首页 > 文章中心 > 电力电子技术节能

电力电子技术节能

电力电子技术节能

电力电子技术节能范文第1篇

关键词:新兴产业;电力电子技术;应用

Power electronic technology in energy saving and strategic

Emerging industry in the application

GUO Shi-ming

(Southwest Jiao Tong University, Sichuan Chengdu 610031)

Abstract: The development of strategic emerging industry is China's new era of the economic and social development of the major strategic task. This paper introduces the contents of strategic emerging industry, burgeoning industry of key equipment and core technology as well as in the emerging industry in related areas of application.

Keywords: emerging industry;power electronic technology;application

1  战略性新兴产业及其相关产品与技术

1.1  节能环保产业

(1)高效节能环保技术装备及产品。主要有:①高效节能锅炉、窟炉、电机及拖动设备;②余热余压利用设备、高效节能家用和商用电器照明器具;③高性能、低成本的污水、固体废物、烟气处理技术和装备等。

(2)资源循环使用技术。这些技术主要包括:矿产资源、工业固体废物综合利用技术;汽车零部件及机电产品再制造技术,再生资源回收利用技术;餐厨废弃物、建筑废弃物、道路沥青和农林废弃物资源化利用技术等。

1.2  新一代信息技术产业

到“十二五”期末,初步建成宽带、融合、安全的下一代信息网络设施,实现三网融合。提升高性能集成电路技术水平,初步建立自主可控的集成电路产业体系;攻克半导体照明产业的共性关键技术和关键装备。

1.3  生物产业

生物产业涉及的技术有:药物、疫苗和特殊性诊断试剂的开发技术; 高产、优质、多抗、高效植物新品种的培育技术;生物农药、生物肥料、生物饲料、动物疫苗等绿色农用生物产品的生产技术;非粮原料与纤维素转化技术;生物醇、酸、酯等生物基有机化工原材料的生产技术;生物塑料生物纤维等新生物材料的生产技术等。

1.4  高端装备制造产业

高端装备制造业主要包括:①航空装备(干线飞机、新型支线飞机、直升机、航空发动机等);②轨道交通装备(高速列车、重载列车、城际列车装备及其运输系统);③海洋工程装备(海洋油气开发装备、海洋风能利用装备、海水淡化装备等);④ 智能制造装备(智能仪器仪表与智能控制系统;高档数控机床与智能专用装备等)。

1.5  新能源产业

(1)风能产业。主要技术有:风电装备中的轴承、变流器和控制系统的制造技术;并网和远距离输电装备的核心技术;海上风电装备的制造技术等。

(2)太阳能产业。主要技术有:高效太阳能电池技术、太阳能光伏发电技术、太阳能供暖、制冷技术等。

1.6  新材料产业

新材料主要有:①新型功能材料(主要包括电子材料、储能材料、医用材料、高纯硅、特种橡胶、高性能膜材料、低辐射镀膜玻璃、导电玻璃、光纤预制棒、高端石墨材料等)。②先进结构材料(主要包括高性能铝合金、镁合金、钛合金、高温合金材料、特种铸锻件、特种优质钢材、耐热耐磨轻质高强工程塑料、高端通用树脂等)③高性能复合材料(主要包括树脂基、碳陶瓷基、金属基复合材料等)。

1.7  新能源汽车产业

对于纯电驱动汽车,其涉及技术主要有:动力电池技术、驱动电机技术和电子控制技术等。

2  电力电子技术在战略性新兴产业发展中的地位

电力电子技术为战略性新兴产业提供了高性能、高精度、高效率的各种容量电控和电源设备,成为发展这些产业的关键和基础。

3  电力电子技术在战略性新兴产业中的应用

3.1  在节能中的应用

(1)电动机节能运行

①变频调速节电

根据负载特性改变电机转速,达到节电效果。通过调速达到节能的负载主要有:风机、水泵、油泵等。

②改善功率因数节电

交流异步电动机的无功就地补偿就是将补偿电容器组直接与电动机并联运行。

③轻载调压节电

当电动机处于轻载运行时,若适当调节电动机定子的端电压,就会降低电动机的励磁电流,从而降低铁耗和从电网吸收的无功功率。

(2)无功功率的补偿

动态无功功率补偿的节能来自两个方面:

①谐波电流流人电网,在变压器漏抗和线路电阻上产生压降,造成网压畸变。畸变的网压将产生高次谐波电流,使负载产生额外的损耗,这种现象被称为谐波的负载损耗。

②无功电流在供配电系统中流动,产生与视在电流平方成正比的供配电损耗。

(3)高效节能照明

高效节能灯是指发光效率较高的电光源。近几年我国推广的节能灯有:稀土荧光灯、金属卤化物灯、高压钠灯、双绞丝型的白炽灯等。稀土荧光灯是国内居民家庭、商店、宾馆、饭店等场所重点推广的光源。

3.2  在电力系统中的应用

(1)高压直流输电技术(HVDC)

①超高压直流输电技术

在远距离大容量输电、异步

联网、海底电缆送电等方面具有优势,因而得到了广泛应用。超大容量直流输电的成功条件之一是受端有强大的交流系统,提供足够的短路电流(换相电流)。

②柔性直流输电技术

以电压源换流器和IGBT为核心,是新一代更为灵活、环保的直流输电技术,在降低城市配电网短路电流、解决可再生能源并网难题、海岛供电及向能源紧缺和特殊地区的供电等领域发挥积极作用。柔性直流输电系统的换流器采用自换相方式,可四象限运行且有功、无功功率独立控制。

(2)柔流输电技术(FACTS)

FACTS 技术是指以电力电子设备为基础,结合现代控制技术来实现对原有交流输电系统参数及网络结构的快速灵活控制,从而达到大幅提高线路的输送能力和增强系统稳定性、可靠性的目的。

FACTS 技术已从原有的基于半控器件的静止无功补偿器(SVC)、可控串补(TCSC)技术发展到现在的基于可关断器件的静止同步补偿器(STATCOM)、统一潮流控制器(UPFC)等技术。

电力电子技术节能范文第2篇

【关键词】电子电工 晶闸变流 电力系统 励磁 集成化 高频化 全控化 电流转换器

电子电工技术是一种新型电工技术,传统电工技术是电子电工技术发展的基础,电工技术与电子技术联合应用于电力系统,可以提高电力系统的运行效率,文章主要分析了电子电工技术的作用,结合电子电工技术的特点,对如何更好的将电子电工技术应用于电力系统提出具体建议。

1 电子电工技术简述

1.1 电子电工技术的概念与特点

电子电工技术是一种新型电工技术,计算机技术的发展与普及是其产生的前提,传统电工技术是电子电工技术发展的基础。电子电工技术是电子技术与电工技术的有机结合,电子电工技术涵盖电子技术、电气工程、电子设备应用与维护、电力生产、电气制造等方面,是一项新型综合性技术。电子电工技术具有集成化、高频化、全控化、高效率化的特点。

1.2 电子电工技术的作用

电子电工技术有利于整合电力资源,提高电力资源的利用率,这也就达到优化电能的作用。电子电工技术可以促进机电一体化实现,电子电工技术的发展依赖于计算机技术,计算机系统较为稳定、安全、快捷,这对实现机电一体化具有较大的促进作用。

2 电子电工技术发电环节中的应用

2.1 静止励磁

静止励磁是一种非线性控制理论,静止励磁是指发电机无需自身带励磁机,励磁电源从厂用电供给,由可控硅直接整流控制,供给转子线圈,这时必须由碳刷换向才能通入转动的转子线圈。大型电厂的发电机组是静止励磁的主要应用领域,静止励磁与传统励磁机相比,优势显著。在发电机组中,主电路与调节电路是静止励磁的两个主要部分。在电力输送过程中,需要大量的设备,这些设备主要由电工电子器件构成,如放大器,滤波电路、整流电路等。静止励磁结构简单,稳定可靠,运行成本低,正在不断应用于各大电气系统的发电环节之中。

2.2 变速恒频励磁

水力发电中,水头的压力与流量共同决定水力发电的有效功率,抽水蓄能机的工作效率与水头流量和压力变化紧密相关。通过应用电子电工技术,转子励磁电流的恒变频率会适当调整整个发电系统,使发电系统中机组的自转速趋同于电流频率,恒定发电系统的输出频率,这就使得发电系统的整体运行效率得到提高,从而提升整个发电系统的经济效益。

2.3 机泵变频调速

在系统进行高低压互相转化时,应用电子电工技术,用变频机代替风机水泵变频器可以大幅提高电压转化的效率,使整个电气系统的运行成本得到降低,也就提高了电力系统运行的经济效益,我国目前机泵变频调速技术还没有大面积推广应用,但是其前景十分广阔,相信随着国家的重视,机泵变频调速技术将会在国民经济建设中发挥重要作用。

