首页 > 文章中心 > 蛋白质

蛋白质

蛋白质

蛋白质范文第1篇

牛奶、鸡蛋都富含蛋白质,蛋白质是什么物质呢?对人体有什么好处呢?

蛋白质能帮身体做什么?

蛋白质是由许多氨基酸组成的高分子含氮化合物。目前已知有22种不同的氨基酸,它就像26个英文字母可以组合成无数个单词一样,许多种不同的蛋白质也是因为氨基酸的组成不同而异。在人体内它发挥着重要的作用。

蛋白质是人体的建筑材料

人体的肌肉、骨骼、皮肤、头发、指甲等都是由蛋白质构成,人体的所有器官都可以认为是蛋白质的有机组合。出生后到1岁,特别是0~6个月的婴儿是大脑细胞猛烈增长的时期。所以0到1岁儿童对蛋白质的摄入要求很高,对儿童的智力发展尤关重要。

蛋白质是营养素的运输团队

蛋白质在体内运载各种物质。比如血红蛋白输送氧、脂蛋白输送脂肪、细胞膜上的受体还有转运蛋白等。

蛋白质为人体提供能量

蛋白质分解后可以为人体提供能量,蛋白质是人体的重要供能物质。当人体缺乏能量时,体内的蛋白质和脂肪会自动分解,为人体补充能量。

蛋白质构成人体必需的催化和调节功能的各种酶

我们身体有数干种酶,每一种只能参与一种生化反应。消化酶有促进食物的消化、吸收、利用的作用。

缺乏症与摄入过剩

蛋白质与人体生命活动息息相关。当蛋白质摄取不足时,会出现新生细胞生成速度减慢、生长发育迟缓、体重减轻、身材矮小、容易疲劳、抵抗力降低、贫血、病后康复缓慢、智力下降等状况。

相反,若长期蛋白质摄入量过剩,超出人体的需要,那么过量的蛋白质非但难以消化吸收,反而会造成胃肠、肝脏、胰脏和肾脏的负担,进而造成胃肠功能紊乱和肝脏、肾脏的损害,对身体不利。

怎样获得充足的蛋白质

1 小宝宝可从母乳中获得充足的蛋白质。配方奶只要是正规厂家的产品,宝宝也能获得充足蛋白质,一般不会缺乏。

2 宝宝能吃辅食后,要尽量搭配食物吃。这样吃更营养。这主要是蛋白质的互补作用。如谷类食物蛋白质内赖氨酸含量不足,蛋氨酸含量较高,而豆类食物的蛋白质恰好相反,混合食用时两者的不足都可以得到补偿,比如做饭菜时可混搭,做肉末豆腐、红豆饭等,营养更好。

蛋白质范文第2篇

蛋白质是由多个氨基酸组成,也是人体的主要组成部分以及食物的重要成分之一,体内的肌肉,骨骼和内脏主要是由蛋白质组成的,在人体生命活动中,发挥重要作用的各种酶也是蛋白质,而且蛋白质还是体内某些激素和免疫物质的主要组成成分,蛋白质也能为机体提供能量,以碳水化合物一样,每克分子蛋白质可以提供四大卡的热量。

正因为蛋白质是体内最重要的组成成分之一,所以恩格斯才说,没有蛋白质就没有生命,根据来源的不同,蛋白质可以分为动物蛋白和植物蛋白,含动物蛋白较多的食物,有各种蛋类、肉类、鱼虾类、乳类食物,其中所含的蛋白多为优质蛋白,因为它们较容易被消化,而且还有较多的人体自身不能制造,只能由食物供应的所谓的必需氨基酸。

植物蛋白的化学结构与人体自身蛋白质相差较远,豆类豆制品以及果然中均含有大量的植物蛋白,粮食水果以及蔬菜中,也含有一定量的植物蛋白,食物中的蛋白质在胃肠道被分解为各种氨基酸,然后被机体吸收,并生产所需的蛋白质。

(来源:文章屋网 )

蛋白质范文第3篇

“是不是我以后都不能吃‘好’东西了?”

“我能吃豆制品?”

……

关于“吃”的问题是肾病患者最关心的,他们真的被拒绝在美味佳肴的门外了吗?

