与蛋白等大分子的相对作用强度;(2)通过比较中药小分子药物浓度加人蛋白等大分子前后的变化来推断两者的相对作用强度,目前,已应用生物质谱测定中药小分子与核酸如DNA、蛋白或多肤等大分子之间相互作用的研究[8]。例如,zhangH等[9]利用Esl一Ms研究了人参皂昔与细胞色素C之间的相互作用,获得K(D)值。郑州大学陈晓岚等[l0一,’]对一些磷酞化修饰的黄酮类中药与溶菌酶和。一乳白蛋白之间的相互作用进行了研究,计算出结合常数,推算出两者的结合力类型。尽管生物质谱为中药小分子与生物大分子之间的相互作用提供了很好的研究手段,但应该看到,由于中药的复杂性以及研究环境与体内有很大的差异,许多研究结果还需要体内实验的验证。

    3中药治疗的蛋白质组学研究

    蛋白质组学是近年医药和生命科学领域研究的热点之一。蛋白质组学的含义是:一个基因组、一种生物或一种细胞/组织所表达的全套蛋白。蛋白质组学的核心在于大规模地对蛋白质进行综合分析,通过对某种物种、个体、器官、组织或细胞的全部蛋白质性质(包括表达水平、结构、翻译后修饰、细胞内定位、蛋白质相互作用等)的研究,对蛋白质所执行的生理性、病理性生命活动做出最精细、最准确、最本质的阐述[,2]。中药治疗的蛋白质组学研究的基本研究思路是,首先造模,确定造模成功后提取总蛋白质,2一DE电泳技术分离总蛋白建立蛋白质组图谱,用图像分析软件寻找模型组、对照组及中药治疗组各组间差异蛋白点,MALDI一TOF/MS分析差异蛋白点,并结合蛋白质生物信息库,初步鉴定差异蛋白质。在此方面国内学者进行了一些探索[ls一l#],有学者研究了单体人参皂昔对人肺巨细胞癌高转移细胞株蛋白质组的表达的影响,还有报道研究松果菊昔对小鼠帕金森病模型黑质纹状体组织蛋白表达的影响,再如研究中药复方强骨宝1号对去卵巢骨质疏松大鼠皮质骨蛋白质组表达的影响等。以上研究结果找到一些差异蛋白,为中药作用机制的研究提供了依据。

    4代谢组学研究

生物质研究范文第3篇

关键词生物法降解;秸秆;木质素

中图分类号 s816.3 文献标识码a文章编号 1007-5739(2010)01-0018-03

秸秆是一种丰富的纤维素可再生资源,我国农作物秸秆年产量逾6亿t,除少量被用于造纸、纺织等行业或用作粗饲料、薪柴外,大部分以堆积、荒烧等形式直接倾入环境,造成极大的污染和浪费[1]。能源紧张、粮食短缺及环境污染日趋严重是目前世界各国所面临的难题。而可再生资源的转化利用,能在有利于生态平衡的条件下缓解或解决问题。

木质素又称木素,是植物界中含量仅次于纤维素的一类高分子有机物质,是一种极具潜力的可再生资源[2-4],每年全世界由植物可生长1 500亿t木质素,且木质素总与纤维素伴生,具有无毒、价廉、较好的可热塑和玻璃化特性。木质素是由苯丙烷结构单元组成的复杂的、近似球状的芳香族高聚体,由对羟基肉桂醇(phydroxy cinamylalcohols)脱氢聚合而成,一般认为木质素共有3种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟苯基结构。木质素结构单元之间以醚键和碳-碳键连接,连接部位可发生在苯环酚羟基之间,或发生在结构单元中3个碳原子之间,或是苯环侧链之间。木质素由于分子量大,溶解性差,没有任何规则的重复单元或易被水解的键,因此木质素分子结构复杂而不规则[5,6]。

