首页 > 文章中心 > 电解电容器

电解电容器

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电解电容器范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电解电容器范文第1篇

关键词:电子技术;腐蚀工艺;电解电容器;铝箔

电子工业的繁荣,带动了电子信息产业的发展,人们对中高档的电解电容器腐蚀化成箔的需求量越来越大,这也导致电解电容器腐蚀化成箔市场的供不应求,为了满足电子信息产业的发展,商家迫切的要求电解电容器的比容不断提高,本文将立足于铝电解电容器的结构以及特点,深入研究点解电容器用铝箔扩面腐蚀工艺。

一、铝电解电容器的结构及其特点

(一)铝电解电容器的优点

铝电解电容器与其他类型的电容器相比,拥有单位体积容量大、额定容量大、工作电厂强度高、具有自愈作用、介质层厚度可控制的优点,因此被广泛的应用于电子产业基础元件的制造当中,并获得了业内的认可。首先,铝电解电容器的单位体积电容量大,与其他类型的电容器相比,单位体积容量可能是其十几倍到几十倍,并且铝电解电容器的电解质厚度也是其他电容器的几十到几百倍。其次,铝电解电容器的额定容量大,由于铝电解电容器氧化膜厚度较大,因此很容易扩大面积,可以按照产品制造的要求,增加电解电容器的额定电容量。[1]最后,电解电容器还具有自愈作用,电容器电解质如果发生破坏,电解液中的酸根离子能够在短时间内将破坏位置堵住,从而使电解电容器恢复正常的状态,这在一定程度上增加了电解电容器的应用范围。也正是这些优点,使电解电容器在与其他电容器竞争之中脱颖而出,在汽车电子、变频技术领域得到广泛的应用,市场占有份额也在逐年上升。

(二)电解电容器的结构

现代电子设备的更新换代速度非常快,每一次的变革,都对电解电容器的性能提出了更高的要求,为了满足电子产业发展的需要,电解电容器必须在保证腐蚀滤波弯折强度的前提下,使电解电容器的比容不断提高,这要求电解电容器必须朝着高比容量、小体积的方向改进。首先,研究人员应该对铝电解电容器的结构有一个明确的了解,电解电容器的结构由两个部分组成,第一部分是铝壳和密封胶盖,这是电解电容器的外部构件,通常是由阳极铝箔与阴极铝箔缠绕而成,阳极铝箔的表面有一层氧化铝薄膜,起到了耐电压的作用,因此可以f,电解电容器的外部结构决定了电解电容器的寿命与电容量。[2]

(三)铝电解电容器铝箔腐蚀扩面

电解电容器的铝箔主要通过腐蚀过程来扩大有效表面积的,从而增加电解电容器的电容体积。电解电容器的比容受到铝基材料成分、铝基材料状态以及腐蚀工艺的影响,因此为了增加电解电容器的有效表面积,相关工作人员需要深入研究电解电容器铝箔扩面与腐蚀工艺的关系,明确腐蚀工艺的对电解电容器铝箔扩面的影响。

二、电解电容器用铝箔腐蚀工艺研究

相关工作人员主要采用了正交实验,研究腐蚀介质的比例、腐蚀电压大小、腐蚀温度对腐蚀箔性能的影响。

(一)腐蚀介质的比例对腐蚀箔性能的影响

研究表明,腐蚀介质中ClC浓度越高,腐蚀箔的比容越高,但到达一个临界值后,腐蚀箔的比容不仅不会增加,还会造成弯折强度的降低。在铝电解电容器遭到小孔腐蚀时,介质中的硫酸组分比例会增加,同时孔蚀电位下降,该实验,主要利用了钝化吸附的原理,因此ClC浓度的增加,能够提高增加小孔腐蚀的成核率,并继续向纵深发展。[3]在该实验中,氧化性酸起到了关键性的作用,因为氧化性酸可以有效的增加钝化膜的吸附力,因此在实验当中,要适当的增加硫酸组的比例,从而计算出腐蚀箔的最大比容。而腐蚀箔的弯折度度,则由腐蚀箔夹心层的厚度,厚度越大,腐蚀箔的腐蚀孔越均匀度越高,腐蚀箔的弯折度越高。反之亦然,腐蚀箔的弯折度与腐蚀箔的比容呈反比的关系,因此腐蚀孔均匀度越低,腐蚀箔的比容越高,但同时,这样的腐蚀箔易于这段,同样也不适用于电子元件的制造,因此相关研究人员需要平衡好腐蚀箔比容与腐蚀箔弯折度之间的关系。

