首页 > 文章中心 > 楼宇控制系统

楼宇控制系统

楼宇控制系统

楼宇控制系统范文第1篇

本文说明了楼宇自动化系统集成的组成部分,重点分析了集散控制系统,给出了其结构模式,并对OPC技术在多现场总线楼宇自动化系统集成中的应用进行了探讨。

关键字:楼宇自动化系统;系统集成模式;集散控制系统

Abstract:

This article illustrates the building automation system integration of the part, and analyses the distributed control system, it also presents the structure model, and the more OPC technology in the fieldbus building automation system integration paper discusses the application.

Key word: building automation system; System integration mode; Distributed control system

中图分类号: TU855 文献标识码:A 文章编号:

楼宇自控系统是一种将建筑物内有关电力、照明、空调通风、给排水、防灾等电气设备进行控制和管理的综合系统,简称BAS,(BuidingAutomationSystem)。其职责是为人们提供一个既安全可靠,又节约能源,而且舒适宜人的工作或居住环境。

一、楼宇自动化控制系统集成

1、 系统集成的组成部分

(1)通讯网络

操作站及网络控制单元之间最常用的连接方式是N1通讯网络。这构造采用以太网(ETHERNET)技术,通过一张ETHERNET卡(网络介面卡),在N1线上通讯。METASYS N1总线执行各种通讯,包括分享监控点讯息、数据库的上传和下载、对现场设备之指令、摘要、状态改变讯息。N1支持METASYS系统之分布特性,每一个枢纽都有特定功能,其互相联系以分享讯息。如一个在地连负责冷冻机的枢纽。N1 ETHERNET采用由传送控制协议/协议(TCP/IP)符合工业标准的用户数据协议(UDP)。

(2) 操作站

对操作站的介面,特性,功能进行改进,增加许多更直观的视觉显示效果,并且通过OPC(OLE for Process Control)软件技术使所有的设备管理系统均可在简单明了的图形显示下集中完成。

(3)网络控制器(NCU)

网络控制器(NCU)是一种模块式.智能化的控制盘,为METASYS网络的心脏。在单一网络控制器中即可将办公大楼管理情况的每一个侧面进行全面综合的管理。通过相互共享整个网络中的所有信息,每个NCU能用高级控制算法提供全建筑物范围的最优控制。网络控制器可配置手提终端检测器,该检测器完全可以代替操作站的功能,存取整个系统中所有信息和发出控制指令。

(4) 直接数字控制器(DX-9100)

METASYS 数字式控制器对于冷冻机组、空调系统HVAC处理过程、工作分布照明及有关电气设备的控制来说,都是一种理想的控制器。DX-9100控制器可以在扩展总线上连接I/O扩展模块,来增加它的输入点、输出点的容量。DX可通过内置的LED来监控这些点。当这条网连入完整的METASYS网络时,DX控制器可将所有监控点情况和各种控制信息准确地提供给整个METASYS网络或控制站。

控制器具有独立运作的功能,当中央操作站及网络控制器发生问题时,控制器不受影响,继续进行运作,完成原有的全部监控功能。

(5) 楼宇自控系统DDC配置

如何合理的配置DDC就成为方案设计中最重要的问题。JOHNSON CONTROLS根据实际特点,结合多年的工程经验,设计中不仅保证系统功能全面实现,又减少施工中的不必要浪费,并且DDC的配置为以后的扩展留有足够的余量。考虑到办公大楼机电设备的分布每一层都布置了相应的直接数字控制器,一般情况下,空调主机设备增加的可能性不大,因此对于其他设备监控点数的增加只需采用增加扩展模块的方式即可解决。

2 、系统集成的应用

(1)视频应用,采用SYV-75-5同轴电缆,支持卫星电视、有线电视、天线、闭路电视和电缆调解器。

(2)通讯应用,采用五类水平电缆至每一个需要话音或数据服务的用户插座。通过ISDN、VDSL或ADSL连上互联网和网络电视。在无边的信息海洋中漫游。

(3)利用安保系统确保室内防火、防盗的要求。在紧急情况时自动向管理处发送报警信号。通过连接到局域网的闭路电视系统观察室外环境,及时了解住宅附近的情况。甚至还可以连接传真的办公设备,配合正在逐渐兴起的家庭办公的需求。

3 、多总线楼宇自动化系统集成

在当今楼宇自动化系统建设中,由于资金和建设周期等诸多因素,不同厂商开发的各种控制系统、子系统往往不可避免地混杂在整个大楼的系统中,而这些子系统和设备又有着不同的网络结构,遵循着不同的网络协议。在实现智能建筑的集成时,如何实现各种协议或总线技术的子系统的集成已经成为无法回避的问题。OPC/DA规范实现了应用程序对不同现场总线协议设备之间的数据访问,为不同总线协议之间的互连和互操作提供了一个重要的手段。基于OPC技术的多总线系统集成是通过软件实现的,这种方法灵活通用,同时还提供了与管理层软件通信的接口。

二、集散控制系统

集散型计算机控制系统的结构是一个分布式系统。从整体逻辑结构上讲,是一个分支树结构,这与工业生产过程的行政管理结构相一致。按系统结构进行垂直分解,它分为过程控制级、控制管理级和生产管理级。各级既相互独立又相互联系,每一级有可按水平分解成若干子集。从功能分散看,纵向分散意味着不同级的设备有不同的功能,如实时控制、实时监视、生产过程管理等。横向分散则意味在相同级上的设备有类似功能。按照这种思想设计集散控制系统的硬件和软件,就是要贯彻既集中又分散的原则。

1、集散控制系统的组成部分

(1)分散过程控制装置

分散过程控制装置是集散控制系统与生产过程间的界面,生产过程中的各种过程变量通过分散过程控制装置转化为操作监视的数据,而操作的各种信息也通过分散过程控制装置传送到执行机构。在分散过程控制装置内,进行模拟量和数字量的相互转换,完成控制算法的各种运算,对输入与输出量进行有关的软件滤波及其他运算。

(2)操作管理装置

操作管理装置是操作人员与集散控制系统间的界面,操作人员通过操作管理装置了解生产过程的运行状况,并通过它发出操作指令给生产过程。

(3)通信系统

分散过程控制装置与操作管理装置之间需要一个桥梁来完成数据之间的传递和交换,这就是通信系统。

2、集散控制系统结构特征

集散控制系统是由一些微处理器、计算机组成的子系统合成的大系统。它的结构具有递阶控制结构、分散控制结构和冗余化结构的特征。

楼宇控制系统范文第2篇

关键词:智能楼宇;自动化控制系统;应用;发展趋势

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2015)29-0149-02

进入 21 世纪,智能化楼宇的概念逐渐清晰,并正在建筑领域中产生着越来越大的影响。楼宇自控系统以它优越的条件在智能建筑中得到了广泛的应用。因此研究楼宇自动化控制系统是十分必要的。智能建筑通过楼宇自动化系统实现建筑物(群)内设备与建筑环境的全面监控与管理,为建筑的使用者营造一个舒适、安全、经济、高效、便捷的工作生活环境,并通过优化设备运行与管理,降低运营费用。

1 智能楼宇的发展

什么样的建筑才算是智能楼宇?智能楼宇是现代建筑技术与当代信息技术、计算机技术和自动控制技术等有机结合的产物。

从1984年在美国康涅狄格州哈特福德市中世界上第一个智能楼宇的产生,随着中国上个世纪90年代房地产市场的繁荣,智能楼宇开始进入中国市场。从二十一世纪初发展至今,这十几年是房地产业的黄金十几年,也是智能楼宇飞速发展的十几年。十几年间,规划更合理,建筑更智能,城市更宜居。行业发生了翻天覆地的变化,实现了立足建筑、面向城市,立足国内、面向国际的跨越式发展。

2 楼宇自控系统的概念与特点

楼宇自控系统综合运用计算机网络技术、传感器技术和自动控制等多种技术对建筑中的机电设备如空调、通风、照明、供配电、给排水以及电梯等设备进行有效的自动化控制,最终达到建筑设施更有利于人们居住的要求。