从20世纪开始,国内外学者一直在寻找降解木质纤维素的最佳途径,研究内容主要包括以下几方面:物理法、化学法、物理化学法、生物降解法[7]。物理法包括辐射、声波、粉碎、整齐爆破等[8,9]。化学法包括无机酸(硫酸、乙酸、盐酸等)、碱(氢氧化钠、氨水等)和有机溶剂(甲醇、乙醇)等。物理化学法,即化学添加法和气爆法相结合。此3种方法,可在一定程度上降解秸秆中的木质纤维素,但都存在条件苛刻、设备要求高的特点,从而使预处理成本增加,且污染严重。生物降解法是从20世纪20年代起开始研究的,采用降解木质素的微生物在培养过程中可以产生分解的酶类,从而可以专一性降解木质素。此法具有作用条件温和、专一性强、无环境污染、处理成本低等优点。

1降解秸秆木质素的微生物

在自然界中,木质素的完全降解是由于真菌、细菌及相应的微生物群落共同作用的结果。从20世纪起,国内外学者对木质素降解的研究从白腐真菌开始。白腐真菌是指一类具有相同功能引起木质白色腐烂的丝状真菌的集合,凭借其选择性降解木质素的能力,白腐真菌的菌丝穿入木质,侵入木质细胞腔内,释放降解木质素的酶,导致木质腐烂为淡色的海绵状团块。目前,用于木质素降解研究的白腐菌主要有黄孢原毛平革菌(phanerochete chrysosporium)、杂色云芝(coridus versicolor)、香菇(lentinula edodes)、变色栓菌(thametes versicolor)、朱红密孔菌(pycnoporus cinnabarinus)等[10,11]。杭怡琼等[12]以稻草秸秆加20%棉籽壳为培养基质,接入3种侧耳菌株,经研究发现,从接种到子实体形成过程中,培养物的木质素呈不断下降水平,木质素降解率与酶活变化趋势基本相似。王宏勋等[13]通过傅里叶变换红外光谱(ftir)分析和木质纤维素组分含量变化,研究了3株白腐菌在50d培养期内降解稻草秸秆中木质纤维素的降解规律,结果表明:3株白腐菌对稻草秸秆中木质纤维素降解具有一定的顺序和选择性,先降解半纤维素和木质素,再同时降解半纤维素、纤维素和木质素,并且对木质素有很好的降解优势。毕鑫等[14]研究白腐菌产木质素过氧化物酶发酵条件,利用lip粗酶液在体外直接降解稻草,3d后klason木质素的降解率为8.7%。戴永鑫等[15]研究了白腐菌及其产生的木质素降解酶系对秸秆的木质素生物降解方法,采用黄孢原毛平革菌和杂色云芝双菌联合固态培养可使木质素降解率达到47.64%。鞠洪波[16]以香菇、金针菇、杏鲍菇等9种食用菌对云杉木质素的降解进行研究,试验表明:杏鲍菇对木质素的降解能力最强,其次是木耳、茶树菇、柳菇、榆黄菇对木质素降解能力较高,其余4种食用菌降解木质素能力较弱。

20世纪80~90年代的研究表明细菌可以代谢低分子的磺化木质素、kraft木质素片断等,细菌能够使木质素结构发生改性,成为水溶性的聚合产物;另外,细菌与真菌协同作用使木质素易于受到真菌的攻击,且可去除对腐朽真菌有毒性的物质[17]。降解木质素的细菌种类很多,其中放线菌是公认降解能力较强的细菌,包括链霉菌(strptomyces)、节杆菌(arthrobacter)、小单胞菌(micromonospra)等。tuomela m等[18]研究表明链霉属的丝状细菌降解木质素最高可达20%,放线菌对木质素的降解主要在于增加木质素的水溶性[18]。其他降解木质素的细菌主要是非丝状细菌,能够在一定程度上引起木质素的降解,如微球菌属(micrococcussp)、假单胞菌属(pseudomona ssp.)、黄单胞菌属(xanthomonas sp.)等。非丝状细菌降解木质素的能力较差,只能降解小分子量或者木质素的降解产物,其中假单胞菌属是最有效的降解菌[17-19]。张甲耀等[20]通过对一嗜碱细菌对麦草木质素降解能力的研究,发现在最佳综合培养条件下该菌株10d对木质素降解率可达49.84%。