蛋白质,过多过少都不好

蛋白质在营养物质中占有重要的地位,食物的营养高不高,这是一大衡量指标。吃什么样的含蛋白质食品、吃多少,这与肾脏代谢都有较大的关系。

吃得过多,蛋白质从肾小球漏出得太厉害,肾脏呈高滤过状态,负荷加重,结局就只能“累”出病来。

但过分限制,没有多少菜可供其选择,也会造成蛋白质、能量摄入不足,从而影响生活质量、降低免疫力,使感染等并发症危险性增加,死亡率增高。

所以,得了肾脏病,矫枉过正,得不偿失,不妨“中庸”一些,让自己的饮食也能照样有滋有味。

肾病不同,总量要求不同

不同种类、不同时期的肾脏病,在蛋白质摄入的要求上也有所区别,见下表。

豆制品,搭配吃

人们饮食中,蛋白质含量以肉、豆类、坚果、蛋及奶制品中较高。

其中,豆类是植物性蛋白非常好的来源,且大豆所含的蛋白质高达38%左右,利用现代方法加工后营养价值更高。同时,其胆固醇和磷的含量远远低于鱼、肉类,并且含有丰富的不饱和脂肪酸和人体必需的氨基酸。

近几年,国内外研究逐步明确,在慢性肾功能衰竭患者食谱中,减少动物蛋白,同时适量增加植物蛋白是可行的。大豆蛋白是有益的,在肾脏疾病的治疗中可能起到重要作用。在食谱中加入大豆及大豆制品,既可满足营养供给,又能避免吃肉类过多带来的影响。但是,对肾脏病患者来说,必须严格控制豆类及蛋白质的摄入总量,且将动物蛋白与植物蛋白食品搭配食用。

蛋白质范文第4篇

关键词:蛋白质,质谱分析,应用

前言:

蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上,作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。

自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。

1.质谱分析的特点

质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。

2.质谱分析的方法

近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。

3.蛋白质的质谱分析

蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。

3.1蛋白质的质谱分析原理

以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。

3.2蛋白质和肽的序列分析

现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrosprayionisation,ESI)及基质辅助激光解吸质谱(matrixassistedlaserdesorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDITOFMS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一[5]。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDITOFMS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。3蛋白质的质谱分析方式

质谱用于肽和蛋白质的序列测定主要可以分为三种方法:一种方法叫蛋白图谱(proteinmapping),即用特异性的酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽分子量,将所得到的肽谱数据输入数据库,搜索与之相对应的已知蛋白,从而获取待测蛋白序列。将蛋白质绘制“肽图”是一重要测列方法。第二种方法是利用待测分子在电离及飞行过程中产生的亚稳离子,通过分析相邻同组类型峰的质量差,识别相应的氨基酸残基,其中亚稳离子碎裂包括“自身”碎裂及外界作用诱导碎裂.第三种方法与Edman法有相似之处,即用化学探针或酶解使蛋白或肽从N端或C端逐一降解下氨基酸残基,形成相互间差一个氨基酸残基的系列肽,名为梯状测序(laddersequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸残基。

3.3.1蛋白消化

蛋白的基团越大,质谱检测的准确率越低。因此,在质谱检测之前,须将蛋白消化成小分子的多肽,以提高质谱检测的准确率。一般而言,6-20个氨基酸的多肽最适合质谱仪的检测。现今最常用的酶为胰蛋白酶(trypsin),它于蛋白的赖氨酸(lysine)和精氨酸(arginine)处将其切断。因此,同一蛋白经胰蛋白酶消化后,会产生相同的多肽。

3.3.2基质辅助激光解吸电离/飞行时间质谱测量法(MALDI-TOFMS)[7]

