前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物质燃料现状范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

关键词:动物源性饲料;微生物污染;控制措施
中图分类号:S816.3 文献标识码:B 文章编号:1007-273X(2014)07-0060-01
收稿日期:2014-07-18
作者简介:夏廷荣(1969-),男,云南曲靖人,畜牧师,主要从事畜牧兽医管理工作。
饲料是动物的食品,也是动物产品的原料和食品链中的一员,而动物产品中的肉、蛋、奶等是人类的食品,可见饲料安全即食品安全,它关系着人类的健康。然而,在我国广泛使用的动物源性饲料中,大量存在着微生物污染的现象,这给饲料安全埋下了隐患,也进一步给人类健康埋下了不容忽视的隐患。
1 概述
动物源性饲料是指以动物或动物副产物为原料,经工业化加工制作的单一饲料。它主要包括畜禽屠宰副产品、水产制品、乳制品、蛋制品及其他化工业副产品等。动物源性饲料含有丰富的蛋白质,蛋白质含量大都在50%以上;氨基酸组成良好、必需氨基酸含量丰富,蛋白质生物学价值较高;碳水化合物含量少,不含粗纤维;矿物元素含量高,尤其是钙、磷含量丰富、且比例适宜;B族维生素含量高。因此,动物源性饲料被广泛运用于畜牧业生产中,并取得了良好的生产效果。
2 动物源性饲料微生物污染现状
动物源性饲料中富含各种氨基酸、矿物质、维生素等,是培养微生物的良好培养基。被污染的饲料营养价值降低、适口性变差,动物食用后,会引起发病、机体抗病率下降、生长缓慢等,病菌还会通过动物的排泄物污染土壤和水源。
我国从动物源性饲料中检测出许多种病原微生物,沙门氏菌、志贺氏菌、肺炎克雷伯氏菌、阴沟肠杆菌等对动物及人的致病力很强,芽孢杆菌、非发酵菌、枸橼酸杆菌等也对动物和人存在安全隐患[1,2]。
3 动物源性饲料微生物评价指标
在我国,对微生物污染的评价指标主要包括菌落总数、大肠菌群数量、霉菌总数和致病菌数量四种[3]。
3.1 菌落总数
菌落总数是指被检样品在规定的条件下培养后所得单位质量(g)或容积(mL)的检样中所含细菌菌落的总数,并不考虑细菌的种类。它可以反映饲料产品被细菌污染的程度和饲料产品在生产过程中的卫生管理状况,并可推断饲料产品的新鲜度和耐贮存性。
3.2 大肠菌群
大肠菌群包括大肠埃希氏菌(俗称大肠杆菌)和其他一些肠道细菌。饲料产品中的大肠菌群数量越多,表明饲料产品受粪便污染的程度越大,同时还可表明饲料产品中存在肠道致病菌(如沙门氏菌、志贺氏菌等)的可能性也越大。
3.3 霉菌总数
霉菌总数是指饲料检样在规定的条件下培养后所得单位质量(g)或容积(mL)检样中所含霉菌菌落的总数,并不考虑霉菌的种类。霉菌总数的多少可以反映饲料产品被霉菌污染的程度,也可反映饲料产品生产过程中的一般卫生状况。
3.4 致病菌
致病菌包括前面提到的肠道致病菌和致病性球菌(如金黄色葡萄球菌、致病性链球菌等)。这些致病菌的检测在动物源性饲料的检测过程中被规定为“不得检出”,其意义就是在饲料当中不得含有任何致病菌,可见其危害是相当严重的。
4 控制微生物污染的措施
4.1 严格控制原料来源和生产流程
原料的质量和污染情况直接影响到产品的卫生安全。因此,应对原料的来源进行严格控制,禁止疫区原料进入到生产环节,禁止采购腐坏、污染原料。
饲料生产企业的厂址应远离动物饲养场地和屠宰场,原料存放及整理区、生产加工区、成品储存区要完全分开,防止交叉污染;生产企业的厂房及其附属设施应便于卫生管理,生产工艺流程和设备应能满足安全卫生和质量标准要求。
4.2 控制环境温度和湿度
环境温度和湿度是影响微生物繁殖的重要因素。嗜温性微生物的生长温度范围在10~45 ℃,在饲料加工过程中,将120~150 ℃的热蒸汽吹入成型机中,对沙门氏菌和大肠杆菌有较强的抑制、杀灭作用。
此外,动物源性饲料必须充分干燥,一般要求水分含量应≤10%。
4.3 利用添加剂抑制微生物污染
对饲料的酸碱性进行人为调节可以抑制部分有害的微生物生长。在饲料中添加一些有机酸物质,如甲酸、乙酸、乳酸等,可以降低饲料的pH值,从而抑制有害菌的滋生。
试验表明,在饲料中添加0.25%的丙酸,在72 h内可以抑制沙门氏菌的数量;如将丙酸增加到3%,就可以实现对沙门氏菌的灭活。
4.4 使用γ-射线辐射和紫外线照射
研究表明,鸡饲料用γ-射线辐照后,置于温度为30 ℃、相对湿度为80%的条件下存放1个月,结果并没有霉菌繁殖。但γ-射线辐照成本较高,与之相比,紫外线照射更经济,但无持续杀菌能力且细菌有复活现象。在实际操作中,可先将饲料进行化学消毒、再进行紫外线照射,效果更为理想。
5 小结
由于动物源性饲料在畜牧业生产中具有其他来源饲料不可比拟的优势,所以停止使用动物源性饲料是不可能的。但动物源性饲料的微生物污染给食品安全埋下的安全隐患是显而易见的,所以我们要做好对微生物污染的控制、并运用现代化科技开发出更多更好的控制微生物污染的方法。
参考文献:
[1] 黎修全.浅析动物源性饲料产品安全及卫生质量评价指标[J].饲料工业,2012(19):30-31.