楼宇自控系统的特点:①节省能源。现代建筑物消耗能源非常大,建筑物的能耗占整个能耗的三分之一以上。楼宇自控系统充分利用了先进的焓值最佳控制、自动照度控制、最优设备启停控制等有效节能措施后,极大地减少了建筑物的能耗。②节省运营成本。楼宇自控系统是通过计算机集中控制的,可以大大减少操作人员和设备维护人员数量,节省了大量的人力。通过一些节能管理方案,在满足建筑环境舒适性的条件下,还可以进一步降低日常营运支出,节约建筑的运行成本,提高效益。③延长设备的使用寿命。楼宇自控系统可实时监测建筑设备的运行状况,通过程序控制实现机电设备的使用时间,及时发现设备故障和定期提示维护、保养,从而延长设备的使用寿命,降低维护费用,进一步提高投资回报效果。

2 楼宇自动化系统应用的优势

楼宇自动化系统将各个控制子系统集成为一个综合系统,其核心是集散控制系统,它是由计算机技术、自控技术、通信网络技术和人际接口技术相互发展渗透而产生的。集散控制系统的核心是中央监控与管理计算机,它通过信息通信网与各个子系统的控制器相连,组成分散控制、集中监控和管理的功能模式,各子系统间也能通过通信网络相互进行信息交换和联动,实现优化控制管理,最终形成统一的由建筑自动化运作的整体。

采用视频通话应用系统,通过卫星电视、有线数字电视、天线、闭合电路、电缆调试调解器对视频信号进行同步调节,确保同种电缆的视频信号传递效果。采用语音数据用户服务插座控制系统,通过ISDN、VDSL技术将其连接到互联网上,通过通信网络的数据漫游,提高无线通讯的实施信息载体。

设置火灾报警系统,使其完成自身所具有的防灾和灭火的功能。通过建筑物内不同位置的烟火控制装置提供的信息进行确认后报警,同时启动火灾联动系统,包括关闭空调、开启排烟装置、启动消防专用梯并且启动消防系统运作、紧急广播疏散人群,从而使得尽可能地减少生命、财产损失。

智能化自动化局部配线系统,选用电子设备提供完善的家庭工作环境,实现用户即插即用的方便效果。支持多种接入方式,例如电话、网络数据同步、传真、宽带、Internet接入网等等。采用有效的多方位数据家庭娱乐技术,提高有线电视、视屏点播技术、网络购物、远程教学等等多种音频视频设备的使用效果,避免出现反复投资的问题,及时通过视频系统完成对老幼的远程监护,同时监控住宅内外的情况,确保楼宇的安全。

3 我国楼宇自动化系统发展的方向及建议

节能是楼宇自动化系统发展的主要功能及目的,也是未来发展的主要方向。在各类智能建筑设备能耗比例中,照明和空调设备占据了主要位置,因此做好照明和空调设备的节能设计是提高楼宇自控系统节能效果的关键。

1)照明系统

设计时应尽可能用节能灯代替高能耗的白炽灯,荧光灯等。根据室内照明、公共区域照明和泛光照明三大类型设计的不同照明策略,比如:室内照明和公共区域照明可以根据人员活动情况进行开关灯智能管理,做到人走灯灭,按需开灯;一些公共区域如走道等需要某时间段固定开灯的,可以设计按时间段开关灯,按场景状况开灯,保证亮度需求的同时严格控制开关灯的数量来达到节能;而在泛光照明和部分照度受外界影响明显的区域,可以加入自动调光技术,在保证亮度的情况下全自动调光,降低灯具能耗;还可以结合一些控光设备如百叶窗之类,充分利用室外自然光补充室内亮度,配合自动调光控制达到减少灯源耗能的目的。

2)空调系统

空调系统是建筑的另一个耗能超级大户。目前,在大型建筑中一般多采用分层和分区的全空气集中式空调系统。一个中央空调系统主要由末端空气处理设备如新风机组、空调机组、变风量控制(VAV)以及冷热源系统组成。当前流行的新风系统节能设计,一般在室外焓值小于室内焓值(制热方式)、室外焓值高于室内焓值(制冷方式)时,根据 CO2浓度值控制风阀,其他情况下完全依靠室外和室内的焓值差来控制风阀,采用夜间扫风,间歇性控制策略等。这种设计充分考虑了建筑物所处的外部环境气候因素以及内部实际用风量,是目前最有效的节能手段。这样可以在保证环境舒适度的情况下,缩不必要的空调启停时间,达到变风量控制(VAV)是一种新型的空调方式,它被证明与传统中央空调系统相比可节能 40% 左右。变风量控制的基本思路是,动态控制,按需提供风量,目前有变静压控制、总风量控制、定静压控制三种。

3)楼宇自控系统IP化

楼宇自动化系统未来发展的另一个重点是BA系统的IP化。一直以来,以太网都是信息网络的主流技术,BA系统采用以太网作为现场设备之间的通信网络平台,可以实现从管理层到控制层的“一网到底”,使 BA 系统的网络结构得到

实质性的简化,也能解决目前 BA 系统中控制网络多种现场总线技术并存、彼此兼容性差的问题。使用透明以太网,可使 BA 系统非常方便地以有线或无线方式介入 Internet。虽然Lonworks网、MS/TP 总线等控制网络也能实现与 Internet互联,但必须经过第三方网关或中间部件才能实现,实现过程也复杂得多。未来 BA 系统可采用基于 Web 的 BS 架构,通过 Internet 对分布在现场的 I/O 进行访问,实现对远程设备的检测和控制。参考当下新兴的智能家居市场发展方向,未来的 BA 系统也必将是可以通过移动智能设备来监控的新型楼宇自动化系统,可以说谁最先拥有完善的 BA 系统 IP 化技术,解决使用 Internet 网络所存在的安全、可靠及实时性问题,谁就能在未来的楼宇自动化市场中占导。

4 结束语

近年来,智能楼宇已经从写字楼发展到了智能社区,随着中国智能楼宇市场的竞争格局的打开,跨行业的合作更加广泛,一批批新技术新产品进入建筑智能化领域,无线技术,数字化技术产品被广泛采用,使智能建筑的实用价值得到了广泛提升,楼宇自动化系统也将朝着网络化、数字化、集成化、生态化方向发展。

参考文献:

[1] 汪海杰.楼宇自动化控制系统的应用和设计[D].电子科技大学,2012.

楼宇控制系统范文第3篇

关键词:楼宇;变配电系统;照明系统;智能控制

1 楼宇变配电系统智能控制技术

变配电系统作为楼宇的动力系统,其负荷密度较大、谐波大、峰谷差率高,同时对供电的质量也具有较高的要求[1]。楼宇变配电系统智能控制技术通过建立智能控制系统对楼宇变配电系统的运行状态以及供电质量进行实时自动化监测与控制,从而确保变配电系统的安全、稳定运行,并实现高效节能的目标。

1.1 楼宇变配电智能控制系统的构成

根据在系统中所处的地位与实现的功能,楼宇变配电智能控制系统主要由管理层、网络通讯层和现场设备层三大部分构成。

(1)管理层位于监控中心,由安装了智能控制系统软件的计算主机和一系列设备(主控台、显示屏、打印设备、不间断电源等)等组成,系统通讯模块通过专用的硬件接口和通讯协议实现与网络通讯层的通讯,接受其打包上传的变配电系统监测数据,并将经过控制系统软件自动分析处理后生成的相关控制指令以及人工控制指令下发至网络通讯层,实现对变配电系统的整体监测与控制。

(2)网络通讯层作为中转单元,采用通讯服务器、网关以及交换机等,将管理层与现场设备层连接起来并实现二者之间的数据交换。具体体现在其主要负责与现场设备层的各类设备通讯,采集处理现场设备层上传的数据并打包传输至管理层,与此同时,接受并转发管理层下发的指令至现场设备层各类设备。