2秸秆木质素降解酶系

目前认为最重要的木质素降解酶有3种,即木质素过氧化物酶(lignin peroxidase,lip)、锰过氧化物酶(man-dependent peroxidase,mnp)和漆酶(laccase,lac)。木质素过氧化物酶和锰过氧化物酶可使木质素分子中碳—碳键断裂成苯氧残基,漆酶对木质素有降解和聚合的双重作用[21]。

lip是最早发现的木质素降解酶,存在于大多数降解菌中,它是一种糖蛋白,分子量约41 000,有1个血红素构成其活性中心,可连接至少1个黎芦醇。lip能催化木质素中富含电子的酚型或非酚型芳香化合物发生氧化,从而使木质素形成活性基团,然后发生一系列的非酶促裂解反应,实现对底物的部分氧化或彻底的氧化[22]。

mnp 也是最常见的木质素降解酶,也是一种糖蛋白,分子量约46 000。锰过氧化物酶在过氧化氢存在时能氧化酚型木质素及木质素模型物,即由mn2+及一种螯合物催化木质素发生降解。mn2+被氧化成mn3+,mn3+反过来又氧化酚型化合物,并保护mnp不受反应活性自由基的破坏[23]。

lac是一种多酚氧化酶,是一种典型含cu2+的糖蛋白。lac所催化的主要是氧化反应,表现在底物自由基的生成和4个铜离子的协同作用,主要攻击木质素中的苯酚结构单元;在反应中,苯酚的核失去1个电子而被氧化,产生含苯氧基的自由活性基团,可导致芳香基的裂解。lac同时具有催化解聚和聚合木质素的作用,因此单独存在时不能降解木质素,只有同时存在mnp等其他酶,避免反应产物重新聚合时,才有较高的木质素降解效率[23,24]。

3秸秆木质素生物降解的条件

在木质素降解过程中,碳源和氮源的来源以及营养限制对生物降解木质素有极大的影响,是木质素降解的关键因素。研究报道p.chrysosporium和lentinula edodes只有在其他替代碳源如葡萄糖存在时才能降解木质素[25]。王宜磊[26]研究碳源和氮源对coriolus versicolor木质素酶分泌的影响,发现淀粉含量丰富的物质做碳源有利于木质素降解酶的分泌。毕鑫等[27]研究在静置和振荡2种方式下不同营养条件对白腐菌合成木质素过氧化物酶(lip)的影响。静置培养时,碳氮比低的培养基中显示较高的酶活,碳源以葡萄糖和糊精同时存在及分段加入要比单一葡萄糖作为碳源时获得更高的酶活;振荡培养时,在碳氮比高的培养基中酶活最高,而类似于静置培养的氮源组合及分段模式却明显抑制lip的合成。

cu2+、fe2+、mn2+等金属离子对木质素降解有很大的影响。kerem z等[28]研究pleurotus o-streatus在含不同量mn2+的固体发酵培养基中对木质素的降解,结果表明增加mn2+的含量可使木质素降解率提高。余惠生等[29]人研究cu2+对panus conchatus产木质素降解酶的调控,结果表明,mnp的产生受cu2+浓度影响不大,而lac的产生却受cu2+的严格调控。没有cu2+的存在,lac酶活力很低,适量的cu2+浓度能够提高lac酶活力。