关键词 生物质能源;烤烟;烘烤;应用
中图分类号 TK6 文献标识码 A 文章编号 1007-5739(2016)17-0153-03
Abstract To take advantage of the abundant biomass resources in our country adequately,relieving the status of rising costs and curing pollution,this paper reviewed the research progress of the biomass energy in tobacco curing. This study showed that applying biomass energy in tobacco curing benefits the promoting of tobacco quality,debasing the cost of flue-cured tobacco curing and reducing the pollution of curing. Currently the applied forms of biomass energy in tobacco curing included bio-coalbriquette,biomass gasification,biomass briquette and so on,different applied forms showed positive effect,which could be promoted in areas with suitable conditions.
Key words biomass energy;flue-cured tobacco;curing;application
烤烟烘烤是一个大量耗热的过程,目前烤烟生产上推广的密集烤房烘烤设备普遍采用燃煤供热,热利用率低,煤耗量高,通常1 kg干烟叶煤耗量1.5~2.5 kg标煤,而理论上的耗煤量为0.8 kg,也有研究分析指出,在密集烘烤中,火炉的热效率为64.95%,烤房热效率仅为36.08%,总的热损失达63.92%,能量浪费惊人[1-3]。
愈演愈烈的世界范围能源危机以及不断上升的能源价格,使得生产烤烟的成本不断增加,使烤烟生产的可持续发展受到严重影响。在此背景下研究烤烟烘烤节能技术,提高能源利用效率,寻找烤烟烘烤能源替代途径,降低烤烟生产成本成为烤烟烘烤研究的一个重要课题。目前,此方面的研究主要集中在烘烤设备、烘烤工艺以及新型能源烘烤燃料开发等方面,其中新型能源烘烤燃料中的生物质能源因其本身可再生性、低CO2排放、几乎不排放SO2、广泛分布性、使用形式多样、生物质燃料总量丰富等特点成为当下研究的一个热点,有望成为烤烟烘烤传统能源的有效替代品[4-5]。
1 生物质能源概述
生物质能源是植物通过光合作用将太阳能储藏在有机物中的一种可再生能源。每年全球积累的生物质总量达1 730亿t,蕴含的能量相当于目前全球总能耗的10~20倍[6]。据报道,生物质能已上升为仅次于化石能源煤、石油和天然气之后的第4位能源,占世界一次能源消耗的14%[7]。与传统直接燃烧方式相比,现代生物质能源的利用更多的是借助热化学、生物化学等手段,通过一系列先进的转换技术,生产出固、液、气等高品位能源来代替化石燃料,为人类生产、生活提供电力、燃气、热能等终端能源产品[8]。在生态环境保护方面的研究发现,提供相同能量,煤的S和NOx排放量分别是秸秆的7.00倍和1.15倍,用1万t秸秆替代煤炭能量,烟尘排放将减少100 t[9]。生物质能源作为一种可再生的低碳能源,具有巨大的发展潜力,它的开发利用对于建立可持续能源系统、促进国民经济发展、保护生态环境具有重大意义。
2 生物质能源在烤烟烘烤上的应用研究
我国拥有居世界首位的生物质能源产量,年产农作物秸秆、谷壳等总量约14亿t,如开发用于燃烧,可折合7亿t标准煤[10]。以安徽省为例,每年农作物秸秆总产量5 000万t左右,如果能开发利用其中的1/3转化为燃料,即可消耗秸秆1 700万t,约相当于建立2座年产500万t的大型煤矿[11]。目前,烤烟烘烤上研究应用的生物质多为农作物秸秆,应用方式主要有生物质型煤、生物质气化、生物质压块等,应用效果较为理想。
2.1 应用方式
2.1.1 生物质型煤。生物质型煤是指在破碎成一定粒度的煤中加入一定比例的秸秆等可燃生物质和添加剂后由高压成型机压制成型的洁净能源产品。其充分利用煤和生物质各自的优势,具有节煤和生物质代煤的双重作用,与原煤燃烧相比,生物质型煤是提高燃烧效率和减少污染的有效方法之一,目前已进入商业化生产阶段[12]。
孙剑锋等[13]利用煤和废弃的植物茎杆生产出与烘烤设备外形、尺寸大小相配套的生物质型煤。其在使用过程中容易实现配风的精准控制,进而实现与密集烤房控制系统的配套,且生物质型煤在燃烧过程中着火大小容易控制,生火及升降温速率均较快,能更好地满足烤烟烘烤工艺的需求。向金友等[14]研究秸秆与煤不同配方压块燃料在烤烟烘烤中的应用,结果发现80%秸秆+20%煤混合压块代煤烤烟完全可行。