简而言之,基质辅助激光解吸电离/飞行时间质谱测量仪是将多肽成分转换成离子信号,并依据质量/电荷之比(mass/charge,m/z)来对该多肽进行分析,以判断该多肽源自哪一个蛋白。待检样品与含有在特定波长下吸光的发光团的化学基质(matrix)混合,此样品混合物随即滴于一平板或载玻片上进行挥发,样品混合物残余水份和溶剂的挥发使样品整合于格状晶体中,样品然后置于激光离子发生器(lasersource)。激光作用于样品混合物,使化学基质吸收光子而被激活。此激活产生的能量作用于多肽,使之由固态样品混合物变成气态。由于多肽分子倾向于吸收单一光子,故多肽离子带单一电荷.这些形成的多肽离子直接进入飞行时间质量分析仪(TOFmassanalyzer)。飞行时间质量分析仪用于测量多肽离子由分析仪的一端飞抵另一端探测器所需要的时间。而此飞行时间同多肽离子的质量/电荷的比值成反比,即质量/电荷之比越高,飞行时间越短。最后,由电脑软件将探测器录得的多肽质量/电荷比值同数据库中不同蛋白经蛋白酶消化后所形成的特定多肽的质量/电荷比值进行比较,以鉴定该多肽源自何种蛋白.此法称为多肽质量指纹分析(peptidemassfin-gerprinting)。基质辅助激光解吸电离/飞行时间质谱测量法操作简便,敏感度高,同许多蛋白分离方法相匹配,而且,现有数据库中有充足的关于多肽质量/电荷比值的数据,因此成为许多实验室的首选蛋白质谱鉴定方法。

3.3.3电子喷雾电离质谱测量法(electrosprayion-izationmassspectrometry,ESI-MS)[8]

同基质辅助激光解吸电离/飞行时间质谱测量法在固态下完成不同,电子喷雾电离质谱测量法是在液态下完成,而且多肽离子带有多个电荷,由高效液相层析等方法分离的液体多肽混合物,在高压下经过一细针孔。当样本由针孔射出时,喷射成雾状的细小液滴,这些细小液滴包含多肽离子及水份等其他杂质成分。去除这些杂质成分后,多肽离子进入连续质量分析仪(tan-demmassanalyzer),连续质量分析仪选取某一特定质量/电荷比值的多肽离子,并以碰撞解离的方式将多肽离子碎裂成不同电离或非电离片段。随后,依质量/电荷比值对电离片段进行分析并汇集成离子谱(ionspectrum),通过数据库检索,由这些离子谱得到该多肽的氨基酸序列。依据氨基酸序列进行的蛋白鉴定较依据多肽质量指纹进行的蛋白鉴定更准确、可靠。而且,氨基酸序列信息即可通过蛋白氨基酸序列数据库检索,也可通过核糖核酸数据库检索来进行蛋白鉴定。4.蛋白质质谱分析的应用

1981年首先采用FAB双聚焦质谱测定肽分子量,分析十一肽(Mr=1318),质谱中出现准分子离子[M+1]+=1319强峰。分子量小于6kDa肽或小蛋白质合适用FAB质谱分析,更大分子量的多肽和蛋自质可用MALDI质谱或ESI质谱分析。用MALDI-TOF质谱分析蛋自质最早一例是HillenKramp等[9]于1988年提出用紫外激光以烟酸为基质在TOF谱仪上测出质量数高达60kDa蛋白质,精确度开始只有0.5%,后改进到0.1-0.2%。质谱技术主要用于检测双向凝胶电泳或“双向”高效柱层析分离所得的蛋白质及酶解所得的多肽的质量,也可用于蛋白质高级结构及蛋白质间相互作用等方面的研究[10,11],三条肽段的精确质量数便可鉴定蛋白质。近年来,串联质谱分析仪发展迅猛,其数据采集方面的自动化程度、检测的敏感性及效率都大大提高,大规模数据库和一些分析软件(如:SEQUEST)的应用使得串联质谱分析仪可以进行更大规模的测序工作。目前,利用2D电泳及MS技术对整个酵母细胞裂解产物进行分析,已经鉴定出1484种蛋白质,包括完整的膜蛋白和低丰度的蛋白质[12];分析肝细胞癌患者血清蛋白质组成分[13],并利用质谱进行鉴定磷酸化蛋白研究工作[14]及采用质谱技术研究许旺细胞源神经营养蛋白(SDNP)的分子结构[15]等。

结束语:

在蛋白质的质谱分析中,质谱的准确性(accuracy)对测定结果有很大影响,因此质谱测序现在仍很难被应用于未知蛋白的序列测定。肽和蛋白的质谱序列测定方法具有快速、用量少、易操作等优点,这些都非常适合于现在科学研究的需要。我们相信,随着各种衍生化方法和酶解方法的不断改进,蛋白双向电泳的应用[16]以及质谱技术的不断完善,质谱将会成为多肽和蛋白质分析最有威力的工具之一。

参考文献

1.吴世容,李志良,李根容,等.生物质谱的研究及其应用.重庆大学学报,2004,27(1):123-127.