许多研究表明,某些具有木质素结构类似物的添加可以明显提高木质素降解能力。外国学者f.tonon等[30]报道黎芦醇对p.chrysosporium lip合成的影响,通过在不同的碳源培养基中加入一定量的黎芦醇,发现2种培养基中的lip酶活力都提高。罗宇煊等[31-33]对一嗜碱细菌降解木质素时发现,abts、愈创木酚能提高嗜碱细菌产mnp和lac的产量。

4结语

生物法降解秸秆木质素具有条件温和、专一性强、不存在环境污染、处理成本低等优点,随着科学技术的发展和研究的不断深入,开发出降解秸秆木质素的复合菌剂,对于解决能源紧张、粮食短缺及环境污染等难题具有重要的指导作用。

5参考文献

[1] arora d s,chander m,gill p k.involvement of lignin peroxidase,manganese peroxidease,and laccase in degradation and selective ligni-nolysis of wheat straw[j].internation biodeterior-ation &biodegradation,2002,50(2):115-120.

[2] 蒋挺大,木质素[m].北京:化学工业出版社,2001.

[3] 张桂梅,廖双泉,蔺海兰,等.木质素的提取方法及综合利用研究进展[j].热带农业科学,2005,25(1):66-70.

[4] 廖俊和,陶杨,邵薇,等.有机溶剂法制浆最新进展[j].林产工业,2004,31(4):11-13.

[5] 陶用珍,管映亭.木质素的化学结构及其应用[j].纤维素科学与技术,2003,11(1):42-55.

[6] 邬义明.植物纤维素化学[m].北京:

整理[22] ferraz a,guerra a,mendona r,et al.technological advances and mechanistic basis for fungal biopulping[j].enzyme microb technol,2007,43(2):178-185.

[23] hiromichi i,masanori w,yoichi h,et al.bioorganosolve pretr-eatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi[j].journal of biotechnology,2003,103(3):273-280.

[24] 张建军,罗勤慧.木质素酶及其化学模拟的研究进展[j].化学通报,2001,64(8):470-477.

[25] leatham g f.ligninolytic activities of lentinula edodes and phaner-ochaete chrysoporium[j].applied environment microbiology,1986,24(1):51-58.

[26] 王宜磊.碳源和氮源对彩绒革盖菌coriolus versicolor木质纤维素酶和木质素酶分泌的影响[j].微生物学杂志,2000,20(1):29-31.

[27] 毕鑫,路福平,杜连祥.白腐菌产木素过氧化物酶发酵条件的优化[j].天津轻工业学院学报,2003,18(1):12-16.

[28] kerem z,hadar y. effect of manganese on lignin degradation by pleurotus ostreatus during soligstate fermentation[j]. applied and envi-ronmental microbiology,1993,59(12):4115-4120.

[29] 余惠生,付时雨,王佳玲,等.铜ⅱ离子对白腐菌panus conchatu产木素降解酶的调控[j].纤维素科学与技术,1999,7(1):41-46.

[30] tonon f,odier e.influence of veratryl alcohol and by drogen pero-xide in ligninase activity and ligninase production by phanerochaete chrysosporium[j].applied and environmental microboilogy,1988,54(2):466-472.

[31] 罗宇煊,张甲耀,管筱武,等.嗜碱细菌降解木素的复合碳源共代谢研究i——复合碳源组合方式及氮源的选择[j].城市环境与城市生态,2000,13(2):246-250.

生物质研究范文第4篇

【关键词】生物质能;转化;利用体系

0.引言

生物质能是一种易得的可再生能源。由于大气污染、全球气候的变化和化石能源的日益短缺,对生物质能的研究和利用也越来越受到人们的重视。目前生物质能的利用还处在不断推向前进的过程中,需要进行更为深入的研究,包括相关的转化利用系统研究以及应用技术的开发和推广。

1.我国生物质能利用情况

我国对生物质能的利用起步比较的晚,和欧美一些发到国家相比还存在一定的差距,但是我国是一个农业大国,可以被利用的生物质能资源丰富,一旦转化的技术得到了提高,相应地会对我国的新能源开发利用带来巨大的贡献。目前我国生物质能利用的主要重点领域以及地区的分布如表1所示。