(3)现场设备层位于中低压变配电设备现场,主要包括现场控制器、现场输入设备和现场执行设备。现场输入设备包括各类现场智能电量传感器(电压、电流、频率、有功功率、功率因数传感器等)以及位置传感器等多种数据采集设备,其负责采集变配电力现场的各类数据和信息状态并经数模转换上传至网络通讯层。现场控制器则负责接收经由网络通讯层转发的管理层指令并发送至相应的现场执行设备,驱动其完成相应的控制动作以实现系统的控制意图。

1.2 楼宇变配电智能控制系统的主要功能

变配电系统的智能控制主要包括以下几方面的功能:

(1)保护功能。这是楼宇变配电智能控制系统中最重要的功能,要求智能控制系统实现快速故障隔离,提高供电的可靠性与安全性。馈线主要通过三段式电流保护方式进行保护,针对重要的线路,还需要提供自动重合闸控制功能。为适应系统的多方面要求,保护的主要模块包括三段式电流保护、方向性电流保护、过电压保护、欠电压保护等。

(2)监测与控制功能。实现楼宇变配电控制,首先需要对变配电系统运行的电压、电流、功率、功率因数、频率、开关状态等多项参数与运行状态进行实时采集,并根据采集数据,对变配电系统的运行状态进行分析与判断,然后执行相应的一系列就地控制动作,包括三相多次重合闸、开关动作、断线闭锁、时限控制以及保护定值等多项功能。

(3)事件的记录及故障报警功能。智能控制系统需要对系统运行故障类型、故障动作时间、故障最大值以及故障前后波形变化情况、故障前后主要开关状态进行完整准确的记录,从而为故障分析提供可靠的原始数据。并且当数据异常、故障发生时,能够及时响应,启动报警功能,自动对运行设备发送控制指令或对管理人员进行提示。

(4)通信及显示功能。隔离RS232-C、RS422/485通信接口,改善了系统通信的抗干扰能力和长距离通信能力,为分布式控制系统的建立提供了有效的技术支持。通过分布式的通信接口及网络可以实时向控制中心提供各个设备的运行状况及有关数据,同时通过系统管理软件对上述各项数据信息、记录信息进行统计分析处理并以报表图象的直观形式显示在监控屏幕上,实现人机的友好交互。

1.3 楼宇变配电智能控制技术的实现

楼宇变配电智能控制系统的主要功能是对变配电系统进行自动检测,主要包括对电压、电流、功率及功率因数、频率、开关状态等参数的检测。变配电系统采用网络电力仪表、计算机通信技术、电力自动化技术等,将保护、测量、控制、监测等多项功能全部集成到监控系统中。具体实现时通过处于现场设备层的一系列智能电量传感器(电流传感器、电压传感器、频率传感器、功率传感器、功率因数传感器等)、位置传感器以及电力仪表等设备采集楼宇变配电系统的实时运行状态数据,经过数模转换,然后利用现场总线将所采集的数据经过网络通讯层传输给管理层。在管理层中,系统管理软件将采集的数据与预先设定的值进行对比,从而判断变配电系统是否处于正常运行状态,如果发现异常,则发出相应的报警信号,并进行记录。同时通过网络通讯层对经过现场设备进行相应的调整与控制。另外,系统管理人员还可在监控中心通过人机界面对运行参数进行设定与修改,以调整变配电系统的运行状态,从而实现对楼宇变配电系统的远程监控和集中管理。变配电系统的智能控制技术,可以及时发现系统存在的故障和问题,预防事故的发生,同时还可以通过局域网以及与上级计算机调度端的联网来实现资源的共享,进一步完善和强化电力计量及考核。另外还可以最大限度的缩短设备停电及检修的时间,从而为实现整个楼宇变配电系统运行的安全可靠和节能环保目标提供充足的保障。

2 楼宇变配电系统智能控制技术的优点

以智能控制技术在楼宇变配电系统照明子系统中的应用阐述其相对于传统技术的优点。

传统的照明控制技术通常采用时间控制和分布式单独控制,相比之下,应用智能控制技术管理照明子系统有着显而易见的优点。

(1)工作效率高。对照明系统分布式控制的集中管理,使得管理人员通过与监控中心计算机的人机对话,就能够很方便地对整个照明系统的所有相关设备进行进行监测与控制,实现照明系统的安全可靠运行,降低了劳动强度,节约了人力成本,提高了工作效率。

(2)控制方式多样化。智能控制技术的应用,使得照明系统分系统、分区间、分时段控制更容易实现,灵活多样的控制方式满足了楼宇不同区域的个性化需求,增强了使用者的舒适体验。

(3)维护成本低。智能控制技术对照明系统的实时监测,能够对故障的发生提供预警或第一时间发现故障所在并判断故障原因,大大提高了维护工作的效率同时降低了维护成本。

(4)节约能源。智能控制技术能够根据实际需要适时对照明系统进行调控,避免了能源的浪费,适应了现代社会节能环保的要求[2]。

3 结束语

随着现代社会经济的快速发展,人们对生活和工作的环境要求越来越高,对楼宇的舒适性、安全性都提出了更高的要求。楼宇变配电系统运行的安全性及可靠性直接关系到人们生产生活的质量。因此,智能技术在楼宇变配电系统中的应用至关重要。通过智能化技术的应用,可以大幅度提高变配电系统运行的可靠性和安全性,降低系统运行的成本,减少系统维护工作量,避免能源浪费。

参考文献

楼宇控制系统范文第4篇

1.系统设计概述

楼宇自控系统(Building Automation System,简称BAS)是智能建筑的一个重要组成部分。BAS是基于现代分布控制理论而设计的集散系统,通过网络系统将分布在各监控现场的系统控制器连接起来,共同完成集中操作、管理和分散控制的综合自动化系统。BAS的目标就是对建筑内部的机电设备采用现代计算机技术进行全面有效的监控,以确保建筑物舒适和安全的办公环境,同时实现高效节能的要求,并对特定事物作出适当反应。通过BAS对大厦内的机电设备进行自动化监控和有效管理,可以使大厦内的温湿度控制达到最舒适的程度,同时以最低的能源和电力消耗来维持系统和设备的正常工作,以求取得最低的大厦运作成本和最高的经济效益。这极大地方便了设备的操作与维修,减少了管理和维护人员,取得节约能源和人力资源的良好效益。

本方案采用北京柏斯顿(BESTON)公司的IBS-5000智能建筑物自动化系统。该系统不仅在图形控制、历史记录、动态绘图、事件安排、报警和远程访问等方面具有优越性,还在系统规模、网络支持、开放性及通讯速度等方面有了很大的提高。该系统是基于微机上先进的Windows NT 4.0操作系统,采用国际上通用的CAN通讯系统网络进行数据传输,性能先进,质量可靠,价格合理,中文图形化界面操作使用简便易行,从功能、速度和容量等诸多方面考察都非常适合于本项目。

中法燕达医院是由河北三河燕达实业集团和法国FHMF有限公司合资兴建的集医疗、老年养护、科研、专业人才培训于一体的三级甲等特型综合医院。医院位于北京东燕郊经济技术开发区,西临潮白河与北京通州区相接壤,北靠京秦铁路和京哈高速公路,交通便利、地理位置优越。

整体项目建筑面积约40万平方米,分两期开发。一期楼控工程设计医技楼、门诊楼、综合楼,医技楼设立综合餐厅数个,总建筑面积53331.3平方米,地上4层,门诊楼建筑层数为地下一层、地上4层,本期楼宇自控系统是对燕达医院医技楼、门诊楼的公用机电设备,包括对建筑群内的空调系统、冷水系统、新风系统、送排风系统、给排水系统、变配电系统、照明系统、医用气体远传报警系统等进行集中监测和遥控管理,用来提高整个中法燕达医院的管理水平,降低设备故障率,减少维护及营运成本。