2.成海平,钱小红.蛋白质组研究的技术体系及其进展.生物化学与生物物理进展,2000,27:584588.

3.陈绍农,潘远江,陈耀祖.多肽及蛋白质质谱分析新进展.质谱学报,1995,16(3):15-21.

4.陈晶,付华,陈益.质谱在肽和蛋白质序列分析中的应用.有机化学,2002,22(2):81~90.

5.解建勋,蒲小平,李玉珍,等.蛋白质组分析技术进展.生物物理学报,2001,17:19-26.

6.刘慧敏,赖志辉,黎军,等.碎片结构分析在MALDITOFMS法测定多肽序列中的应用.生物化学与生物物理学报,2000,32:179-182.

7.Lay.JOJr.MALDI-TOFmassspectrometryofbacteria.[J].MassSpectromRev,2001;20(4):172-194.

8.HarveyDJ.Identificationofprotein-boundcarbohydratesbymassspectrometry[J].Proteomic,2001;1(2):311-328.

9.KARASM,HILLENKAMPF.Laserdesorptionionizationofproteinswithmolecularmassesexceeding10000daltons[J].Anal.Chem,1988,60:2299-2301.

蛋白质范文第5篇

Effects of matrix metalloproteinase9 on the expression of tumor necrosis factor receptor1 in human colon carcinoma cell lines

【Abstract】 AIM: To study the effects of matrix metalloproteinase9 (MMP9) on the expression of tumor necrosis factor receptor1 (TNFR1) and migratory and invasive potentials in human colon carcinoma cells. METHODS: Immunofluorescence staining was applied to examine the expression of TNFR1 in SW1116 in human colon carcinoma cell lines. The expression of TNFR1 was assayed by flow cytometry in human colon carcinoma SW1116 cells treated with MMP9 at different concentrations and at different time periods of culture. RESULTS: TNFR1 was expressed in SW1116 cells and MMP9 downregulated the expression of TNFR1 on cell surface in a dose and timedependent manner. CONCLUSION: MMP9 decreases the expression of TNFR1 on the surface of human colon carcinoma cells, which may be a factor associated with invasive and metastasis potentials of colon carcinoma.

【Keywords】 intestinal neoplasms; matrix metalloproteinase; TNFR

【摘要】 目的: 研究基质金属蛋白酶9(MMP9)对大肠癌细胞肿瘤坏死因子受体1(TNFR1)表达的影响以及促进大肠癌侵袭和转移的可能途径. 方法:通过免疫荧光法研究TNFR1在大肠癌细胞SW1116中的表达;用MMP9干预培养的大肠癌SW1116细胞,用流式细胞术检测MMP9不同剂量和不同作用时间时TNFR1表达变化. 结果:①SW1116细胞表达TNFR1; ②MMP9对SW1116细胞表面TNFR1表达有下调作用,但有剂量和时间依赖性. 结论: MMP9下调大肠癌细胞表面TNFR1的表达,可能与大肠癌侵袭转移密切相关.