2.4 太阳能系统

太阳能是二十一世纪的核心清洁能源,电子电工技术对太阳能系统发电具有重要意义。太阳能转化为电能需要借助于大规模的集成电流,如果将电子电工技术应用于太阳能发电系统中,可以保证太阳能稳定有效输出,使太阳能成为一种稳定易用的能源,提高太阳能的利用率。

3 在输电环节的应用

输电环节是整个电力系统运行的关键,电子电工技术在输电环节的应用非常广泛,这有利于维护输电网路的安全与稳定。直流输电技术的应用、交流输电技术的应用、静止无功补偿器是其在输电环节应用的主要表现。电子电工技术结合机械控制技术可以提高输电线路的稳定性,将电子器件安装于输电线路之中,可实现对输送电量的实时观测,根据具体需求调整输电量,这就有利于减少电量在输送环节的损耗,提高电能输出效率。换流阀与晶闸管是电子电工器件的代表,将其应用于高压直流电输电中,可以降低变压器的使用频率,使输电转换设备自身的移动能力增强,也就降低了发电企业的运作成本。目前晶闸管已经成为电气开关的主流,晶闸管可以说是电子电工技术在发电系统静止无功补偿器应用方面的代表。晶闸管可实现对电器快速准确的控制,提高电力系统的运作效率。

4 在配电与节能环节的应用

4.1 配电环节

提高供电的稳定性与电能质量是当前电力系统亟需要解决的问题。配电阶段是电力系统中极为重要的组成部分,主要承担着维护供电安全与稳定,有效控制电能质量的作用。控制电能质量需要对电压、谐波、频率进行调整,而且还需控制波动与干扰,在配电环节应用电子电工技术,可以妥善的解决这些问题。将电子电工技术应用于电力系统的配电阶段,可以提高供电的稳定性与电能质量,有效克服了传统工频配电变压技术的弊端,能够抵御可能产生的配电瞬间波动,极大的改善了电能质量,并且能够对谐波进行随时的监控,有利于配电水平的提升。

4.2 节能环节

当前我国电力资源形势严峻,电力系统中应用电子电工技术可以调节峰谷、储存电能。电量输出并不是一成不变的,准备发电装机能力应以最大负荷为依据。电子电工技术可以直接将交流电转化为直流电,且可以并联方式储存与大的电容器之中,可根据电量使用大小,调整输电量,这就提高了电量的使用效率,目前电子电工技术快速发展,已经成功研发出电动机调速控制设备。将电动机进行改良,控制电动机的转速,用调速控制设备代替传统挡风设备可以将电动机的转速控制在合理范围内,这样就能够降低电动机能耗,而且不会降低电气系统的运行效率,这就实现了节能减排的目的。当前国外已经普遍用调速控制设备,电动机节能效果显著。

5 结语

当前电子电工技术快速发展,在电力系统中应用电子电工技术可以实现对电力系统运行活动的有效控制,优化发展传统电工技术。电子电工技术对于提高电力系统的运行效率具有重要意义,应当高度重视,深入研究,将电子电工技术与我国电力系统紧密结合,促进我国电力事业快速健康发展。

参考文献

[1]张承慧,崔纳新.交流电机变频调速及其应用[M].北京:北京机械工业出版社,2008.

[2]孟祥忠,王博.电力系统自动化[M].北京:北京大学出版社,2008.

电力电子技术节能范文第3篇

关键词:电力系统;电力电子技术;应用

1 电力电子技术的发展

随着20世纪50年代末第一只晶闸管的问世,电力电子技术便登上了历史舞台,在这以后的几年里,电能的控制经历了从旋转交流机组到电力电子器件构成的交流器机组的转变,这一过程的转变标志着电力电子技术的真正诞生。在随后的几十年里,电力电子技术依次经历了第一代电力电子器件、第二代电力电子器件以及第三代电子器件的过渡。在第一代电力电子器件中,电力二极管和晶闸管作为典型的代表器件,这些器件的小体积、低功耗等优点使得他们有了极其广泛的运用,第一代电力电子器件的普及为电力系统的发展起到了巨大的推动作用。随着可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT)、电力晶体管(GTR)、静电感应晶体管(SIT)、MOS控制晶闸管(MCT)、电力场控晶体管(MOSFET)等通断两态双可控器件的问世,标志着电力电子器件已经实现了从第一代到第二代的过渡,之后,由于电力电子技术发展的要求,又进入到了第三代电力电子器件的时代,相比第一、二代电力电子器件,第三代电力电子器件有着明显的优势,因为它更注重电力电子技术的环保性、节能性、自动性以及智能型。