2.1.2 秸秆煤。秸秆煤是一种新型蜂窝煤燃料,没有煤的加入,以青蒿、烟、玉米等农作物秸秆以及废弃的树木枯枝、杂草、锯末、稻壳等生物秸秆为原料,不需粉碎,在厌氧条件下碳化6~8 h,利用秸秆自然进行分解形成生物质碳,再加入黏土和其他粘合剂混合后形成。
郭保银[15]研究发现各种秸秆碳化率平均约为50%,而通过加配方后,常规秸秆等材料2 t可生产2 t秸秆煤,其秸秆煤代替煤炭烤烟的技术研究结果表明秸秆煤易点火、燃烧效果好、升温快而且无黑烟和异味,满足烤烟工艺要求,其代替煤炭及其制品在密集烤房中应用是可行的,可以进行大范围示范。
2.1.3 生物质气化。生物质气化是采用生物质气化发生装置将生物质原料在厌氧状态下燃烧转化为由氢气、一氧化碳、甲烷等组成的可燃气体。生物质气化方式在烤烟烘烤中的应用相对较多,生物质气化烤烟系统开发设计相对成熟。杨世关等[16]研究设计了一套新型烤烟设备,主要是以生物质燃气为能源,将间接换热与直接换热紧密结合,该系统的能源利用率及烟叶品质都较传统间接换热式烤房有显著提高。飞 鸿等[17]以废弃烟杆、烟梗以及各类农作物秸秆为原料采用生物质气化发生装置通过燃气发生炉进行厌氧燃烧使其热解出可燃气体,经管网送往各烤房实现自动控制烘烤烟叶。
2.1.4 生物质压块。在压强为50~200 Mpa、温度为150~300 ℃、或不加热或不加黏结剂的条件下,先将木材加工剩余物及各种农作物秸秆等粉碎成一定粒度,再压缩成块状、棒状、粒状等具有一定密实度的成型物[18],故又称为生物质固体成型燃料。目前,此燃料在烤烟烘烤中的应用研究较为广泛。
张聪辉等[19]研究不同清洁能源对烤后烟的化学成分、质量感官以及经济效益的影响,其中生物质燃料为2012年烟杆压块能有效降低烘烤成本,提高烘烤效益,替代煤炭为主要烘烤燃料有较大的潜力。王汉文等[20]用稻壳和玉米秸秆压块成燃料进行试验,将其放在AH密集烤房进行燃烧,能降低烤烟生产成本、满足烘烤的工艺要求、改善烟叶内在品质。王文杰等[10]以花生壳为原料加工的生物质压块为供试燃料,研发了配套的生物质压块燃烧炉,研究生物质能源在烤烟烘烤中的应用效果,生物质压块及燃烧炉不仅能替代以煤炭为燃料的普通立式炉用于烟叶烘烤,而且能够显著降低烟叶烘烤成本、提高烟叶烘烤质量。倪克平等[21]研究生物质压块燃料在烟叶烘烤中的应用效果,其中生物质压块燃料是以木材加工的锯末为主原料,添加辅助化工原料后,用搅拌机搅拌成均匀的混合原料,将混合原料通过压块成型机压制成直径为2 cm的圆饼,配备自动添加燃料的整套专用燃烧炉,研究结果表明:生物质压块用于烟叶烘烤可以充分调控烤烟烘烤工艺,降低烘烤成本,节能减耗,提高烤后烟叶品质。谭方利等[22]关于生物质压块燃料以及煤炭燃料在烤烟烘烤中的应用效果对比研究表明生物质压块用于烤烟烘烤是可行的,但对于燃料添加技术要求较高。
2.2 应用效果
生物质能源在烤烟烘烤中的不同应用形式对烘烤效果的影响均较好,节能减排的同时有利于提高烤后烟叶的质量。与原煤相比使用生物质型煤烘烤烟叶,生产1 kg干烟可节约用煤约0.15 kg,每炉烟叶可节约用煤50 kg以上,节能效果显著,而且生物质型煤中煤矸石含量为零[13]。使用秸秆煤烤烟对烤后烟叶内在化学成分无不良影响,而且能够降低上部叶烟碱含量,提高上部烟叶还原糖含量,氮碱比更加协调,香气量充足,香气质好,余味明显改善,杂气减轻,刺激性减少,评吸结果较好,有利于提高烟叶内在品质[15]。飞 鸿等[17]的研究中生物质气化烘烤与传统的燃煤烘烤相比,烟叶的内在品质得到一定的改善。感官评吸结果表现为生物质气化烘烤的烟叶其杂气、香气质、干净度均优于煤炭燃料烘烤的烟叶,而且回味、劲头、湿润上也表现出一定的优势。采用秸秆压块燃料烘烤,能降低烟叶中含氮化合物含量,提高烟叶中总糖、还原糖,有利于改善烟叶化学成分的协调性[20]。谭方利等[22]的研究中生物质压块燃料与煤炭相比烤后烟叶上等烟比例提高了2.3个百分点,青黄烟、微带青烟、杂色烟比例分别下降了0.99、0.81、1.53 个百分点。
2.3 应用成本
由于烤烟烘烤中应用的生物质原料主要是废弃的秸秆,来源广泛、价格低廉,因此利用生物质能源燃料降低烤烟烘烤成本效果显著。生物质型煤的应用加上固硫剂、粘合剂以及加工成本,比同等发热量的原煤成本低100元/t左右[13]。秸秆煤在酉阳县烤烟烘烤上的应用,按当地生产水平以及市场煤炭价格计算,烘烤烟叶1 875 kg/hm2,使用秸秆煤烤烟可降低成本约750元/hm2,以此测算,若在该县进行推广应用,每年可节约煤炭1.8万t,全县烟农增收480万元[15]。飞 鸿等[17]利用生物质烘烤烟叶的研究中采用的生物质气化发生装置上料系统、流量控制系统、除渣系统均为自动化系统,烤房数量增加到100炕也只需要2人控制,自动化程度高,在大规模烘烤中将大大降低劳动成本。生物秸秆压块在烤烟烘烤中的应用成本以安徽省为例,生产干烟叶2 062.5 kg/hm2(1 875~2 250 kg/hm2),需煤炭275 kg(以500元/t计),计2 062.5元/hm2;需秸秆压块206.25 kg(以400元/t计),计1 237.5元/hm2,降低成本825元/hm2[20]。谭方利等[22]的研究中应用生物质压块燃料与煤炭燃料相比1 kg干烟成本降低0.1元。