【关键词】 肠肿瘤;基质金属蛋白酶;肿瘤坏死因子受体

0引言

肿瘤坏死因子(tumor necrosis factor, TNF)是一种主要由单核巨噬细胞产生的多肽细胞因子,因其在内毒素处理后具有杀伤肿瘤细胞的作用而被命名为肿瘤坏死因子. TNF的生物学活性是通过存在于细胞表面的膜受体,即肿瘤坏死因子受体1(tumor necrosis factor receptor 1, TNFR1)和肿瘤坏死因子受体2(tumor necrosis factor receptor 2, TNFR2)介导. 体内外实验已证实肿瘤坏死因子受体(tumor necrosis factor receptor, TNFR)介导肿瘤坏死因子的肿瘤杀伤作用,体内有多种免疫活性因子(干扰素、白介素等)即通过激活上调TNFR以达到清除肿瘤的目的[1],因而诱导并稳定肿瘤细胞膜TNFR对机体抗肿瘤起非常重要的作用. 其他研究还证实大肠癌组织中存在基质金属蛋白酶(matrix metalloproteinase,MMPs)高表达或活性增强现象. 某些活性基质金属蛋白酶可能通过酶解作用促进肿瘤细胞膜TNFR的释放形成高水平的可溶性肿瘤坏死因子受体[2](soluble tumor necrosis factor receptor,sTNFR),是肿瘤细胞实现免疫逃逸的重要方式. 本研究通过检测TNFR1在肿瘤细胞膜的表达及MMP9对肿瘤细胞膜TNFR1表达的影响,探讨MMP9通过调节TNFR1促进大肠癌转移的可能机制.

1材料和方法

1.1材料

大肠癌细胞株(SW1116)由南方医院消化科实验室保存;小牛血清(杭州四季青生物制品研究所);RPMI1640培养液,青、链双抗,2.5 g/L胰酶EDTA(广州威佳生物试剂公司);鼠抗人TNFR1单克隆抗体(Santa Cruz公司);FITC标记的羊抗鼠二抗(武汉博士德公司);荧光素异硫氰酸盐(FITC)标记的鼠抗人TNFR1单克隆抗体及重组人MMP9购自美国R&D公司;FITC标记的鼠IgG1对照抗体(北京鼎国生物有限公司).

1.2主要仪器倒置、相差显微镜(Olympas公司);流式细胞仪(BECTON DICKINSON公司).

1.3方法

1.3.1细胞培养大肠癌SW1116细胞株为贴壁生长细胞. 用RPMI1640培养基于25 cm2培养瓶,在37℃,饱和湿度、50 mL/L CO2培养箱中培养,培养基中含100 mL/L小牛血清,青、链霉素各100 U/mL. 汇片后弃培养液,用2.5 g/L胰酶EDTA消化细胞. 细胞接种于25 cm2培养瓶,每3 d传代一次.

1.3.2细胞爬片及免疫荧光染色SW1116细胞用2.5 g/L胰蛋白酶消化,用含100 mL/L小牛血清的RPMI1640培养液将细胞调成5×104/mL的细胞悬液,接种于24孔板中,每孔预先置入6 mm×6 mm盖玻片一张,待细胞生长状态良好时终止培养. 4 g/L多聚甲醛固定爬片30 min后0.1 mL/L PBS冲洗,用10 mL/L Triton X100处理15 min后正常羊血清37℃孵育30 min,甩去血清. 滴加1∶50稀释的鼠抗人TNFR1单克隆抗体,4℃湿盒过夜后滴加1∶100稀释的FITC标记的羊抗鼠二抗,37℃孵育1 h,用蒸馏水振洗后无荧光缓冲甘油封片. 阴性对照用PBS代替一抗进行染色. TNFR1阳性表达细胞在荧光显微镜下发出绿色荧光.

1.3.3干预实验人SW1116大肠癌细胞以2×105/mL接种于24孔板,用含100 mL/L小牛血清RPMI1640培养基在37℃,50 mL/L CO2培养箱中培养12 h使细胞吸附在培养板上换用无血清培养基继续培养24 h后加入MMP9进行干预,分组如下:①MMP9 0 ng/mL(A组);②MMP9 154 ng/mL(B组);③MMP9 385 ng/mL(C组);④MMP9 770 ng/mL(D组);⑤MMP9 1155 ng/mL(E组),干预3 h;然后在MMP9为770 ng/mL的浓度下,分别作用0,1.5,3,6和9 h.

1.3.4流式细胞仪检测大肠癌SW1116细胞TNFR1的表达采用直接免疫荧光标记法 培养细胞制成单细胞悬液并计数,实验管取20 μL单细胞悬液(含1×105细胞)与10 μL FITC标记的鼠抗人TNFR1单克隆抗体,对照管加入相应无关鼠对照单抗10 μL在4℃共育45 min,用含5 g/L BSA的等渗PBS缓冲液洗涤细胞两次后弃上清,然后加入400 μL 4 g/L的多聚甲醛于4℃固定30 min,即上机检测. 每份样品测定10 000个细胞,计算细胞表达TNFR1的百分率.