(二)腐蚀电压大小对电极箔性能的影响

阳极氧化电压对腐蚀箔比容与弯折性能都会产生不同程度的影响,因此相关研究人员需要,根据电化学腐蚀原理,通过实验,找出电极箔的最佳值。实验表明,随着小孔腐蚀敏感性加剧,电极电位也会相应升高,因此可以说,电机点位的升高与小孔成核有着密切的关系,相关工作人员需要通过实验,找出局部电极电位的临界值,从而提高小孔成核的速度。[4]但需要注意,腐蚀箔的弯折度与腐蚀电压的大小并非线性关系,并非腐蚀电压越大,电极箔的弯折度越低,而是需要将孔壁腐蚀坍塌的变量加入其中在进行观察。可以在这个实验中观察到,腐蚀电压的大小对腐蚀箔的电容产生了一定的影响,腐蚀电压越大,腐蚀箔的电容越大,到达一个临界值之后,腐蚀电压继续增大,腐蚀箔的电容的增大速度逐渐降低。

(三)腐蚀温度和腐蚀时间对腐蚀箔性能的影响

研究人员通过提高腐蚀温度,延长腐蚀时间的方法,观察腐蚀箔性能的变化,研究表明,不管温度的提高,还是时间的延长,都会对腐蚀箔的性能产生一定的影响,腐蚀温度升高,会加速腐蚀孔内阳离子的溶解,从而使外阴离子向孔内迁移,一定程度上降低了溶液的活性。同时,腐蚀孔的继续加深,是孔内金属氯化物更加浓缩,因此腐蚀温度能够增加电解电容器内水解质酸度。而随着腐蚀时间的延长,腐蚀箔的折弯强度会直线下降,直到腐蚀孔堵塞,这个反应才会中止,因此相关工作人员需要根据腐蚀箔性能的要求,合理的选择腐蚀温度和腐蚀时间,从而提高腐蚀孔的均匀度。[5]

结语:

综上所述,腐蚀温度、腐蚀时间、腐蚀介质的比例以及腐蚀电压的大小都会对腐蚀箔的性能产生不同程度的影响,因此相关工作人员需要按照要求,选择科学的腐蚀工艺参数。

参考文献:

[1]郑红梅,吴玉程,黄新民,胡学飞,刘勉诚,杨蓓蓓.铝电解电容器用电子铝箔的性能分析与比较[J].功能材料与器件学报,2012,01:10-16.

[2]陈永真.用薄膜电容器替代铝电解电容器的分析与实践[A].浙江省电源学会.浙江省电源学会第十一届学术年会暨省科协重点科技活动“高效节能电力电子新技术”研讨会论文集[C].浙江省电源学会:,2013:4.

[3]于欣伟,赵国鹏,李魁,高泉涌,冯耀邦,陈姚,郑文芝.电解电容器使用支链多元羧酸铵盐电解液的研究[J].广州大学学报(自然科学版),2013,02:6-9.

电解电容器范文第2篇

关键词:非固体电解质钽电容器;漏电流;氧化膜;电容失效

中图分类号:G642.0 文献标识码:A 文章编号:2095-1302(2014)12-00-02

0 引 言

钽电解电容器因其容量大、体积小、电性能优良、工作温度范围宽、可靠性高,在通信、航天等领域被广泛选用。在笔者去年生产的产品中连续出现两例CA35型非固体电解质钽电容器失效现象,失效模式为漏电流超标,要求漏电流小于1 μA,实际测量达到28 μA,影响产品整机性能。为搞清楚电容器漏电流超标的原因,笔者走访电容器生产厂家,查阅大量资料,了解了电容器生产过程控制及电容器在使用中注意事项,现将其整理,以供遇到类似问题的技术人员参考。