3 结语
烤烟烘烤大量耗热且热能利用率低,传统燃料煤炭在烤烟烘烤中的应用带来环境污染的同时,由于燃料资源的紧缺烘烤成本不断增加。把我国丰富的生物质能源应用在烤烟烘烤中既能充分利用资源同时也有望解决烤烟烘烤面临的问题。
生物质能源在烤烟烘烤中的应用研究表明其可以代替煤炭燃料,而且具有清洁、能提高烤烟品质、降低烘烤成本的优点。生物质能源在烤烟烘烤中的不同应用形式中生物质型煤的原料中只是减少了煤的用量加入部分生物质,秸秆煤加工过程中的厌氧条件碳化工艺相对复杂,而生物质气化装置包括气化炉、储气罐等,与烤房配合烘烤专用设备复杂,建成后更适合大规模烘烤。其中生物质压块研究相对较多,工艺较成熟简便。生物质压块加工生产线及配套设备的开发研究中早在2010年姚宗路等[23]针对生物质压块过程中存在的系统配合协调能力差以及生产率低等问题研发设计了有强制喂料系统的成型机以及配套设备,可实现自动化大规模的生物质压块生产。生物质压块方式制成的生物质原料可以直接应用于烤烟烘烤,基本上不需要对烤房、烤炉等进行改造,应用方便。生物质能源的利用形式中生物质发电是我国目前对生物质能源应用最为广泛和普通的方式,但其在烤烟烘烤中的应用研究相对较少,是以后生物质能源在烤烟烘烤中的应用研究的一个方向[24-25]。当下的研究表明,烤烟烘烤中的传统燃料煤炭可以用生物质压块代替,应用效果较好且成本低,可以在烤烟生产上进行示范推广。
4 参考文献
[1] 宋朝鹏,孙福山,许自成,等.我国专业化烘烤的现状与发展方向[J].中国烟草科学,2009,30(6):73-77.
[2] 王建安,刘国顺.生物质燃烧锅炉热水集中供热烤烟设备的研制及效果分析[J].中国烟草学报,2012,18(6):32-37.
[3] 汪廷录,杨清友,张正选.介绍一种一炉双机双炕式密集烤房[J].中国烟草,1982(1):37-39.
[4] SAXENA RC,ADHIKARI DK,GOYAL HB.Biomass-based energy fuel through biochemical routes:A review[J].Renewable and Sustain-able Energy Review,2009(3):13.
[5] 胡理乐,李亮,李俊生.生物质能源的特点及其环境效应[J].能源与环境,2012(1):47-49.
[6] 蔡正达,王文红,甄恩明,等.战略性新兴产业的培育和发展:首届云南省科协学术年会论文集[C]//云南省科学技术协会,2011.
[7] 中华人民共和国国家发展计划委员会基础产业发展司.中国新能源与可再生能源1999白皮书[M].北京:中国计划出版社,2000.
[8] 吴创之,周肇秋,阴秀丽,等.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
[9] 宋朝鹏,李常军,杨超,等.生物质能在烟叶烘烤中的应用前景[J].河北农业科学,2008,12(12):58-60.
[10] 王文杰,李峰,岳秀江,等.生物质压块及燃烧炉在烟叶烘烤中的应用效果研究[J].现代农业科技,2013(11):11.
[11] 李泉临,秦大东.秸杆固化成型燃料开发利用初探[J].农业工程技术(新能源产业),2008(4):27-30.
[12] 赵嘉博,刘小军.洁净煤技术的研究现状及进展[J].露天采矿技术,2011(1):66-69.
[13] 孙建锋,杨荣生,吴中华,等.生物质型煤及其在烟叶烘烤中的应用[J].中国烟草科学,2010,31(3):63-66.
[14] 向金友,杨懿德,谢良文,等.秸秆与煤不同配方压块燃料在烤烟中的应用研究[J].中国农学通报,2011,27(8):340-344.
[15] 郭保银.重庆市酉阳县秸秆煤替代煤炭烤烟技术研究[J].安徽农业科学,2013,41(1):322-323.
[16] 杨世关,张百良,杨群发,等.生物质气化烤烟系统设计及节能与品质改善效果分析[J].农业工程学报,2003,19(2):207-209.
[17] 飞鸿,蔡正达,胡坚,等.利用生物质烘烤烟叶的研究[J].当代化工,2011,40(6):565-567.
[18] 刘石彩,蒋剑春.生物质能源转化技术与应用(Ⅱ)[J].生物质化学工程,2007,41(4):59-63.
[19] 张聪辉,赵宇,苏家恩,等.清洁能源部分替代煤炭在密集烤房中应用技术研究[J].安徽农业科学,2015,43(4):304-305.