2.生物质能利用的相关技术

生物质能的利用技术一般可以分成三类,分别是直接燃烧技术,汽化利用技术,液化利用技术以及沼气技术,具体的分类见图1。

2.1直接燃燃技术

这种技术是人类最早采用的利用生物质能的技术,但是利用的效率较低,并有一定的污染。随着现代技术的发展,利用现代的技术手段对其进行更加有效的利用已经成为了可能,大致可以分成、直接燃烧发电、成型成固体无污染燃烧以及混合燃烧发电等技术,最后得到的主要产品是供人们使用的电能以及燃烧热能。

2.2气化利用技术

气化利用技术主要的产品是电能以及燃气,采取的气化方式主要是流化床式和固定床式两种。其中应用比较多的就是热解气化法,技术的关键是通过运用高效热解气化技术来对原材料进行处理,得到适合于燃气轮机以及内燃机使用的燃料,其中的关键部件就是气化炉,它必须适应各种不同的生物质原料,这样才可以扩大气化技术的应用面。

2.3液化利用技术

液化利用技术主要就是将生物质转化成为液体的燃料,一般都是通过化学或者是生物的方法。当前已经具备一定规模的生物质液化产品主要包括生物柴油、乙醇以及生物油,是一种可以用来代替不可再生液体燃料的资源。

2.4沼气利用技术

沼气是一种可燃性的气体,产生的主要机理是有机物质需要在厌氧的环境下,经过发酵而产生。沼气产生过程中的副产品包括沼液以及沼渣,都是很好的生物化肥,可以用来进行农业生产,这种技术一旦和农业生产相结合,就会大大地有利于环境和生态的可持续发展,是一种良好的生物质的利用技术。

3.结语

伴随着资源的不断减少,人类所面临的资源问题也越来越严重,加强生物质能转化系统的研究是解决这个问题比较好的途径,因此,需要在不断提升利用技术的基础上的,不断加强生物质能利用的合理性和科学性,对我国这样的农业大国来说合理地利用好生物质能更是显得意义重大。 [科]

【参考文献】

[1]高荫榆,雷占兰,郭磊,谢何融,陈才水.生物质能转化利用技术及其研究进展[J].江西科学,2006(06).

生物质研究范文第5篇

论文摘要:目前,微生物挥发性物质的研究已成为一个研究的热点。对微生物挥发性物质的研究进展进行了阐述,以期为新型农药的使用和开发提供思路。

近年来,国内外学者对挥发性物质的研究大多集中在植物方面[1,2]。由于大多数这类物质具有抗菌和杀虫生物活性,其可直接应用于病虫害的生物防治,而这些物质被称为植物源农药[3]。由此推断,本身具有生防作用的微生物其所分泌的挥发性物质可能也具有植物挥发性物质的这些特性。

1植物挥发性物质的研究现状

昆虫取食、机械损伤、化学因子、病原菌侵染均能造成植物某些挥发性组分的大量释放[4,5],它们可能是一种直接阻止病原扩展和昆虫取食的化学防御因子,也可能作为报警信号(warningsigna1)参与植物通讯,或作为捕食者的引导信号(guidingcue),还可以作为植食性昆虫或病原菌的拒食素(deterrent)。植物挥发性物质(volatileorganiccompo-unds,VOCs)包括:碳氢化合物(如烃、萜烯)及其含氧化合物(如醇、醛、酮、酸、酯、内酯、醚、酚等)。大致分为脂肪酸衍生物、芳香族化合物、单萜和倍半萜类,也包含一些含氮(吲哚)及含硫(大蒜素)的化合物。