1 非固体钽电解质电容器的制造工艺过程

非固体钽电解质电容器的主要的生产工艺过程包括成型、烧结、形成、装配、老化五个过程。电容器按阳极设计要求,将钽粉压制成型,并插入钽丝作为阳极引出的过程为成型。在高温高真空条件下,获得具有合适空隙度的高纯钽块的过程为烧结,烧结后如图1所示。

用电化学方法在钽阳极表面生成一层氧化膜,作为电容器的介质的过程是形成。形成后如图2所示。

图1 钽电容烧结后 图2 钽电容形成后

将非固体电解质钽电容器采用银或钽外壳封装,壳内灌注电解液(电解质)作为电容器的阴极的过程称为装配。对电容器100%高温电老化,修复氧化膜,使电容器的性能趋于稳定,剔除早期失效产品,提高电容器的可靠性的过程为老化过程。

由电容器的制造工艺不难看出,电容器是由阳极(钽丝)、介质(氧化膜)、阴极(电解液)组成。

2 工作介质对漏电流的影响

非固体电解质钽电容器的工作介质为在钽块表面用电化学方法生成的一层氧化膜Ta2O5,Ta2O5氧化膜系无定形结构,它的离子呈不规则无序排列。理想中的电容器介质应是完美无缺的薄膜,其厚度以纳米计,仅有几十至几百纳米,它的绝缘电阻可达几百兆欧以上,氧化膜越厚,其耐压也越高。而实际上Ta2O5表面存在各种微小的疵点、空洞以及隙缝之类的缺陷,漏电流就是通过这些缺陷的杂质离子电流和电子电流所组成。正常情况下,漏电流值很小,但是如果电流较大,在试验的高应力下,电应力集中,电流密度大,使疵点周围的氧化膜“晶化”,扩大了疵点面积,介质质量进一步恶化,绝缘电阻下降,漏电流急剧增加。

3 影响氧化膜质量的因素

造成非固体电解质钽电容器漏电流的根本原因是阳极氧化膜出现缺陷,绝缘电阻下降所致,因此要控制漏电流,必须对影响氧化膜绝缘性的各种因素进行控制,影响钽电容器氧化膜绝缘性的因素主要有三个方面,一是制造电容器材料――钽粉、钽丝质量的影响;二是电容器制造的工艺影响;三是使用的影响。

3.1 钽粉、钽丝的影响

钽粉、钽丝的化学性能、物理性能、杂质含量、钽粉的颗粒形状、大小,击穿电压,都直接影响钽电容器的质量。钽粉、钽丝中的杂质含量对形成氧化膜的质量有很大的影响。钽电容器的阳极芯子在成型时要经过1 500~2 050 ℃的高温高真空的烧结,烧结的目的之一就是去掉钽粉、钽丝中的杂质,而那些难熔的杂质,如钨、钼、硅、铁、铜等,在烧结时难以完全去除,在形成氧化膜时成为疵点的“晶核”,成为导电通道。所以,对钽粉的杂质含量要求极为严格,一般要求小于10~50 PPM。钽粉有很多种规格,是根据电容器的工作电压,分为高压粉、中压粉、低压粉,各种粉的比容、物理性能、击穿电压都有区别,在生产电容器时,必须根据电容器的规格,合理、恰当选用钽粉,才能确保电容器的质量。

3.2 电容器制造工艺的影响

钽电容器的生产工艺也直接影响钽电容器的性能,尤其是以下三个关键工序将直接影响钽电容器的漏电流。

烧结工序,是将钽粉成型并进行高温真空烧结,目的是成型和提纯,要通过1 500~2 050 ℃高真空烧结,去除杂质,达到提纯的目的。如果提纯效果不佳,残留的杂质在钽阳极芯子中,将成为介质膜中的“晶核”,是造成漏电流的隐患。

形成工序,是将钽阳极放在电解液中,施加直流电压,电解液中的氧离子和钽阳极中的钽形成Ta2O5膜层。在这一工艺中,形成温度过高、形成时间过长、升压电流密度过大、形成电压过高都会对介质氧化膜产生晶化点。形成工艺结束后,要进行形成效果检验,特别是电容量和漏电流,必须达到工艺要求,希望漏电流值越小越好。在形成工艺过程中,如某一环节掌握不好,极易产生“晶化”现象,所以,形成工艺要求制造完整的介质膜层,又不能出现“晶化”现象。