[20] 王汉文,郭文生,王家俊,等.“秸秆压块”燃料在烟叶烘烤上的应用研究[J].中国烟草学报,2006,12(2):43-46.
[21] 倪克平,甄焕菊.生物质压块燃料在烟叶烘烤中的应用效果[J].农业开发与装备,2015(11):63.
[22] 谭方利,樊士军,董艳辉,等.生物质压块燃料及煤炭燃料在烟叶烘烤中的应用效果对比研究[J].现代农业科技,2014(10):201.
[23] 姚宗路,田宜水,孟海波,等.生物质固体成型燃料加工生产线及配套设备[J].农业工程学报,2010,26(9):280-285.
【关键词】生物质能源 石油开采 石油化工 节能减排
随着可持续发展的推进,国家逐步提倡使用可再生能源。生物质能源即为可再生能源,以农作物,树木,植物枯萎的残体和家禽的粪便等为原料,进行直接燃烧或生物能源生产的产业即为生物质能源的开发与利用。
1 生物质能源开发的重要性和必要性1.1 非可再生性能源濒临枯竭
石油是一种重要的化工原料,也是国家必需的战略物资,所以说石油工业的发展在一些方面上就是国家军事实力和经济实力的象征。近些年来我国快速发展,石油化工产业在我们生活中变得越来越重要,与人们的衣食住行、国家的国计民生紧密相连。石油也可以说是一个国家的血脉,但石油属非可再生能源,终有用尽的一天。
1.2 非可再生性能源对环境污染严重
1.2.1 非可再生性能源开采对地层结构破坏严重
石油作为一种典型的非可再生能源,其开发的程序相对复杂,主要包括选址,打井,抽油,注水等过程,这些过程中对地层结构有较大的破坏作用。虽然抽完油要进行注水,但是由于水和石油的密度不同,长时间的石油开采必然会导致地层结构被严重破坏,导致地层土质疏松,甚至会发生底层塌陷。
1.2.2 非可再生能源利用对环境污染严重
众所周知,石油等传统非可再生资源的开采、利用可对环境造成污染。刚开采出来的原油内含有众多物质,不能被直接很好的利用,需经过石油化工企业的加工提炼,提炼出我们日常生活中所使用的汽油、柴油,沥青以及各种化工原料和产品。但是,开采、提炼原油的过程也是个污染环境的过程,直接导致大气污染和水污染。随着世界人口的增长和人们生活水平的提高,将有更多的化工产品和燃料被需要,更多的能源被开采,有更多的石油化工厂不得不开工建设。环境污染问题必然逐步加重。
鉴于此,我们必须努力提高技术水平,使石油化工单位产品排放更少的污染物,尽量降低对环境的污染程度,更要另辟蹊径,探索清洁的可替代能源。促进环境与人类的和谐发展,
2 生物质能源开发的现状
20世纪以来,全球性的非可再生能源危机让新能源的开发变得迫在眉睫。生物质能源因其清洁、高效、可再生等特点而得到越来越多的人的关注。生物质能源是位居于全球三大化石能源之后排行第四位,我国对于生物质能源的开发主要有以下几种:
2.1 沼气技术
沼气是指有机质在厌氧的条件下,有机质在微生物的发酵作用下产生的一种可燃性气体。因其最初的发现位置是在沼泽地区,因此被称为沼气。此技术主要是使用厌氧法处理家禽的粪便,这项技术是在我国使用较早的生物质能源的开发技术,二十世纪八十年代左右,目前,很多国家都把沼气当做生活燃料,西欧部分国家生物质能源发电并网量可占总发电量的10%左右。沼气的开发和利用在我国起步较晚,但发展较迅速,获得国家发改委批复的沼气发电CMD项目已有多个。
2.2 热裂解气化
在一九七零年左右,很多发达国家就已经对这项技术进行了研究,其中一项名为流化床气化的技术以其自身明显的优点占据了当时发达国家生物质能源的开发市场,美国已有19家公司和探究机构从事生物质热裂解气化技术的探究和开发;加拿大12个大学的实验室在开展生物质热裂解气化技术的探究,近些年来,我国等发展中国家也对这项技术进行了初步研究。2.3 生物质能源的转化
目前,生物质能源主要有生物乙、丁醇、生物柴油等。生物质燃料油资源的开发技术开始于“八五计划”期间,自“九五计划”以后,国家发改委颁布实施了用粮食和传统油料制备交通能源的战略方针。[4]生物质能源的转化主要是通过对植物油等代用油料的理化、酯化和裂解实现的。作为清洁燃料可以直接代替汽油等石油燃料,近些年来这项技术也得到了追捧。
2.4 压缩燃烧方法
生物质压缩技术可将固体农林废弃物压缩成型,制成可代替煤炭的压块燃料。成型燃料主要应用于两个方面:一是进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料。二是作为燃料直接燃烧,用于家庭或暖房取暖用燃料。
2.5 联合燃烧方法
联合燃烧是指将生物质压缩,掺入燃煤等传统燃料中进行混合燃烧的一种用能方式。联合燃烧可大幅降低燃煤中的硫氧化物、氮氧化物的生成,高效环保,技术门槛较低,利用较广。
2.6 垃圾焚烧方法
垃圾燃烧的燃烧是指将垃圾分类之后对可燃垃圾进行燃烧用能的去能方式。在使用这种方式进行去能时,要先将垃圾进行分类或者将垃圾研磨成悬浮液后进行沉降、过筛,然后再进行燃烧。实验数据显示每燃烧500t垃圾,可产生1W千万・时的电量。这种垃圾处理方式可大大减缓环境压力。