2微生物挥发性物质的研究现状

2.1国内研究进展

随着收集方法、检测手段、生物活性检测体系的完善和分析手段的提高,对微生物挥发性物质的深入研究成为可能。目前,有关这方面的研究国内外尚不多。国内也只是最近2~3年内有个别浅显的报道,只是简单研究了挥发性物质对某一种病原菌的抑制作用及其成分的简单分析,但都未对其生物活性和成分作进一步的深入研究。陈华等[6](2008)对枯草芽孢杆菌JA研究中发现,该菌产生的挥发性物质对灰霉病菌孢子和菌丝生长有抑制作用,吴艳等[7](2007)报道了1株组合Bacillussp.CL-8产生的挥发性物质对立枯丝核菌的抑制作用,揭示了菌代谢过程中所产生的挥发性抑菌物质与抑菌粗蛋白协同抗病的机制,同时说明了挥发性抑菌物质也是参与其在田间发挥抗病作用的重要成分。但他们都未对其有效成分和结构做进一步研究。郭华等[8](2005)采用蒸馏-萃取装置提取环棱褐孔菌的挥发性物质,并采用气相色谱-质谱联用技术(GC/MS)对其成分进行了分离鉴定。刘高强等[9](2007)利用顶空气相色谱-质谱联用法对灵芝发酵物中的挥发性物质的组分进行了研究。

2.2国外研究进展

国外对微生物挥发性物质的研究比较早,Schlleretal.[10](2002)采用气相色谱-质谱联用技术,分析了26种放线菌产生的挥发性物质,53种化合物归为萜类化合物,其中18种被鉴定。其中包括烷烃、烯烃、乙醇、酯类、丙酮、丁醇、乙酸、六化物和土味素等。先前,在温室和大田条件下,植物促生菌可诱发植物抗细菌、真菌和病毒病原菌的系统抗性的报道,但对微生物挥发性物质调节植物生长发育和诱导植物对植物病害的系统抗性的报道相对很少[11]。Ryuetal.[12](2003)报道了细菌产生的挥发性物质2,3-丁二醇和乙酰甲基原醇能促进拟南芥的生长,表明挥发性物质可作为参与调节植物与微生物互作的信号分子。Ryuetal.[13](2005)首次报道了枯草芽孢杆菌和解淀粉芽孢杆菌产生的挥发性物质诱导拟南芥产生对番茄软腐病的抗性,试验中用2,3-丁二醇缺陷突变菌株证明了挥发性物质的诱导抗病性作用,并且明确了挥发性物质所诱发的抗性的传导途径是依赖于乙烯的,而非依赖于水杨酸和茉莉酸途径。Faragetal.[14](2006)采用顶空固相微萃取并结合交气相色谱-质谱联用技术,研究了芽孢杆菌株GB03和IN937a的挥发性物质2,3-丁二醇和乙酰甲基原醇对拟南芥的促生长作用,揭示了支链乙醇可以作为2,3-丁二醇的替代物,成为一种新型的有前景的诱导植物的系统抗性的诱导剂或激发子。

Bhaskaretal.(2005)报道了1株枯草芽孢杆菌(Bacillussubtilis)的挥发性物质,在平板对峙培养中对6种病原真菌的拮抗作用,能引起菌丝和孢子结构方面的畸形,而且挥发性物质的拮抗作用比扩散性物质的作用要大。Fernandoetal.[15](2005)首次对细菌的挥发性物质的鉴定和生防作用进行了报道,从芥花和大豆中分离到1株细菌,体外和土壤试验发现,其产生的挥发性物质能抑制菌核和囊孢子的萌发及核盘菌菌丝的生长,其中对囊孢子的抑制率达到54%~90%。随后对挥发性物质进行了分离鉴定,结果表明挥发性物质包括醛类、醇类、酮类和硫化物。在分离的23种物质中有6种抑制菌丝生长和菌核的生成,这6类物质为苯丙噻唑、环己醇、癸醛、二甲基三硫化物、2-乙基-1-己醇和壬醛。Kaietal.[16](2007)采用气相色谱-质谱联用技术(GC/MS)对不同细菌的挥发性物质进行了研究,结果表明不同细菌能产生1~30种挥发性化合物,而且大多数化合物是特有的。