2 电力电子技术在电力系统中的应用

上个世纪80 年代,由于相关技术的不断发展及更新,提出了柔流输电理念,因为这个概念的提出,使得很多的研究人员开始将注意力转向电力电子技术在电力系统中的应用上来,也正因为如此,在以后很短的一段时间里,相继出现了多种电力设备,这为电力系统的发展提供了契机。根据自身多年的工作经验以及其他研究人员的研究成果,笔者将从电力系统中的“发电环节”、输电环节、“配电环节”以及“节能环节”四个环节分别阐述电力电子技术的应用。

2.1 电力电子技术在发电环节中的应用

电力系统的发电环节是一个比较复杂的环节,因为它的运行涉及到发电机组的很多种设备,在发电环节容易出现问题,正因为如此,将电力电子技术应用到发电环节就显得很有必要,在此环节中,电力电子技术的主要目的是为了改善这些设备的运行特性。在静止励磁的环节中,通常都会采用晶闸管整流自并励连接方式,因为这样做除了具有设备结构简单、工作运行时可靠性高的优点外,还能降低该过程的的造价,因此晶闸管整流自并励方式已经被世界很多大型电力系统所采用。电力电子技术的介入,省去了励磁机环节,使其大大的加快了自身的调节性能,不仅如此,还为其提供了充分发挥作用并产生良好控制效果的有利条件。水头压力和流量是决定水力发电有效功率的因素,当水头压出现较大的变化幅度时,机组的最佳转速变将会受到较大影响。虽然与水力发电不完全一致,但是风力发电有着相似的变化特点,因为在风力发电系统中,风力发电的有效功率和当时的风速的三次方成正比关系,风速的变化将直接影响到风车能捕捉到的最大风能。通过以上水力和风力发电系统中的一些特点的分析,我们知道,如果想获得最大的有效功率,可以通过将机组变速来实。变频电源是这项应用的技术核心。另外,在电力系统的发电环节,可以通过使用一些较低电压或高压的变频器来使水泵实现变频调速,这样做可以达到一定的节能目的。正因为低压变频技术的这些优点,使得它一度成为一个研究的热点,如今,该技术已经非常的成熟,国内外已经有了很多的生产厂家。但是同时具备高压大容量变频器设计很生产的企业却很少,这方面的技术还有待我们的深入研究。

2.2 电力电子技术在输电环节中的应用

在高压输电系统中,通过将电力电子技术运用进去,引发了一次电力系统中的革命,这次革命被称之为“硅片引起的第二次革命”,因为电力电子器件的应用,极大地改善了电力网的稳定性。相比交流输电,直流输电具有很明显的三个优点:①输电容量大;②稳定性好;③容易控制。正因为如此,在电力输送的环节,通常都是采用直流输电。对于一些距离较远的电力输送以及一些特殊的电力输送,高压直流输电拥有其自身独特的优势。1970 年第一项晶闸管换流器的问世,标志着电力电子技术正式应用到直流输电环节,从那以后,世界上所有的新建直流输电系统基本上都是采用晶闸管换流阀。从此,电力电子技术正式迎来了它在电力输送环节中的应用巅峰期。FACTS 技术是在电力电子技术的基础上发展出来的一项输电技术,FACTS 技术是在 20 世纪80 年代后期发展出来的。它除了可以灵活的对交流输电功率进行控制外,还可以极大地提高电力系统的稳定性。

2.3 电力电子技术在配电环节中的应用

在目前的配电系统中,供电可靠性和电能质量是两个重要的环节,但是目前世界上还没有几个发电系统能将这两者存在的问题处理的很好,所以,如何保证供电的可靠性以及提高电能的质量是配电系统中迫切需要解决的问题。在这两个环节中,电能质量的保证显得更为棘手,因为要实现对电能质量的控制,除了要满足对电压、频率、谐波和不对称度的要求外,更要抑制各种瞬态的波动和干扰的影响。电力电子技术在一定程度上能够满足这些要求,DFACTS 技术就是电力电子技术配电系统中应用的一个体现,它结合了现代控制技术,在某种意义上,可以把 DFACTS 技术认为是 FACTS 技术的缩小版本,因为他们的原理以及结构都是相同的,最主要的是他们的功能大体相似。