3 生物质能源的前景探析
我国现在所使用的能源中,生物质能源仅占能源总量的百分之十四,生物质能源开发具有很广阔的前景。与此同时,生物质能源也有着自己绝对的优势,这正是国家提倡生物质能源的一个重要原因。
目前,生物质能源的利用技术又传喜讯。生物柴油加工技术目前已取得了实质性突破,一些发达国家利用餐厨废油加工成柴油,并进一步加工转化为航空煤油。与之相比,我国的生物柴油产业也已初步形成,为餐厨废油的无害化处置、防止餐厨废油流回餐桌开辟了一条新路,也为保障我国食品卫生安全作出了巨大贡献。但生物柴油行业尚处在发展培育期,需要国家相关部门出台更多的支持政策,严控餐厨废油非法流向,需要有更多愿意承担社会责任的企业加入生物柴油行业,发展生物柴油行业。
生物柴油加工技术的进步,为我们生物质能源利用技术的发展带来了希望,大大提高我们开发生物质能源利用技术的信心,为生物质能源利用技术的开发,带来光明的前景。
结语:生物质能源必然会发挥其明显的优势,逐步的加大自己在能源领域的比重,同时,生物质能源必然会逐步减小环境的污染,有力缓解企业节能减排压力。
参考文献
[1] 兰家彬,金丛书,龚义华.随州市中小企业减排现状调查[J].武汉金融,2008(06):69-70
[2] 李亚红.政府失灵与现代环境管理模式的建构[J].河南科技大学学报(社会科学版),2008,28(2):101-105
关键词:第二代生物燃料;纤维素乙醇;纤维素汽油;草油
文章编号:1005-6629(2011)12-0067-03 中图分类号:TK6 文献标识码:E
1 第二代生物燃料的由来
石油是主要的化石能源之_,―直以来都推动着工业和社会的发展。然而,地球上蕴藏的可开发石油资源却只剩下几十年的寿命,而且使用石油资源所带来的环境问题也日益突出:石油燃烧会产生大量的含碳氧化物及少量含硫、含氮化合物,这些化合物要么是温室气体,要么能产生酸雨,不仅造成环境污染更能伤害人体健康。因此,积极寻找一种石油的替代资源就势在必行,于是生物质能就渐渐进入了人们的视Wo所谓生物质能就是储存于生物质资源中的能量,这些生物质能源主要是指可再生的有机物质资源,主要包括农作物、树木等植物及其残体、畜禽粪便、有机废弃物等,可以储存由光合作用产生的能量,因此,生物质能也是太阳能的一种转化形式,也具有可再生、应用潜力大等特点,科学家们需要做的就是,将这些能量进行开发并加以应用。
20世纪30年代,巴西最早使用甘蔗进行发酵,生产出乙醇燃料,用以驱动汽车,像巴西这种以可食用作物(主要包括玉米、大豆、甘蔗等)为原料制造出的生物质能被称为第一代生物燃料,其代表产品是通常所说的生物乙醇和生物柴油,前者由富含单糖、寡糖或淀粉的生物质原料经过发酵、蒸馏、脱水等步骤制成,后者为以动植物油脂为原料,经过酯交换反应(碱、酸、酶催化或超临界条件下)加工而成的脂肪酸甲酯或乙酯燃料。虽然第一代生物燃料已在许多发达国家推广使用,但第一代生物燃料并非长久之计,原因有二。其一,没有足够的耕地以满足发达国家10%的液态燃油原料需求,比如在2008年,由于生产第一代生物燃料而对粮食作物的额外需求使得粮食价格大幅上涨;其二,原料成本太高,特别是生物柴油,原料构成了其成本的70%,这也使得第一代生物燃料的价格高于石油,远离了人们所期望的对替代石油具有积极影响的能源形式。
20世纪90年代,美国可再生能源实验室研究开发利用纤维素废料生产乙醇的技术,这也标志着第二代生物燃料的诞生。所谓第二代生物燃料是指以非粮作物和农业废弃物为原料的可再生替代能源,这些原料包括玉米秸秆、木材废料及草本类能源作物。与第一代生物燃料的原材料(粮食作物)相比,这些原料作物成本低、量大,更关键的是这些作物的种植生产不会干扰和危及粮食生产。第二代生物燃料的诸多优势使其具有更加明朗的发展前景,其代表产品主要有纤维素乙醇和纤维素汽油两种。
2 第二代生物燃料的生产
2.1纤维素乙醇的生产技术
第一代生物燃料的原料(甘蔗、玉米等)本身富含糖类,将其转化为乙醇的生产工艺较为简单,而第二代生物燃料主要以纤维素质材料为原料,其炼制过程比第一代生物乙醇的合成多了两个步骤:生物质原料的预处理和纤维素、半纤维素的降解,这也是目前纤维素乙醇生产的难点之一,而整个炼制过程则涉及多个生物催化反应,它们可以按照多个方式组合形成不同的工艺路线。目前已建有示范装置的纤维素乙醇生产技术主要有4种:硫酸/酶水解一发酵技术、硫酸水解一发酵技术、酸水解―发酵一酯化一加氢技术和酶水解一发酵技术。这4种技术最大的不同点在于纤维素水解方式的差异:前3种均采用酸水解,而第4种采用生物酶水解。实际工业生产中,用酶替代酸水解纤维素,可以在比较缓和的条件下操作,可以减少糖的降解,提高乙醇收率,因此酶水解、发酵技术路线(见图1所示)是纤维素乙醇生产的发展方向,此项技术由美国可再生实验室开发。