3结语

综合上述国内外学者对微生物挥发性物质的研究,研究的对象包括细菌、放线菌和真菌。其中对细菌的报道占大多数,包括芽孢杆菌、解淀粉芽孢杆菌、假单胞杆菌等,这些细菌分离自土壤、植物体表以及灌木丛,而分离自植物体内的内生菌,目前国内外还没有相关的报道。内生菌由于与其宿主植物长期共同生活,获得了某些相关基因的直接传递,因而具备了相同次级代谢产物的生物合成途径,能够产生宿主植物所产生的某些杀虫、抗菌以及促进植物生长活性成分,而这些有效成分可来自于内生菌所产生的挥发性物质。这样,植物源农药的有效成分就可望利用它们的某些内生菌来工业化生产,从而有效解决植物源农药生产原料问题、规模化生产问题及制剂现代化等问题,为我国植物源农药的广泛使用和农业生产的无公害化做出实质性贡献。

4参考文献

[1]张薇,程政红,刘云国,等.植物挥发性物质成分分析及抑菌作用研究[J].生态环境,2007,l6(3):1455-1459.

[2]GEIRKK,MARIEB,SVERREK,etal.DiscrepancyinlaboratoryandfieldattractionofapplefruitmothArgyresthiaconjugellatohostplantvolatiles[J].PhysiologicalEntomology,2008,33(1):1-6.

[3]何培青,柳春燕,郝林华,等.植物挥发性物质与植物抗病防御反应[J].植物生理学通讯,2005,41(1):105-110.

[4]DEMORAESCM,LEWISWJP,PAREW,eta1.Herbivore-infestedplantsselectivelyattactparasitoids[J].Nature,1998(393):570-573.

[5]OBARAN,HASEGAWAM,KODAMAO.Inducedvolatilesinelicitor-treatedandriceblastfungus-inoculatedriceleaves[J].BiosciBiotechnolBiochem,2002,66(12):2549-2559.

[6]陈华,郑之明,余增亮.枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究[J].微生物学通报,2008,35(1):11-14.

[7]吴艳,闫豫君,赵思峰.组合芽孢杆菌抑菌物质特性及其抑菌效果研究[J].西北农学报,2007,16(5):266-270.

[8]郭华,侯冬岩,回瑞华,等.环棱褐孔菌挥发性化学成分的分析[J].鞍山师范学院学报,2005,7(6):49-51.

[9]刘高强,王晓玲.顶空气相色谱-质谱联用法分析灵芝发酵物中的挥发性物质[J].菌物学报,2007,26(3):389-395.

[10]BHASKARC,ANITAP.LOKMS.DiffusibleandvolatilecompoundsproducedbyanantagonisticBacillussubtilisstraincausestructuraldeformationsinpathogenicfungiinvitro[J].MycologicalResearch,2005(160):75-78.

[11]ZEHNDERGW,YAOC,MURPHYJF,etal.Inductionofresistanceintomatoagainstcucumbermosaicvirusbyplantgrowth-promotingrhizobacteria[J].BiolControl,2002(45):127-137.

[12]RYUCM,FARAGMA,HUCH.etal.BacterialvolatilespromotegrowthinArabidopsis[J].ProcNatlAcadSciUSA,2003,100(14):4927-4932.

[13]RYUCM,FARAGMA,HUCH.etal.Bacterialvolatilesinducesyste-micresistanceinArabidopsis[J].PlantPhysiol,2005(134):1017-1026.

[14]FARAGMA,RYUCM,SUMNERLW.etal.GC-MSSPMEprofi-lingofrhizobacterialvolatilesrevealsprospectiveinducersofgrowthpromotionandinducedsystemicresistanceinplants[J].Phytochemistry,2006,67(20):2262-2268.