2.4 电力电子技术在节能环节中的应用

(1)变负荷电动机调速运行:电力电子技术能够在节能环节中起到变负荷电动机调速运行的作用,变频调速具有以下几个方面的优点:①调速范围广;②精确度和效率高;③能实现连续无级调速。正是因为以上的优点,使得在调速过程中降低了转差损耗,节电率通常都可以达到35%左右。

(2)减少无用功损耗,提高功率因数:在电气设备中,对于一些感性负载,例如变压器和交流异步电动机,他们在工作的时候,不像其他的电气设备一样,他们不仅要消耗有功功率,还要消耗一部分的无功功率,对于无功功率这一部分能量,它的消耗对实际的电能生产是没有任何帮助的,但是在电力系统中却要保持无功功率的平衡,因为这样能够阻止系统中的电压降低,对电气设备起到了保护作用。所以,电力网或者电气设备一旦出现无功功率容量不足时,应该及时的增加相关的无功功率补偿设备,以便提高设备的功率因数。

3 结语

本文主要从电力系统的四个环节(“发电环节”、输电环节、“配电环节”以及“节能环节”四个环节)分别阐述了电力电子技术的应用,虽然这几个环节已经较全面的概括了电力电子技术在电力系统中的应用情况,但是希望相关的研究者继续深化这方面的研究,为世界电力系统的快速稳定发展提供一点可靠的依据。

参考文献

[1] 殷海兰.电力电子技术在电力系统中研究与应用[J].科技天地,2010,(10):12-14.

电力电子技术节能范文第4篇

1 电子电工技术简述

1.1 电子电工技术的概念与特点 电工电子技术的发展是以传统电工技术作为基础的,其是在计算机技术发展和普及的背景下产生的,有效结合了电工技术和电子技术,其涵盖的领域很广,比如电子技术、电气工程、电力生产和电气制造等方面,其是一项综合性很强的新型技术。电工电子技术的突出特点是高度集成化、高频化、全控性强、效率高。

1.2 电子电工技术的作用 电工电子技术能够优化电能,有效整合电力资源,提高电力资源的利用效率。机械和电子可以以电工电子技术作为依托,方便实现一体化,在计算机技术快速发展的背景下,电工电子技术对计算机技术形成了依赖,计算机系统的安全、稳定以及快捷的特点,促进了机电一体化的实现。

2 电子电工技术在电力系统的应用

2.1 发电过程中的应用 在电力系统的发电过程中需要用到的发电设备很多,在这些发电设备中应用电工电子技术能够有效提高设备性能。电工电子技术在电力系统中的应用具体体现在两个方面:过模型发电机的静止励磁技术和变频调速技术。

静止励磁技术的突出优点是安全度高、成本低廉,其作用的发挥需要依托于晶闸管整流自并励模式。静止励磁技术在电力系统中被广泛应用和推广,应用此项技术可以省去励磁机,大大提高了调节速度,确保其的各项控制功能能够有效发挥,提高了控制效率。

变频调速技术最突出的优点是能够降低设备能耗,其可以有效降低风机水泵的能耗,因此其被广泛应用于发电厂风机水泵中。发电厂风机水泵能耗很高,其能耗能够占到火电设备总能耗的60%,其是一种高耗能设备。变频调速技术可以调节风机水泵的速度,降低风机水泵的能耗,随着低压变频技术的发展和完善,其在降低发电产风机水泵能耗方面发挥了积极作用,目前正在重点研究高压变频器技术。

2.2 输电环节的应用 众所周知,电力系统的关键环节是输电环节,在输电环节电工电子技术被广泛应用,对其的应用提高了电力系统的稳定性,确保了电网的安全稳定运行。在电力系统的输电环节对电工电子技术的具有应用主要有两个方面:直流输电技术和交流输电技术。

直流输电技术的突出优点是安全、稳定、易操作和变通等,在电网的长途、大规模输电过程中会产生无功损耗,但是使用直流输电技术,可以使送电以及受电侧都能够使用晶闸变流设备,有效克服了电网输电过程中的无功损耗问题。直流输电技术具有较强的环境适应能力,可以适应各种复杂的地理环境,在远距离输电中普遍使用,随着科学技术的发展,人们对直流输电技术进行了更加深入的研究,促进了直流输电技术的发展。