本系统按国家《智能建筑设计标准》(GB50314-2000)甲级标准设计。

2.系统设计原则

先进性:采用国际或国内通行的先进技术,适应时展需要。

成熟性:以实用为原则采用成熟的经过工程验证的先进技术。

开放性:采用开放的技术标准,避免系统互联或扩展的障碍。

按需集成:根据本项目特点,按照需要分层次实现集成。

标准化:采用标准化的设计和标准化的产品。

可扩展性:本工程设计应考虑到未来发展,在预埋和线缆布设上留有余量。

安全性、可靠性:包括系统自身安全和信息传递的安全,以及运行的可靠性。

设计、施工、运营与服务:强调以人为本的设计思想,为医院大楼提供安全、舒适、方便、快捷、高效、节约的医疗、工作环境,提高效率。

二次深化设计图纸完成后,需经中元设计院相关专业工程师审核签认,方可进行施工。

3.系统设计依据

本系统设计是以“中法燕达医院智能化弱电系统招标书”和与业主的沟通,及所附图纸为基础,参照以下标准进行设计:

《民用建筑电气设计规范》(JGJ/T16/92)

《智能建筑设计标准》(GB50314-2000)

《采暖通风与空调设计规范》(GBJ19-87)

《民用建筑照明设计规范》(GBJ133-90)

《电气装置工程施工验收规范》(GBJ232-82)

《电子计算机机房设计规范》(GB0174-93)

《计算机场地安全要求》(GB9361-88)

《计算机场地技术条件》(GB2887-89)

《BESTON楼宇自控系统应用手册》及其它技术资料

BESTON IBS-5000

系统概述

1.上位机系统

本工程中,上位机采用BESTON公司的IBS5000系统。该系统引进西门子技术研发生产,符合国际安全认证标准,适应性非常强,既可用于单独的楼宇管理,也可用于一个区域的、分散的楼宇集中管理。该系统能够方便的同西门子PLC、MBC等下位机系统通信,上位机与下位机构成完整的集散式控制系统。在上位机上可以实现对各子系统的集中监测、管理与最优控制,实时显示各子系统上各监测点的参数、表格及动态画面,也可定时或即时打印报表。

界面形式:上位机软件的人机界面十分友好,具有鼠标与快捷键皆可使用的优点和在线帮助等功能。全汉化界面,并可根据业主建筑物的实际结构、所选设备的实际流程形式编写界面。平面流程及三维立体图形可选,符合中国国情,易学易用。

信息处理:系统信息分两极处理,上下位机各自独立处理本身监控对象的信息;上位机作为中央处理机负责整个系统的信息处理,其内容包括报警状态监视、测量值越界监视、下位机设定值优化、下位机状态控制和系统工况优化、各信息归档分析等功能。

数据显示和输出:上位机可显示系统总图或多个子系统的实时画面。对于发生故障的子系统进行显示报警,记录故障点及发生故障的时间、原因,进行故障打印。对所有监视信息、命令进行实时记录,其中包括人工输入信息、越限信息和系统本身监视信息的事件记录、班报表、日报表、曲线图(曲线图时间为5分钟-48小时可设定,便于业主进行控制效果分析及控制趋势分析)等。一般的记录可保留三个月,故障资料可保留12个月,也可按业主要求确定保留纪录周期(最长为1年,1年以上可以EXCEL标准格式转储)以备查阅。

控制功能:上位机可对现场控制器直接进行操作。指定单台或多台设备的开机、关机、修改设定参数。定时开/关机功能,可按操作员设定时间(如上、下班时间),定时对指定的部分或全部设备进行开、关机。

扩展功能:上位机支持以太网络工作环境,可方便的与消防系统、保安监视系统、管理信息系统等其他系统联网,构成一套完整的智能大厦集成控制系统。

硬件配置:PⅢ计算机,1.44M软驱,40X光驱,鼠标,键盘,硬盘容量不小于10GB,内存容量大于128M、SVGA显示卡、声卡、1024×768彩色显示器,具有两个串行口、一个USB口。不间断电源(UPS)一台,激光或喷墨等类型的高速打印机一台。

2.通讯系统

通讯系统采用了唯一被国际标准化组织批准为国际标准(ISO11898ISO11519)、被美国军方广泛采用、具有极强的抗干扰能力及纠错能力的现场总线CAN BUS。其高通讯速率、高可靠性、超长通讯距离(无续接器可达3KM)、PEER TO PEER(点对点)及BROADCAST(广播)通讯功能、任意网络拓扑结构、可与任何具有开放通讯接口的控制设备直接连接、支持以太网络工作环境等的多项功能而成为最有发展前途的通讯系统。

通讯系统由插在中央管理计算机内的智能网络控制器(NCU)及通讯软件构成。由专用通讯电缆与分布在现场的控制器联接,构成网络系统,实现数据交换。

网络上标准子站配置为110个,这些节点都具有不同的优先级,在任意时刻均可主动向网络上的其他节点发送信息(点对点通讯或一点对多点的广播功能),而不分主从节点。当两个节点同时向网络上传送信息时,采用非破坏性总线裁决技术,让优先级低的节点主动停止数据传输,而不影响优先级高的节点继续发送数据。

通讯距离最远可达10KM(5KBPS),通讯速率最高可达1MBPS(40M),通讯方式为每帧8个有效字节,传输时间短,受干扰的概率低,每帧信息皆采用CRC校验,可靠性极高,是构成高性能现场总线的首选网络控制器。

系统主站与子站间采用了全光隔技术。对因雷击造成的干扰及因误操作引入强电而导致设备损坏,具有极强的保护作用。

3.直接数字控制器(DDC)系统

直接数字控制器(又称下位机),通过通讯线与中央管理计算机(上位机)构成一套完整的集散式控制系统。下位机可以就地采集现场各点的温湿度等模拟量和防冻、火警等开关量,实现自动开、关机和自动调节相关阀门,以达到控温控湿或控制其他状态参数的目的。

硬件部分

先进的技术性能

现场控制器的硬件与全汉化软件是在我国空调制冷控制著名专家、清华大学张瑞武教授的指导下,在引进技术基础上由本公司与清华大学电机系、环境系、自动化系、热能系等共同开发的。产品设计参考了多种国外同行业名牌产品,并结合中国国情加以改进。自89年至今应用于多种现场,性能优异,得到了用户的好评,多次被国际知名大公司选做其主控设备的配套控制系统。此外,它不仅在国内工程中应用,而且出口俄罗斯、朝鲜、叙利亚等国家。95年又推出采用国际最新技术的一体化超大规模集成电路为主控芯片的多点数控制器,其综合性能达到世界先进水平。

高抗干扰性能

考虑国内现场工作环境一般较为复杂、恶劣,尤其是在采用变频控制又没有良好接地系统的条件下。该控制器采用了电磁耦合、全光电隔离、电源电压监测、瞬变干扰电压抑制、看门狗等多达十余项抗干扰措施,使系统具有极强的抗干扰能力,可以与强电柜合一并直接挂在被控设备上构成机电一体化系统。

宽电压工作范围

针对国内电源电压特殊条件,现场控制器的电源电路采用了宽电压工作电源,有效地保证了控制器在恶劣供电条件下的可靠工作。其正常工作输入电压实测指标达220V+15%至220V -20%,即允许电源电压变化范围内175V-250V,远远超过国内外同类产品。

可靠的故障分隔及保护措施

现场控制器采用了全光电隔离技术,选用了耐压达1500V的光电耦合器件,从而保证了系统的安全运行。不但控制器内部的各主要电路在电气上是完全隔离的,而且系统各子站的通讯接口也是全光电隔离的,电源为多路隔离电源,并具有过压、过流、短路保护等功能。可在出现意外情况时,最大限度地缩小故障影响范围。

结构合理易于维护

由于现场控制器采用了先进的插件结构或单板结构,使维护极为方便。一级维护通过更换插件的方式即可完成,故障产品经替换后送回生产厂进行二级维护。

软件部分

现场控制器(DDC)采用了具有通用的组态软件包。可根据不同的控制对象对软件进行组态,实现PID控制、自适应控制及模糊控制。空调控制软件配备了完善的节能多工况分区、判断与自动转换功能。开机后机组自动进入节能工况,自动调节到节能最优运行状态,即在舒适性空调系统中,根据气象条件、室内热湿负荷及舒适度等要求自动整定温湿度设定值自动决定风速,使之达到节能优化运行。当应用对象为工艺空调时,应以实现高精度恒温恒湿为首要目标。本系统可实现高能度恒温恒湿控制。当控制对象为舒适性空调时,软件设计上在满足用户对环境要求的同时,能充分考虑节能的要求,当采用IBS系统及多工况分区软件后,系统综合节能可达30%以上。