统计学处理:各实验独立重复3次,应用SPSS 10.0统计软件. 数据用x±s表示,采用单因素方差分析和Dunnettt检验的两两比较,P

2结果

2.1免疫荧光染色结果TNFR1在SW1116细胞膜呈较强荧光,对照组无表达(图1).A: SW1116细胞; B:阴性对照.

图1TNFR1在SW1116细胞的表达

2.2不同浓度MMP

9作用后对TNFR1表达的影响流式细胞检测结果显示,在不同的浓度作用3 h后,与MMP9 0 ng/mL组(表达率90.92%)比较,MMP9 770 ng/mL组(表达率69.96%),MMP9 1155 ng/mL组(表达率65.06%) TNFR1表达水平明显降低(P0.05);MMP9 154 ng/mL组与MMP9 385 ng/mL组TNFR1表达水平明显高于MMP9 770 ng/mL和MMP9 1155 ng/mL组(P0.05);MMP9 770 ng/mL组和MMP9 1155 ng/mL间TNFR1表达水平相似(P>0.05,图2).

2.2MMP

9作用不同时间后对TNFR1表达的影响在MMP9 770 ng/mL浓度,不同作用时间条件下,与0 h组(表达率86.36%)比较,3 h(表达率67.68%),6 h(表达率18.08%),9 h(表达率14.38%)组TNFR1水平明显降低(P0.05);3 h组TNFR1水平明显高于6 h和9 h组(P0.05,图3).

aP

3讨论

TNF在体内外对多种肿瘤细胞具有杀伤作用,人们曾对TNF治疗肿瘤寄予很大希望. 但由于它在治疗肿瘤的同时,也对机体产生极其严重的毒副反应,从而影响了它在临床上的广泛应用. TNF的生物学作用是由二种不同的受体TNFR1(P55)和TNFR2(P75)介导的. TNF的许多效应是通过TNFR1起作用,TNFR2则起着信号传导作用. Chen等[3]报道,TNFR1可通过其死亡域寡聚TRADD,FADD分子,激活MACH/FLICE,启动caspase级联放大效应途径而诱导细胞凋亡. 因此TNFR1在多种恶性肿瘤中呈高表达. 本研究显示在大肠癌细胞株表面存在TNFR1的高表达. 另据文献[4]报道,在大肠癌组织中TNFR1的表达显著高于癌旁及正常组织,与浆膜浸润程度和淋巴结转移呈负相关;日本学者于2003年报道了大肠癌Dukes C期患者TNFR1高表达者的疾病特异性存活率明显高于低表达者,多因素分析表明TNFR1表达是一种独立的大肠癌预后预测因子[5]. 在胆囊癌中,癌细胞及黏膜上皮细胞几乎无TNFR1的表达,而间质中浸润的单核细胞和血管内皮细胞中可明显见受体表达[6],这说明TNFR1在肿瘤形成及发展过程中起重要作用,且通过不同途径介导TNF的生物学效应. 有研究发现阻断TNFR1可引起胞内凋亡抑制蛋白(FLIP)的上调,进而抑制细胞凋亡;而阻断 TNFR2 可引起 FLIP 的下调进而促进细胞凋亡[7]推测TNFR的功能,一是作为载体内化TNF,二是激活特定的细胞内部信号传导途径. 有人认为TNF与其受体结合,由受体介导的内摄作用使TNF进入细胞,引起细胞溶解及细胞毒作用.