首先,将经研磨后的生物质原料(玉米秸秆、玉米芯等)进行预处理(见图2上半部),其目的是将原料“解封”进而得到纤维素、半纤维素和木质素,再将这些成分进行增溶和分离,为水解变为可发酵的糖做好准备。实际上在植物体内,长长的纤维素构筑了植物细胞(见图2,直线型为纤维素,曲线型为半纤维素),纤维素分子被半纤维素和木质素环绕,因此,科学家必须先用酸、碱或加热等方法进行预处理,以解开植物细胞内的“矩阵”。最新研究表明,用氢氧化钠的水一乙醇溶液进行预处理,得到的纤维素是一种纳米级的海绵体,可使4~6nm直径的酶进入纤维素中进行酶解,能把生产纤维素乙醇的预处理成本由50美分/加仑降至4~5美分/加仑,可与用玉米淀粉生产第一代乙醇的预处理成本2美分/加仑竞争。
接着,用酶将“降解”得到的纤维素、半纤维素进行水解从而得到葡萄糖和戊糖单体。不同的纤维素原料和不同的预处理工艺应采用不同类型和数量的酶,所以酶的生产成本就成为纤维素乙醇生产的第一项核心。起初,在20世纪90年代末,酶的生产成本很高,约在5美元/加仑以上,目前,酶的生产成本已降至原来的1/30,使生产纤维素乙醇用酶的成本降至10~18美分/加仑,为纤维素乙醇生产技术的产业化奠定了基础。
最后,用酵母菌将葡萄糖、戊糖进行发酵得到发酵液,再将发酵液进行产品分离便得到纤维素乙醇。
2.2纤维素生物汽油生产技术
纤维素乙醇的能量密度较低,单位体积的能量只有常规汽油的66%,不适合大量与汽油调和使用,同时乙醇含氧量高,会腐蚀管道,还会吸收管道中的水分和杂质,难以保证乙醇汽油质量。因此,在开发纤维素乙醇的同时又在开发纤维素生物汽油,目前已进行试验装置实验的技术有快速热解一加氢改质技术(如图3所示)。
首先,采用快速热加工催化裂解技术将生物质原-料转化为用以生产汽油的芳香烃分子。所谓生物质热裂解技术是生物质在惰性气氛下受高温加热后,其分子破裂而产生可燃气体(一般为CO、H2、CH4等的混合气体)、液体(焦油)及固体(木炭)的热加工过程。生物质热裂解液化是在中温(500~650℃)、高加热速率(104~105℃/s)和极短气体停留时间(小于2s)条件下,将生物质直接热裂解,产物经快速冷却,可使中间液态产物分子在进一步断裂生成气体之前冷凝,从而得到高产量的生物质液体油(热解油)。此种技术分两步进行:第一步将纤维素(已预处理)用热砂快速加热,在循环流化床反应器中无氧存在的条件下加热到500℃,不到2秒,纤维素就被分解成富含氧的四到六个碳的有机小分子;第二步用复杂的三维催化剂催化分解含氧小分子,催化剂将氧原子从中移出并生成碳环,然后快速冷却,大约得到65%~75%(质量分数)的芳香烃分子(热解油)和少量不冷凝的气体(CO2、CO、H2O)与焦炭(可用作燃料)。
接着,再将热解油进行两段加氢除去氧和水,转化为运输燃料。其中第一段使氢和氧结合生成水,以蒸汽
形态脱除;第二段使热解油部分转化并改质为纤维素生物汽油。
3 第二代生物燃料的展望
生物燃料正在由第一代向第二展。第一代生物燃料的生产工艺已经较为成熟,美国、欧盟和巴西等一些国家已经形成了较完善的产业链。相反,目前第二代生物燃料的生产技术还未获得关键性的突破,大规模的商业化生产还有待时日。表1简要列举了两代生物燃料发展的特点对比。
目前第二代生物燃料的发展面临着生产技术与生产成本两大难题。就生产技术而言,在生产纤维素乙醇时,原料大多要经过强酸处理,以便从木质素中去除碳水化合物。经过酸处理的原料还要接受碱处理,目的是中止酸化过程。被水浸泡后木质素会被水稀释,不能直接用作燃料,除非人们把木质素与水分离,但这个过程要投入大量能源,势必增加生产成本;就生产成本而言,以秸秆为例,秸秆是向农民收购的,当没有生产纤维素生物燃料时,秸秆是农业废弃物可以轻易获取,但是一旦开始生产,农民就会向你要钱了,原料的价格很可能会随之上涨,势必会增加生产成本。
虽然第二代生物燃料的发展遇到了_一些阻碍,但毕竟只是刚刚起步。从长远来看,随着生物质资源的合理利用、相关技术水平的提高和产品生产规模的扩大,第二代生物燃料的成本将会逐渐降低,而石油等化石燃料价格出现大幅回落的可能性不大,第二代生物燃料有望成为具有成本优势的替代燃料之一。于是各国纷纷将目光转向第二代生物燃料的研究开发,其中,美国政府于2008年2月宣布提供为期4年总额为3380万美元的资助,重点开发将纤维素生物质转化为糖类的酶系统;英国政府于2007年“英国生物质战略”,提出要通过立法鼓励生物燃料领域的技术创新,支持第二代生物燃料的开发;中国政府也于2007年底启动了“纤维素乙醇的高温发酵和生物炼制”重大项目,重点用于突破木质纤维素生产燃料乙醇的技术瓶颈。
实际上,第二代生物燃料的原料多为富含纤维素、生长迅速的草本植物及其废弃物,若将英文汽油单词(gasoline)中前缀“gas”去掉,引入"grass”(草)就组成了一个形象生动的专有名词“草油”(grassoline)。随着各国在“草油”生产工艺中的大量投入,在未来5~15年生物质转换技术将逐步从实验室走向市场,使用第二代生物燃料为动力的汽车数量也将迅速增长,即将到来的“草油”时代必将从根本上改善我们的世界。
参考文献:
[1]魏学锋,张小云,易婕等.生物质燃料的开发利用现状与展望[J].节能,2004,(8):14~17.