直接数字控制器功能

现场控制器具有自动和软手动功能,可在控制器处于任意状态(自动或手动)时,通过控制器实现手动开/关机及调节电动阀开度。

温度、湿度、压力、流量等模拟量的巡检及显示。

防火报警及显示,并自动停机和火警上传。

防冻报警及显示,并自动处理上传。

过滤器堵塞报警及显示。

所有网络上下传信息的接收及执行。

自适应控制功能。

自动工况转换,过渡节能运行功能。

恒温恒湿高精度控制。

CAN-BUS通讯功能。

楼宇自控系统方案

1.建筑实现智能化的意义

现代化的建筑为了创造一个良好的环境,提高生活或工作的质量,都配置了大量的机电设备,以保证整个建筑群的良好舒适的环境和便利的生活、工作空间。而大量机电设备的使用,必将引起管理人员的增加、能耗费用的巨额支出和管理工作的复杂。因此建造智能建筑,使建筑实现智能化能使建筑系统得到以下益处:

节电:楼宇自控系统通过电脑控制程序对全楼的机电设备进行监视和控制,统一调配所有设备用电量,可以实现用电负荷的最优控制,有效节省电能,减少不必要的浪费。

当前,在世界上已经有多座建筑使用柏斯顿公司的IBS-5000智能建筑物自动化系统,在这些建筑中,一般的情况下节省用电可以达到25%到30%,这种效益如果靠采用人工操作是绝对无法实现的。

节省人力:由于楼宇自控系统采用集中电脑控制,因此在投入使用后可以大量减少运行操作人员和设备维护维修人员,并能及时发现和处理受控机电设备出现的问题。

在没有楼宇自控系统的建筑物中,设备的开关、维护及保养都需要人去操作,这样不可避免地要求建筑配置庞大的人员队伍,而采用了自动控制系统之后,上述工作均由楼宇自控系统根据预先设计好的程序自动完成,大批的人力将被减少下来,首先节约了管理上的开支,同时也减少了由于管理人员众多所引起的一系列问题。

在建筑内配置楼宇自控系统之后,可以减少三分之二的负责设备运行、维护的管理人员。

延长设备的使用寿命:在配置了楼宇自动控制系统之后,设备的运行状态始终处于系统的监视状况之下,楼宇自控系统可提供设备运行的完整记录,同时可以定期打印出维护、保养的通知单,这样可以保证维护人员及时进行设备保养,因此可以使设备的运行寿命加长,大大降低了建筑在机电方面的运行费用和维护保养费用。

保证建筑及人身安全,提高管理效率:此外,楼宇自控系统还可以将安全防范系统、车库管理系统以及火灾消防报警系统集成在同一系统平台中,从而极大地提高建筑的管理水平。

2.楼宇自控系统功能

通过配置系统的硬件和软件,实现测量各类机电设备状态的参数、设置并控制设备启停、提高设备运行有效效率等功能。

监视并显示系统监控设备的工作状态,故障时提供报警。

对现场自动控制组织的安全调整功能。

根据工艺流程合理调整能量的使用。

根据运营要求提供内部最佳集中管理策略。

可以由系统干预设备工艺操作过程。

根据系统记录,管理分析当前和过去运行过程。

提供计算和预测工具、用于优化操作参数并组合、建立新的运行方式。

实现楼宇自控系统与其他系统的数据交换。

对受控实现设备遥控操作。

系统检测方便、友好的修改、扩展、检测工具。

通过密码保护,实现数据安全功能。

分级对系统实施程度不同的管理。

3.楼宇自控系统控制方案

冷冻站系统

监控范围

冷水机组、冷冻水泵、冷却水泵、冷却塔流量调节阀。

冷水机组自带开放通讯接口与BA系统IBS-5000进行通讯。配置MBC控制器控制冷冻泵、冷却泵、冷却塔等设备。

监控要点

(1)参数监测

监测冷冻水的供回水温度,供水压力。

监测冷冻水的供水流量。

监测冷冻水的水流状态。

监测冷冻水的供回水总管压差。

监测冷却水的供回水温度。

监测冷却水的水流状态。

监视冷水机组、冷冻水泵、冷却水泵和冷却塔的启动控制、运行状态、故障报警和电动阀开关控制。

监测冷水机组启动柜的电压及电流、总开关状态和跳闸警报。

具体每台冷冻机的内部参数可通过接口及适配器联入BAS,如监测油压、冷凝器和蒸发器压力、运行电流等。

(2)冷负荷计算

根据冷冻水总管上的供回水温度和供水流量,可以计算出大楼的负荷情况,从而确定需要开启的冷水机组台数。根据冷水机组的开启命令,实行电动蝶阀、冷冻水泵、冷却塔、冷却水泵之间的连锁。

(3)机组运行

冷水机组的投入或退出运行的过程是按预先编制的控制程序进行的。

夏季开机程序如下:

开车指令打开冷却水蝶阀,启动冷却水泵;打开冷冻水蝶阀,启动冷冻水泵;打开冷却塔进水蝶阀,启动冷却塔,得到阀打开信号及水流开关信号返回后延时30秒启动冷水机组。

夏季停机程序如下:

停车指令关闭机组;关闭冷却塔,延时5分钟关闭相应的冷冻、冷却水泵;延时1分钟关闭相应的冷冻水、冷却水蝶阀。

(4)系统保护

当在冷水系统中有某一设备发生故障时,则系统立即发出报警到终端,同时锁定该设备以防再次启动,并同时自动启动另一个相应的备用设备或一组其他关联设备。

当故障设备已维修完成需要重新加入自控行列时,必须在BAS终端手动复位相应的锁定逻辑,这样才能使锁定的设备再次进入自控行列。

(5)冷却塔控制

冷却塔的投运是由冷冻机启动时,由控制程序打开相应的冷却塔进水蝶阀确定的。当温度在一定范围内时分别投入相应的风机运行,当主冷却回水温度低于20℃时,冷却塔的风机按次序停止运行;当冷却水储水池水温低于10℃时启动电加热器。当风机发生故障时,延时30秒将发出报警到BAS终端。

当风机发生故障时,控制程序将发出报警并且锁定该风机的再次投入。在排除风机故障后,必须在BAS终端手动复位相应的锁定逻辑,这样才能使设备重新投入自动运行。

(6)旁通调节

在冷冻水总供回水管间设旁通管。

在冷却水系统管道亦设有一个常闭式电动旁通调节阀,用以控制进入冷水机组冷凝器的冷却水温度不会低于设定值。在冷却水供水管道上设有温度传感器,以控制该阀的操作。

(7)水泵监测

系统监测泵的运行情况,按工艺要求启停泵,水泵启动后,根据水流开关的状态判断水路是否开通,若未开通,自动停泵。备用泵会在其它泵故障时自动投入运行,并能累积运行时间、提醒维修等。

新风机组

监控范围

新风机组26套(包括四管制、两管制)

控制要点

(1)新风温度、湿度测量。

(2)初、中效过滤器堵塞报警。

(3)送风温度、湿度。

(4)防冻开关状态监测。

(5)送风机运行状态监测、故障监测。

(6)机组手、自动状态。

(7)风机启/停。

(8)盘管水阀控制。

(9)风阀控制(开/关)。

(10)防火阀监测。

(11)显示新风机组运行及故障报警。

(12)按时间顺序(含夜间及节日程序)控制风机启/停。

(13)调节冷冻水调节阀开度,控制送/回风温度。

(14)冷冻水调节阀与风机联动,盘管水阀的PID控制。

(15)新风机组风阀的开关控制,柜式空调机风阀的开度调节控制。

性能要点

(1)对送风温度进行监测。通过对冷水阀进行PID调节,以保证送风温度控制在合适的范围内。

(2)当空调机组有不正常的状态时,中央监控电脑会显示及打印报警,并指出报警时间,空调机组的报警包括:

过滤器压差报警

防冻报警

火灾报警

送风机故障报警

(3)特别时间表控制,例如用于节假日设备的调度运作。

(4)设备运行时间累计。

空调机组

监控范围

空调机组22套(包括四管制、两管制)

控制要点

(1)室外/新风温度、湿度。

(2)初、中效过滤器状态。

(3)送/回风温度、湿度。

(4)防冻开关。

(5)风压状态。

(6)风机故障报警。

(7)机组手自动状态。

(8)风机启/停。

(9)盘管水阀控制。

(10)加湿水阀控制。

(11)新、回风阀控制。

(12)防火阀监测。

(13)显示空调机组运行及故障报警。

(14)按时间顺序(含夜间及节日程序)控制风机启/停。

(15)调节冷冻水调节阀开度,控制送/回风温度。

(16)冷冻水调节阀与风机联动,盘管水阀的PID控制。

(17)新风机组风阀的开关控制,柜式空调机风阀的开度调节控制。

性能要点:

(1)对送、回风温度进行监测。通过对冷水阀进行PID调节,以保证送风温度控制在合适的范围内。

(2)当空调机组有不正常的状态时,中央监控电脑会显示及打印报警,并指出报警时间,空调机组的报警包括:

过滤器压差报警

防冻报警

火灾报警

送风机故障报警

(3)特别时间表控制,例如用于节假日设备的调度运作。

(4)设备运行时间累计。

洁净空调机组

监控范围

洁净空调机组2套(四管制,安装在中心供应室)

控制要点

(1)机组风机的启停。

(2)回风温度监测。

(3)初、中效过滤器堵塞报警。

(4)防冻开关状态。

(5)风机前后压差测量。

(6)送风温度监测。

(7)显示空调机组运行及故障报警。

(8)按时间顺序(含夜间及节日程序)控制风机启/停。

(9)调节冷冻水调节阀开度,控制送/回风温度。

(10)冷冻水调节阀与风机联动,盘管水阀的PID控制。

(11)新风机组风阀的开关控制,柜式空调机风阀的开度调节控制。

性能要点

(1)对回风温度进行监测。通过对冷水阀进行PID调节,以保证送风温度控制在合适的范围内。

(2)当空调机组有不正常的状态时,中央监控电脑会显示及打印报警,并指出报警时间,空调机组的报警包括:

过滤器压差报警

防冻报警

火灾报警

送风机故障报警

(3)特别时间表控制,例如用于节假日设备的调度运作。

(4)设备运行时间累计。

给排水系统

监控范围

(1)给水系统:生活水池、消防水池、生活水箱、生活水泵

(2)排水系统:28个集水坑、排污泵

(3)热交换系统

控制要点

(1)给水系统

水池液位监视(包括屋顶水箱、地下消防水池溢流水位报警)

水泵运行、变频器状态监视,故障报警,手/自动状态

生活水泵出口主管压力显示

水泵启停

(2)排水系统

水泵运行、变频器状态监视,故障报警,手/自动状态

水泵启停

地下集水坑超高液位报警(DI)、低水位状态(DI)

(3)热交换系统

热水循环泵开/关控制(DO)、开/关状态(DI)、故障报警(DI)、手动/自动状态(DI)

各区热交换器水温显示

各区热交换器出口压力显示

性能要点

(1)当系统有不正常的状态时,中央监控电脑会显示及打印报警,并指出报警时间。

(2)特别时间表控制,例如用于节假日设备的调度运作。

(3)设备运行时间累计。

高低压配电系统

控制范围

本次高低压配电系统在配电值班室设有变配电计算机监控系统,需要时也可给楼宇提供相关信号。BAS系统可通过高级接口读取发电机和变压器的三相电压、电流等参数。

控制要点

楼宇自控系统读取高低压配电系统的下列讯号:

(1)高压系统

断路器开、合状态

事故跳闸

三相电流数值

三相电压数值

三相功率数值

功率因数数值

频率及电度数值

变压器超温报警

(2)低压系统

监察各空气断路器/模制外壳断路器,自动切换ATS的关、合、事故跳闸讯号。

监察进线及联络母线电压、电流、功率因数、有功功率、电度量、频率。

监察各配电盘柜内断路器的开关状态。

照明监控系统

控制范围

电梯厅照明、公共区域照明、停车场照明、室外照明(包括泛光照明、节日装饰照明、屋盖照明)

控制要点

(1)照明配电箱开/关控制

(2)开/关状态

(3)手动/自动状态

性能要点

(1)当系统有不正常的状态时,中央监控电脑会显示及打印报警,并指出报警时间。

(2)按照物业管理部门要求,程序时间控制各种照明设备的开关,达到最佳管理、最节能的效果。

(3)设备运行时间累计。

(4)统计各照明回路的工作情况,动力设备运行时间并打印成报表,以供物业管理部门利用。

医用气体远传报警系统

通常,医用气体包含以下几个系统:

负压吸引系统

医用制氧系统

医用二氧化碳系统

医用氮气系统

医用压缩空气系统

采集管道专业竖井内稳压箱中氧气等气体压力信号到控制中心,将信号远传至室外各分站房进行报警。竖井内线缆敷设在线槽内,病房楼侧的管道专业竖井内5-13层有测点,门急诊楼侧的竖井内2、4-9层有测点,每个手术室内均有测点。

4.手术部的环境监测

在该建筑地下一层EICU、五层手术室、十三层RICU部分的洁净空调机组分别设控制分站,通过协议转换器与DDC相连,对其只监不控,监测内容由洁净空调厂家提供。

作为综合性医院,外科手术部在整个医院的地位是举足轻重的。国际上衡量一个医院技术水平的重要标准是医院手术病人的感染控制率的高低。

本医院设有Ⅰ、Ⅱ、Ⅲ和Ⅳ共4个级别的手术室。手术室的空调系统为完全独立的洁净空调系统。因所涉及的科室较多,在手术室进行的手术种类也比较多,为了避免因进行不同手术而有可能引起的交叉感染,每间手术室宜采用单独的空气净化系统,级别较低的接近手术室。如果进行的是同一类手术,可以采用同一个洁净空调系统。

洁净手术室是一项综合性工程,包括水、电、供气、自动控制等专业较多,需要多工种之间的相互配合。

在洁净手术部内,洁净技术以控制空气中的尘埃粒子尺寸及其浓度和微生物的数量为自己的任务。当然,空气洁净技术除了提供符合要求的洁净空气外,还要提供适宜的温湿度和合理的压力梯度分布。手术室相关环境参数的设置和控制的好坏,将对控制手术室污染产生极大的影响。我们主要控制的参数有:温度、湿度、洁净度、新风量、自净时间和压力分布。

温度控制

在复杂的手术过程中,医护人员的精力高度集中,人的新陈代谢加快。此时,如果温度设置过高,将使医护人员感到不舒适,不利于医护人员的操作。同时也将增加医护人员的生理排泄,使手术室的空气污染度增加,增加感染的可能性。温度设置过低,会使病人产生低温机能。有研究表明,室温在21.1℃-23.9℃时,有1/3的病人会发生低温机能。当温度低于21.1℃时,几乎所有的患者都会发生低温机能。

目前,国家有关标准规定的温度范围为22℃-25℃,有些辅助房间可到27℃。

这通过在每个手术室内墙面上安装房间温湿度显示及设定装置来实现。根据手术复杂情况的不同,医护人员的自身感觉、季节和地域的不同来设定室内温度。例如:手术室温湿度可根据手术内容和不同病人对象可调,比如做器官移植室温20℃,心血管手术要在30分钟内从25℃降到19℃,儿童手术室温要高些。