交流输电技术的突出优点是能够进行柔性交流输电,柔性交流技术发挥的核心功能类似于弹性补偿技术,该项技术依托于旧式交流电力系统,是对旧式交流系统的优化和升级。该项技术应用于电力系统中能够对电力系统发电、输电系统电压以及相位进行有效控制,同时能够对输电损耗进行有效控制,确保电力系统安全稳定运行。

2.3 配电环节的应用 电力系统一个非常重要的组成部分是配电系统,其的安全稳定运行能够确保电力系统安全可靠供电,配电系统的突出作用是能够控制电能质量。在配电系统中使用电工电子技术可以使其轻松实现这一目标,电工电子技术的使用使得配电系统轻松达到了电力系统对电压和谐波方面的要求,极大提高了电力系统的供电质量,并且可以有效防止各类瞬间波动,确保电力系统供电安全。

电力系统传统的配电设备主要是工频配电系统变压器,但是其存在的缺点是体积大、笨重并且容易产生污染,自身性能的原因有时影响电力系统正常供电,降低了电力系统供电质量。电工电子技术应用于电力系统有效克服了传统配电设备存在的缺点和不足,原因在于能量转化和利用方式发生了改变,其能力的转换和利用主要借助于电工电子转换技术。电工电子技术应用于配电系统可以实现对谐波的实时监控,全面提升配电系统配电水平,极大地改善了电力系统电能质量,确保了电力系统的安全稳定运行。

2.4 节能降损环节的应用 电工电子技术在电力系统节能降损环节的具体应用主要有两个方面:变负荷电动机调速运行和控制无功损耗。

电力系统中降低能耗的方法主要是降低电动机能耗,主要使用的技术是变负荷电动机调速技术,使用该项技术能够有效降低电动机能耗。目前在变负荷设备中越来越多地使用调速控制技术,在控制风、水流量方面发挥了积极作用,提高了调节的效率和精度,使用范围变得更加广泛,甚至可以实现无极调速效果。但是该项技术在降低能耗的,有效调速的同时还存在一些缺点,比如投入较大,并且容易对电力系统产生污染,对其的应用还需要进行深入研究。

电力系统中能耗较大的设备是变压器和电动机,这两个设备在电能供应方面共同发挥作用,确保了供电质量。在电力系统中维持无功平衡才能够保障电气设备的安全使用,因此可以在电力系统中配置无功补偿装置,对电力系统中的无功损耗进行有效控制,不断提升功率因数。

电力电子技术节能范文第5篇

【关键词】电子技术 电力系统 应用发展

1 前言

随着人们生活水平的不断提高,整体经济水平的不断发展,电子设备与电力电子在现代电力系统中应用越来越广泛。但是电力等能源需求也越来越大,随着引起了能源危机与生活需求的矛盾。电力电子技术在整个能源开发中扮演着十分重要的角色,新型电力能源的研究与开发都离不开电力电子作为基础。因此,电子技术于电力系统的相互结合,不仅关系到电力能源的革新发展,对于社会的长足未来也都起到了关键作用。国内对于电力系统网络较早就展开了建设研究,至今也取得了斐然的成果与成熟的电力网络构架。

2 电子技术在现代电力系统中的应用

电力系统本身具有复杂性、专业性与各领域技术结合的综合性。经过多年的发展与融合,电子技术在各行各业都得到了广泛运用,也推动了电力能源的快速发展。对电力系统的性能与效率都起到了极大的促进作用。在电力系统中包含发电、配电、输电等各个关键环节,电子技术的深度结合都必不可少。随着电网的规模性能逐渐壮大高效,对电力电子技术也要求越来越高。通过优化完成电网变网的运行管理,在效率、精度、性能、质量等各方面指标都得到了更好的控制管理,对于电力系统的运营成本与难度都有效降低了。安全稳定的运行,使整个系统容错性增加,运行更趋于完善。