筛选工序,是对钽电容器的成品采取进一步加严检验的工艺,通常采用高、低温筛选、长时间高温老练筛选以及X光透射检查等。特别注意筛选的温度及电压要选择的适当,太低不能有效剔除缺陷电容器,太高,又会导致本来合格的产品出现缺陷而失效被剔除。

3.3 电容器使用的影响

电容器的使用主要涉及两个层面,一是设计层面,二是操作层面。

首先从设计层面考虑以下因素:

电容器要降压使用。指电容器的实际工作电压要低于电容器的额定电压,电容器长期经受较高工作电压,氧化膜中不可避免地存在着杂质或其它缺陷,当这些部位的场强较高,电流密度较大,导致局部高温点出现,从而留下诱发热致晶化的隐患。在金属氧化物界面,由于金属杂质的存在,也可能诱发场致晶化,随着施加电压的增加,电容器失效概率也增加,因此为了电容器工作的可靠性及寿命,一般设计的实际工作至多为额定电压的70%。

避免反向电压。不允许将非固体电解质钽电容器反接在直流回路或接在纯交流回路中。银外壳的液体钽电容器(CA30、CA35)加反向电压会使银外壳上的银迁移至阳极,沉积在氧化膜上,几时和很低的反向电压和较低电流密度也能获得枝蔓似的银沉积。而阳极表面沉积的银将构成导电通道,从而增加漏电流,进而使介质被击穿致电容器失效。钽外壳的液体钽电容器(CA38)可承受3 V反向电压,因钽外壳表面能形成一层很薄的氧化膜,当电容器被施加反向电压时,钽外壳上的氧化膜处于正向偏压状态,因此仍可保证产品有较小的漏电流。但更高的反向电压仍会将全钽液体钽电容器击穿。

远离功率发热器件。电容器在电路板中布局时应远离功率发热器件。当电容器靠近发热器件时,电容器长时间工作温度升高,氧化膜中的杂质离子迁移速度增加,导致漏电流增大。

钽电容器在电路中,应控制瞬间大电流对电容器的冲击,建议串联电阻以缓解这种冲击。请将3 Ω/V以上的保护电阻器串联在电容器上,以限制电流在300 mA以下,当串联电阻小于3 Ω/V时,则应考虑进一步的降额设计,否则产品可靠性将相应降低(如果将电路电阻从3 Ω/V降到≤ 0.1 Ω/V,则失效率提高约10倍)。当电容器用于纹波电路时,降额系数至少应为0.5。选用高频钽电容器时,限流串联电阻阻值可适当降低(建议R>3 Ω/V)。

从使用操作层面应注意以下几点:

使用烙铁(30 W以下)时,烙铁尖端的温度在350 ℃以下,使用时间应在3 s以内,并注意烙铁尖不要碰到电容器本体。焊接温度过高或焊接时间过长都会导致电容器受热冲击,超过电容器所能承受的最高温度,电容器内部产生应力,导致氧化膜受损,绝缘性能下降,漏电流增大。

对标识不清的电容器严禁使用三用表测量。存在对电容器施加反向电压的风险,请将该电容器报废。

电容器应避免直接接触水、盐、油等的环境。杂质离子将电容器阳极阴线与阴极连同,形成并联导电通道,导致漏电流增大。

4 结 语

非固体电解质钽电容器虽然以容量大、体积小、工作可靠而被广泛应用,但漏电流大的问题也偶尔发生,一旦发生会对产品的性能产生严重影响。控制漏电流就是控制氧化膜的质量,本文分别从电容器制造、选用、使用过程给出了控制的因素,希望能为遇到此类问题的技术人员分析解决问题提供帮助。

参考文献

[1]陈永真.电容器及其应用[M].北京:科学出版社,2005.