[2]仉磊,章晓庆译,将草炼成油[J].环球科学,2009,(8):18~20.
【关键词】生物质能;农村;发展
一、我国农村现有生物质能源利用的现状
我国耕地面积为18.37亿亩,盐碱地约14.87亿亩。农民是土地真正意义上的主人和耕种者,多年来我国农村多实行自由式耕种方法,种什么,种多少,都取决于农民。对于耕种非粮生物质能源的原材料如:蓖麻、甜高粱、木薯、麻疯树、棕榈、苏子等,缺乏统筹安排,农业产业化格局还没有形成,一部分未耕土地还没有得到合理的利用,在农村发展生物质能有很大的潜力;多年来我国政府大力倡导在满足城镇居民口粮的基础上,挖掘闲散地,规模化种植非粮生物质可燃原料,针对农村具体情况,合理安排土地资源,走可持续发展的高效、低碳、环保之路,经过努力目前已经初见成效;我国从南到北建立了很多非粮生物质燃料的原材料生产示范基地,加快了农业结构调整的进度;我国农村传统的能源转换形式是直接燃烧秸秆类农作物,用于取暖、烧饭,这种极为落后的高污染、低热量的能源利用方式,造成资源浪费和严重的环境污染。目前适合我国农村生物质能发展的非粮物质有很多,按照生物质的特点及转化方式可分为固体燃料、液体燃料、气体燃料三种。
二、固体生物质燃料
固体生物质燃料是指农作物秸秆、薪柴、乔木、谷壳等可燃性物质。我国农作物仅秸秆一项年产量就可达到7亿吨,稻壳、蔗渣等农业加工残余物0.84亿吨,薪柴及林业加工废料1.58亿吨。在可开发的生物质资源中,能源作物的种植和开发潜力很大,农作物秸秆有40%作为饲料、肥料和工业原料,尚有60%可用于能源开发利用,约相当2.1亿吨的标准煤;薪柴也是重要生物质资源,有40%林业剩余物可以利用,约相当0.3亿吨的标准煤;大量的农业副产品的剩余物、废弃物,蕴藏着巨大的生物质能源,为生物质能的利用开辟了一条重要途径。
目前我们采取一种新技术,将秸秆、稻壳去湿、去杂土,在一定温度和压力下压缩成块状、棒状、颗粒状等成型燃料。提高了其运输和储存能力,改善秸秆燃烧性能,提高利用效益。在我国农村,对生物质资源比较集中的地区,可以就地取材,减少成本。利用小型生物质发电设施,通过燃烧秸秆和灌木屑发电,既可做到废物利用,又可以降低发电过程对环境的污染。另外,现有农村电厂利用木材屑和农作物的残余物与煤的混合燃烧是比较现实的一项技术,这样提高了农林废弃物的利用率,也降低了纯燃煤对大气的污染,缓解人们对化石能源的依赖。我国在秸秆固体成型的生产和应用方面已经初步形成了一定的规模,主要以锯末和秸秆、稻壳、灌木为原料,满足农村居民的生活用能、农机具用能和发电用能等。近些年来国家出台一系列政策,采取综合性补助的方式,支持从事秸秆成型燃料的农村加工企业,尤其鼓励农村小型生物质电厂的建设。目前开展的一般生物质直接燃烧发电,这项技术相对较为简单很容易掌握,适合在农村发展。我国技术人员开发出适合村镇使用的小型生物质发电设备,利用稻壳、秸秆作原料,因地制宜地走适合村镇发展电力(village power plant)的道路,在农村节能减排中做出了贡献。
三、液体生物质燃料
生物液体燃料是指生物乙醇、生物柴油,它作为化石能源石油的替代品,是液体燃料中理想的选择。液体生物燃料来源于可再生能源,温室气体净排放几乎是零,是理想的朝阳产业。我们研制的以玉米、甘蔗、甜菜、豆类、食用油为第一代生物燃料原料的生产技术已经被淘汰。以秸秆类、谷壳类、甘薯、蓖麻等为原料的非粮生物燃料生产技术已经形成,而这类原料取于农村、用于农村,成本低廉,可以形成规模化生产。产品如有剩余还可以作为商品燃油的形式卖给城市居民,增加农民收入。以秸秆、谷壳、麻疯树、甘薯、苏子、亚麻等农业废弃物、非粮植物为原料的第二代生物燃料被公认为具有巨大的替代石油的潜力,据有广阔的市场发展前景。