湿度控制

国家标准中,对湿度的规定为:Ⅰ、Ⅱ级手术室40%-60%,Ⅲ、Ⅳ级手术室35%-60%,其它辅助用房为30%-60%,甚至要求更低,仅要求不高于60%。我们要根据具体情况,采用一定的控制手段,控制加湿或除湿,以确保湿度满足特定季节及特定环境的要求。

洁净度控制

洁净手术室作为一种洁净环境,洁净度是一个需要严格控制的重要指标。有研究表明,空气中的病毒和细菌都附着在空气中的悬浮颗粒上,附着后的颗粒直径都大于0.5μ,我们可以通过严格要求洁净度来控制手术室的尘埃数量,从而控制菌数。在洁净手术室中,营造洁净环境是控制菌浓度的一个必要手段,所以对洁净手术室我们既要求洁净度也要求控制菌数。

新风量控制

洁净手术室是一个密封的环境,人员在里面活动必须保持足够的新风。同时,新风量是维持洁净室之间压差的必要手段。目前,关于新风量的选择是取以下三方面的最大值:

洁净室最小新风量

满足洁净室正压要求的最小新风量

手术室中每个人所需的最小新风量之和

其实,由于手术的复杂程度不同,每个人的紧张情况不同,人对新风量的需求不同,所以我们可以通过自动控制手段,适时的调整新风量来满足手术室的新风需求,但不要低于上面3条的最大值。

自净时间控制

手术室从污染状态到满足特定要求的时间为自净时间,由于达到洁净度所需的时间都要远远长于其它参数达到的时间,所以我们以达到洁净度所需的时间为准。自净时间的长短我们可以通过调节送风速度和送风面积来进行调整。时间的长短一般参考手术所需的准备时间的长短,不得大于手术室所有手术中的最短准备时间。

压力分布控制

洁净手术室的压力分布应遵循随着洁净级别的由高到低从大到小的原则。洁净区对与之相通的非洁净区应有不低于10Pa的正压,洁净区对室外应有不低于15Pa的正压,但是所有的压差累计不得超过30Pa,洁净手术室对相邻的低级别的洁净手术室的压差不得低于5Pa。控制洁净室的正压主要有三个作用:

保证洁净区的气流从高级别区域流向低级别区域,并有合理有序的流向和流量。

在手术室的门开启时,能有效抵挡干扰气流。

防止洁净区外的污染通过洁净手术室可能存在的缝隙渗透进入洁净室。洁净手术室保持足够正压,是防止洁净区外的污染进入洁净区的有效手段。

如果是专用的传染病手术室或有毒实验室,则应保持相对周围环境的负压,以防止室内的空气渗透到室外,引发不必要的交叉感染或中毒。

压力的控制是通过室内安装的房间微压差监视及控制器,通过检测的压力状况来控制室内风阀的开度,风机的启停或变频来实现的。

若在每间手术室的新风管上设有双位定风量阀,系统在手术室做手术时自动将风阀开高档,不做手术时,自动开低档,保证手术室内的正压。

5.空调运行节能控制

节能概述

随着空调专业在建筑行业中的迅速发展,空调系统占建筑物耗能的比重越来越大。如何使空调系统在最佳工况下运行,如何降低空调区域的冷热能耗量来节约空调系统的能量消耗,日益引起世界各国的重视。同时,人们对空调的认识和要求也在不断地变化,从单纯追求可供热、供冷的低水平,达到要求能够创造“健康、舒适”环境的高水平上。总之,最大限度节能和创造一个令人舒适的绿色环境是楼宇控制系统的中心问题。因此,今天的建筑设施需要进行完善的控制,需要配备灵敏的控制系统。这些控制系统既要适合不同特点的建筑物,又要适合于多元化的建筑物设备,此外还要适应当前的建筑技术和当前建筑物用户的要求,并达到高效和真正节约能源的目的。

过去这些任务是通过诸如定时开关,优化控制器和单回路控制器等传统装置来完成的,现在则要靠以智能型直接数字控制器(DDC)为基础的暖通空调(HVAC)分布式控制系统(DCS)来完成。

DDC控制软件设计

空调系统是潜在节能率最高的环节,引入节能控制尤为重要:

电力分配需求控制

系统有电力需求控制功能,通过软件的设定,可在峰值电力需求出现时,按照先定的原则顺序切断设备,使高峰期的电力负荷限定在控制范围内。

假日调度

对于节假日及特殊日期,能提供全年的日期和时间调度表,中断系统的标准处理过程,以满足系统对各种非标准控制的要求。

时间/事件程序

监控点报警或监控状态必须改变时,可以发出监控命令,并开启标准的或用户的DDC程序。

时制自动转换:操作人员可以预先设定某月某日某时起到某月某日某时止,系统时钟向前或向后调整几个小时而成为新的时制,以便更好地利用日光节能。时间转换及调整均自动进行,无需人工干预。

最佳启动

在工作开始前,先启动空调系统,以便先行改变工作区内温度,令其到工作时间时室内环境进入舒适(或要求)范围内,程序按一定的时间间隔不停地采样温度,计算到达设定的舒适极限所需的时间,以此确定最佳启动时间。

最佳停止

在工作结束前的某一时间切断系统,这一时间既不能太早,也不能太迟,太早了难以保证环境的舒适水平,太迟则不能达到节能的目的。这一最佳停止时间的计算以及控制均由系统自动完成。

PID和自适应控制

软件提供的DDC运算程序包括比例、积分、微分和自适应控制、标准DDC程序库的运算程序能够读取测量值,也能对监控点发控制指令,完成HVAC控制。程序可以执行完整的PID运算,也可以完成只有P和PI的部分PID运算,使之与各种过程要求相符合,达到最佳控制的目的。自适应控制运算可对系统控制参数进行自动调整,以便在无人干预时对环境的变化做出响应,这些经过验证的PID和自适应控制运算,保证了系统的运行满足工艺要求。

夜间吹洗

在用冷气季节,夜间开启空气处理机组利用室外的凉爽空气,通过吹洗程序,可以做到设备节能运行,清晨时利用凉爽空气吹洗大楼,可使大楼预冷,从而降低启动设备的负荷。

零能带

有冷却和加热两个设定点,形成一个既不用冷也不用热的区域,可以用最小的能耗使温度维持在舒适范围内。

工作循环

按一定的原则交错设备的工作间歇状态,减少设备的工作时间,达到节能的目的。设备的间歇时间不宜太长或过短;太长会影响环境的舒适水平,过短会影响设备的安全运行。

运行时间

对所有设备的监控包括统计其运行时间(启停时间、循环次数),当机械设备使用达到一定程度将产生一个报表,如果设备的使用超出了预定的运行时间极限,将发出报警。

总之,该控制系统可为大楼的管理者解决下述问题:

能源管理

维护管理

能耗计费

与现有制冷机、热水器、程控机房专用空调机、大型风机盘管等联网

与其它子系统通过专用接口联网,实现信息共享

楼宇控制系统范文第5篇

关键词:楼宇;自动控制系统;设计与应用

Abstract: Building automation and control system able to achieve a comprehensive monitoring and unified management of buildings and save energy. Therefore, it is in our country has been widely applied to become an important symbol of the modern high-rise building management level. Based on this, an example of building automation and control system design and application.