2.1 发电环节应用

现代电力系统作为一个复杂的综合系统,其发电环节技术成分含量较高,多个发电组与设备相结合,并且设备本身结构十分复杂。因此,相关的操作技术人员需要有过硬的专业技能知识,这样才能更好的完成电力设备中相关设计管理,运行维护等系列工作。发电环节中与电子技术的相互结合,对于发电系统整体的效率都能有很大的提升。励磁控制作为目前发电机控制的主流控制方法,主要通过品闸管整流电路完成设备的连接。具有较高的可靠性,并且系统整体控制结构简单,性价比较高,造价与系统性能均较为合理。静止励磁控制在对原有励磁机完成优化后,消除了惯性环节,系统稳定性与高效性能变得更为完备。对于系统的运行规律变换,一般结合电子变频设备,控制调节发电中机组的运用速度。使得电力功效得到提高,自身变化率也完成自动化控制,结合励磁控制,整体变得更加稳定高效,而且自身系统功率耗费也降低到了最低。其他电力领域也均有广泛参考,如风力水力发展等。由于发电设备电量使用不可转移改变,并耗电比较大,例如在风力发电中,为了消除不同风速变化导致的频差,其功率消耗高达整个用电的65%,电子变频器的出现很好的缓解了这一问题,通过有效地控制调节,能源消耗更低,大大降低了成本输入。

2.2 输电环节应用

电子电力技术的不断发展与提高,在电力系统中应用越来越广泛。电子元件的大量生产与应用,为现展提供更多的技术硬件支持与广阔的平台。在系统中的输电环节,电子器件的结合运用,一方面电力电网运用的可靠性得到了保证,电网稳定性也得到了相应提高,安全可靠的发展都展现电子技术在电力系统中的关键作用。在当前输电环节中,一般采用直流与轻型直流这两种较为常见输电模式,不仅能够增加输电的容量大小,并且能够更加灵活方便的控制调整。整个输出过程稳定可靠。这对于远距离的传输电力实现了较好的支持供应。其中,直流输电最大的优势还在于能够满足不同的电力输出要求,采取针对性的不同输电方式。随着技术的不断发展,柔流输电技术被研发并最近应用。这种融合了微电子、未处理、电力电子技术、自动化控制、通信交互等多种融合的技术平台,能够完成交流输电的适时控制,使整个电网达到长时的稳定状态,同时输电环节的输出成本也相应降低。柔流输电技术为电力系统提供了无功功率和感应,提高了输电质量与传输效率。

2.3 配电环节应用

在输电环节中,保证电能质量有效控制调节十分重要。在配电过程中,对频率、谐波、电压等指标有效控制,以此到达电能质量的标准,并且还需要考虑到干扰与瞬态波动的影响。在目前的电子应用中,一般是基于DFACTS电能质量调节装置进行控制。完成对电能质量的约束规范。由于柔流输出系统日趋成熟。作为简约版本的FACTS设备技术,DFACTS自身的工作原理、性能结构、功能指标均大同小异。由于电力电子期间的飞速发展,目前电气设备出现了供过于求的市场状态。DFACTS自身应用前景广阔,市场需求大,并且自身技术并不复杂,造价成本较低,更加容易被市场所接纳,整个设备产品将进入高速发展地势态。

目前一般采用电力通信技术为微波、无线扩频、电力载波、光纤通信等。除了数据语音、电信业务、自动化控制等,还有相应的业务保护,安全控制数据等。而电力通信的自动化与电力系统自动化相照应。现在大多已经满足了稳定、可靠、高效的优化通信。目前一般光纤采用OPGW与ADSS类型技术,能够与电力系统本身的线路资源相结合,避免产生频率资源、路由协调、兼容性之间的矛盾与冲突,自身具有较强的主动权,控制灵活。

3 结束语

由于技术的不断发展进步,对应的电子技术、电子设备、电子材料等,都在飞速发展。在电力系统建设中,作为主要组成的电力电子器件,也得到了相应的完善与优化。不断满足高要求的新型电子技术也不断呈现研发。同时,现代电力系统构建态势也呈现多元化,综合性。可以预测,基于目前的发展,未来较长一段时间中,电子技术在电力系统中依然扮演着重要作用,满足大规模电网改进建设。不断研究新技术,并加以改进应用。完善促进现代电力系统的健康发展育稳定高效建设,争取取得更大的科技进步。

参考文献

[1]张娜.电力电子技术的发展及应用探究[J].电子技术与软件工程 ,2015(03).

[2]于闯.浅析电力电子技术在电力系统中的应用[J].科技经济市场 ,2015(07).

[3]张文亮,汤广福,查鲲鹏,贺之渊.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010(04).

作者简介

马妍红(1981-),女,山东省青岛市人。研究生学历。现青岛市技师学院讲师。研究方向为电子技术。