转贴于

目前发现基质金属蛋白酶在几乎所有肿瘤组织中均存在高活性及高表达. 它不仅能降解基底膜和细胞外基质的大部分成分,还参与释放以前体形式结合于细胞膜上的多种细胞因子和/或生长因子及生长因子受体,成为近年来肿瘤侵袭和转移的研究热点. 实验结果显示MMP9 770 ng/mL组和1155 ng/mL组作用3 h后TNFR1表达水平明显低于对照组,而MMP9 154 ng/mL组,MMP9 385 ng/mL组与对照组无差异,考虑与剂量过低有关,同时也提示MMP9对大肠癌细胞表面TNFR1的表达的影响与剂量有一定的关系. 当MMP9剂量固定为770 ng/mL时,作用3,6,9 h后TNFR1表达较对照组相比明显减少,但1.5 h与对照组比较无差异,可能与酶的最佳作用时间有关. 6 h和9 h组比较无差异,考虑体外环境下,随时间延长酶已失活,提示MMP9对TNFR1表达的影响与酶的活性密切相关. 本研究说明了,MMP9可以按照剂量、时间依赖的方式使大肠癌SW1116细胞表面的TNFR1表达减少,可能是TNFR1经MMP9水解后,其胞外区自胞膜脱落后形成sTNFR1. 与Lombard[8]等研究发现人工合成的MMPIs和TIMP2能以剂量依赖的方式减少细胞表面TNF受体的脱落相符.

MMPs是一类Zn2+依赖的蛋白水解酶在胚胎发育、形态发生、组织重建及肿瘤侵袭和转移中发挥重要作用. 有观点认为[9] MMPs促进肿瘤生长、转移是通过许多机制包括:降解基质、诱导作用及促进血管发生,可能还调节肿瘤细胞生长. 在稳态条件下,MMPs在组织中的活性几乎测不出,部分是因为低表达,部分是因为有效的内环境稳态的抑制机制包括金属蛋白酶组织抑制剂. 侵袭性和转移性肿瘤细胞能分泌MMPs及通过周围间质细胞诱导产生MMPs,从而克服局部组织保持蛋白水解活性平衡的能力. 有文献[10]报道MMP9在Dukes C和D期中阳性率高于A,B期,且生存期越短表达率越高. Smith等[11]研究认为表达TIMP3的大肠癌细胞通过阻断MMPs能恢复TNFR1的信号途径,并通过自分泌的TNF杀死肿瘤细胞. 本实验从另一个侧面说明了MMP9可能通过下调TNFR1表达从而导致肿瘤转移. 关于MMP9促进TNFR1表达下调的确切机制,尚有待于进一步研究.

【参考文献】

[1]Wilson CA, Browning JL. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspaseindependent and displays features of both apoptosis and necrosis[J]. Cell Death Differ, 2002, 9(12):1321-1333.

[2]WagenaarMiller RA, Gorden L, Matrisian LM. Matrix metalloproteinases in colorectal cancer: Is it worth talking about?[J]. Cancer Metastasis Rev, 2004, 23(12):119-135.

[3]Chen G, Goeddel DV. TNFR1 signaling: a beautiful pathway[J]. Science, 2002, 296(5573):1634-1635.

[4]董伟达,徐洁洁,乔宗海,等. 可溶性肿瘤坏死因子受体Ⅰ在头颈肿瘤患者中的表达及意义[J]. 中华耳鼻咽喉科杂志, 2001, 36(6):468-470.

[5]Yoshimura H, Dhar DK, Nakamoto T, et al. Prognostic significance of tumor necrosis factor receptor in colorectal adenocarcinoma[J]. Anticancer Res, 2003, 23(1A):85-89.

[6]Shi JS, Zhou LS, Han Y, et al. Expression of tumor necrosis factor and its receptor in gallstone and gallbladder carcinoma tissue[J]. Hepatobiliary Pancreat Dis Int, 2004, 3(3):448-452.

[7]Okada Y, Kato M, Minakami H, et al. Reduced expression of fliceinhibitory protein (FLIP) and NFkappaB is associated with death receptorinduced cell death in human aortic endothelial cells (HAECs)[J]. Cytokine, 2001, 15(2):66-74.

[8]Lombard MA, Wallace TL, Kubicek MF, et al. Synthetic matrix metalloproteinase inhibitors and tissue inhibitor of metalloproteinase (TIMP)2, but not TIMP1, inhibit shedding of tumor necrosis factoralpha receptors in a human colon adenocarcinoma (Colo 205) cell line[J]. Cancer Res, 1998, 58(17):4001-4007.

[9]Mitsiades N, Yu WH, Poulaki V, et al. Matrix metalloproteinase7mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity[J]. Cancer Res, 2001, 61(2):577-581.