Keywords: Buildings; system; design and application of automatic control

中图分类号:S611 文献标识码:A 文章编号:

楼宇自动化控制系统就是对建筑物内的各种机电设施进行全面的计算机监控管理,如空调制冷系统、给排水系统、变配电系统、照明系统、电梯、消防、安全防范系统等;通过对各个子系统进行监控、控制、信息记录,实现分散节能控制和集中科学管理,为建筑物用户提供良好的工作环境,为建筑物的管理者提供方便的管理手段,减少建筑物的能耗并降低管理成本。

1实例概况

某高层建筑地下建筑面积为126,601平方米,地上建筑面积约180,236平方米。其中包括商业裙房、高层公寓式住宅A、B楼两座以及超高层写字楼C楼一座。商业裙房层数为三层到五层,屋面结构高度15.8-24.0米。公寓式住宅为二十八层,六层以上层高3.15米,屋面结构高度98.8米。写字楼为三十一层,六层以上层高4.4米,屋面结构高度138.8米。其中弱电系统机房(与消防共用)位于地下一层,电信网络机房位于地下二层。本工程是一座商场+办公+住宅的综合性建筑,其智能化建设的要求非常高,在本工程中采用西门子PLC控制系统。

2系统设计

2.1冷热源系统

2.1.1监控内容:(1)DI点:锅炉的运行状态、故障报警、自动/手动状态。(2)DO点:冷水机组、锅炉的启停控制。(3)AO点:供回水总管旁通阀,换热器热水调节阀水量控制。(4)AI点:冷冻水总管供回水温度、水流量和压力,冷却水供回水温度。

2.1.2程序控制内容:(1)程序控制冷冻机组启/停,以达到最低能耗,达到最低的主机折旧。(2)根据业主的要求自动切换机组,累计每台机组运行时间,自动选择运行时间最短的机组,使每台机组运行时间基本平均,以延长机组使用寿命。(3)根据实际负荷,对机组、水泵等进行台数控制,并监测其运行状态。对各台机组水温进行监测。

2.1.3按下列顺序启停系统机组:(1)开车:开冷冻水系统电动蝶阀开冷冻水泵流量开关动作开冷水机组。(2)停车:停冷水机组停冷冻水泵关冷冻水电动蝶阀。(3)冷冻水循环泵控制:采集回路的参数(如系统压力、流量等)进行中央数据处理,从而确定水泵的启停台数,使水系统始终处于最合适的运行状况达至节能目的。

2.2空调系统

(1)裙房部分共有32台热转轮空调机组、69台全热交换空调机组、7台新风机组。系统设计40个DO点,217个DI点,101个AO点,117个AI点。(2)塔楼部分共有26台全热交换空调机组。系统设计260个DI点,156 个DO点,52个AI点,26个AO点。(3)采用2管制空调,针对不同区域采用具有针对性的控制方案。采用模块化控制器,依据机组的分布情况和监控点数进行就地相对集中的控制,保证为本工程提供充足的新鲜空气。

2.3送排风机

2.3.1监测内容:(1)各风机手/自动状态、运行状态和故障状态;(2)各风机累计运行时间,定时发出检修提示信号;(3)监测地下车库主要区域的一氧化碳浓度;

2.3.2控制方法:(1)定时控制:按预先编排的时间程序控制送排风机启停;(2)根据地下车库一氧化碳控制相关送排风机启停;

2.3.3控制原理:(1)启停控制:排风机/送风机根据预先设定的时间程序自动启停送排风机。每台机组都有每周工作天数的设定,每天4-8条工作时间通道设定,并另有特殊工作日及节假日的时间设定。因地下车库对特殊气体有浓度要求,因此根据监测的各个主要区域的一氧化碳浓度启停地下车库送排风机。(2)送排风机的监测:监测送排风机的手/自动状态、运行状态、故障状态,各监测参数超限或异常均自动发出声光报警,并同步打印。送排风机每次开机前先行检查机组的状态,符合要求按时序开机,如有异常则发出报警,并同步打印。开机后检测风机的运行状态、故障状态,如异常发出报警信息,并同步打印。(3)运行时间的累计:送排风机的运行状态符合要求,开始累计其运行时间,每满1小时将自动记录,累加的时间自动显示在送排风机、排烟风机的动态画面上。并根据使用需求进行切换,使每台设备的运行累计时间均衡,从而达到保护设备、延长使用寿命的目的。(4)趋势记录:送排风机、排烟风机的各动态运行参数、能量管理参数及能耗均可自动记录、储存、列表,并定时打印,以便管理人员的查询、管理和分析。(5)所有预设程序均可按实际需要和要求,在中央管理工作站上调整修改,以满足用户的使用。

2.4给排水系统

2.4.1系统组成:本工程有4个生活水水箱、生活水泵10台、污水泵142台。楼宇自控系统的给排水系统包括生活给水系统、生活污水系统。系统中的水泵与水箱或水池、集水坑液位状态联动,仅在需要时才投入运转,避免不必要的浪费,节约水源。实现对给排水系统集中管理和自动监测,就能确保每一个液位报警信号及时地反馈到中央监控室,同时联动给排水泵的启停。

2.4.2控制原理:(1)给水系统:监测给水泵运行状态和故障状态,控制生活水泵的启停;水池高液位报警时停泵,防止溢流;水池低液位报警时开泵,补充水。(2)排水系统:监测潜水泵、排水泵等运行状态和故障状态。监测污水池/集水坑高低液位,联动控制潜水泵、排水泵的启/停;当超高液位报警时潜水泵自动开启(同时启动备用泵)并排水,防止溢流,直至到低液位信号时停泵,防止水泵空转。(3)运行时间的累计:水泵运行状态符合要求,开始累计水泵运行时间,每满1小时将自动记录累加的时间自动显示在水泵的动态画面上。当累计到一定时间后与备用泵自动切换,使每台设备的运行累计时间均衡,从而达到保护设备、延长使用寿命的目的。(4)趋势记录:水泵的各动态运行参数、能量管理参数及能耗均可自动记录、储 存、列表,并定时打印,以便管理人员的查询、管理和分析。给排水系统的监测:监测各水泵的运行状态、故障。同时监测水箱、水池、集水坑的高低液位报警及超高液位报警。各监测参数超限或异常均自动发出声光报警,并同步打印。所有预设程序均可按实际需要和要求,在中央管理工作站上调整修改,以满足用户的使用。

2.5照明系统

2.5.1照明系统组成:(1)按照招标文件及图纸的统计共有506路照明回路。系统设计150个DO点,206个DI点,1个AI点。(2)楼宇自控系统对建筑照明实行监控不仅可简化操作,还可以按时间要求或照度要求进行控制,使被控灯具要求点亮或熄灭,利于节约电能。照明系统包括外立面景观照明、泛光照明、室内大堂及公共区域照明等。(3)将照明系统控制纳入BA系统,不仅可以按照需求直接启停照明回路,节省能源,而且可以直接监测故障的发生,将事故的风险降低到最低点,及时地排除故障;还可以大大地节约人力资源,提高工作的效率。

2.5.2控制原理:根据工作时间表进行照明回路的开关控制或操作员开关控制。(1)监测照明回路的运行状态。(2)定时启停照明,并可以分区控制。(3)运行时间的累计:开关运行状态符合要求,开始累计照明时间,每满1小时将自动记录累加的时间自动显示在照明回路的动态画面上。(4)趋势记录:是指在选定的时间间隔内获取并存储测量值,以备随后处理和显示的过程。因此开关的各动态运行参数、能量管理参数及能耗均可自动记录、储存、列表,并定时打印,以便管理人员的查询、管理和分析。

3系统优势

在本工程中采用的西门子PLC控制系统具有以下优势。(1)模块化中型PLC 系统,满足中、小规模的控制要求。(2)各种性能的模块可以非常好地满足和适应自动化控制任务。(3)简单实用的分布式结构和通用的网络能力,使得应用十分灵活。(4)无风扇设计的结构,使用户的维护更加简便。(5)当控制任务增加时,可自由扩展。(5)大量的集成功能使它功能非常强劲

本工程设计的楼宇自控系统可提供对楼宇内各种HVAC等设备运行情况的监视、控制及管理,可节约运行能耗,延长设备的使用寿命,从而达到减少整个建筑生命周期内的费用支出。

4结语

总之,楼宇自动化控制系统是一个涉及面非常广泛的学科,除了要在控制领域下功夫外,在设计和调试过程中认真对建筑、设备等专业工艺进行研究是十分重要的根据被控设备的工艺流程制定出一套科学合理的控制方案,达到节能的效果.可为建设资源节约型社会做出贡献。

参考文献

[1]JOHNSON:Metasys设计手册〔M〕.北京:中国建筑工业出版社,2003.

[2]刘宝林.智能建筑技术资料集〔M〕.北京:中国建筑工业出版社,2003.