电解电容器范文第3篇

【关键词】能源;薄膜电容器;电解电容器;逆变器;新能源汽车

1.引言

随着工业的迅速发展、人口的增长和人民生活水平的提高,能源短缺已成为世界性问题,能源安全受到越来越多国家的重视。随着“汽车社会”的逐渐形成,汽车保有量在不断地呈现上升趋势,全球汽车行业的发展面临着能源和环保的双重压力,各个国家为了将来在世界汽车业中占得一席之地,纷纷推出了各自的的新能源汽车的规划蓝图,并大力发展新能源汽车。

新能源汽车是指采用非常规的车用燃料作为动力来源,新能源汽车包括混合动力汽车、纯电动汽车、燃料电池电动汽车、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品[1]。

电机,电池和电机控制技术是新能源汽车的三大核心。电机控制技术的核心就是需要高效电机控制的逆变器技术,高效电机控制的逆变器技术则需要一个功能强大的IGBT模块和一个与之匹配的直流支撑电容器,如图1所示。

本文主要介绍薄膜电容的优点、采用的先进技术、相关的选型标准及应用分析。

2.薄膜电容的技术优点

早期直流支撑薄膜电容都是采用电解电容,随着薄膜电容技术的发展,特别是基膜本身技术的发发展和金属化采用分割的技术出现,不仅使得薄膜电容的体积在越做越小的同时,产品的耐压水平还保持在相当的水平,现在越来越多的公司采用高温聚丙烯薄膜电容器的作为直流支撑电容,一个典型的例子就是丰田公司的PRIUS车型的改进;而国内车企典型代表是比亚迪F3DM和E6,都使用薄膜电容器作为直流支撑电容。第一代丰田Prius使用的滤波电容器是电解电容器,见图2;从第二代开始,便开始使用薄膜滤波电容器组,见图3。

目前用于直流支撑的薄膜电容器,大部分是使用高温聚丙烯膜作为介质,聚丙烯薄膜电容器有如下的优点。

a.产品安全性好,耐过压能力强

由于薄膜电容器具有自愈额现象,而且薄膜电容的设计是按照IEC61071的标准,电容抗浪涌电压能力大于1.5的额定电压,加上电容采用分割膜技术,见图4,电容理论上不会产生短路击穿的现象,这大大提高了这类电容的安全性,典型的失效模式是开路。在特定应用中电容的抗峰值电压能力也是考察电容的重要指标。实际上,对电解电容而言,允许承受的最大浪涌电压是1.2倍,这种情况迫使使用者不得不考虑峰值电压而非标称电压。

b.良好的温度特性,产品温度使用范围广,可以从-40℃-105℃

直流支撑薄膜电容器采用的高温聚丙烯薄膜,具有聚酯薄膜和电解电容没有的温度稳定性,具体如下图5,图6。

从图5中可以看出,随着温度的升高,聚丙烯膜电容器容量总体是下降的,但下降的比例是很小的,大概是300PPM/℃;而聚酯膜不管是在高温阶段还是在低温阶段,容量随温度变化则大了很多,为+200~+600PPM/℃。

从图6可以看出,聚丙烯膜介质电容器的损耗随温度变化基本不变的,但聚酯膜介质电容器在低温和高温显示变化规律是不一样的。

由于聚丙烯膜介质电容器具有良好的温度特性,不管是在低温(比如说中国北方)或者高温地区(比如说沙漠地区)都可以得到正常的使用,但对于电解电容器来说,如果在低温地区,由于电解液的存在,电解液可能会凝固,电容的性能在低温的时候,性能发生较大的变化,可能导致电机控制器不能正常使用。

c.频率特性稳定,产品高频特性好

目前大部分的控制器开关频率在约10KHZ,这就要求产品的高频性能好,对于电解电容器和聚酯膜电容器来说,这个要求是个难题。具体见图7,图8。

从图7可以看出,随着频率的升高,聚酯膜介质电容器的所测容量是随着频率的上升是逐步减少的,但聚丙烯膜介质电容器则基本不变。

从图8可以看出,随着频率的上升,聚酯薄膜介质电容器的损耗急剧加大,但聚丙烯介质电容器基本不变。

d.没有极性,能承受反向电压

薄膜电容器的电极是蒸镀在薄膜上纳米级的金属,产品是没有极性的,故对使用者来说非常方便,不需要考虑正负极的问题;而对电解电容器来说,如果超过1.5倍Un的反向电压被加在电解电容上时,会引起电容内部化学反应的发生。如果这种电压持续足够长的时间,电容会发生爆炸,或者随着电容内部压力的释放电解液会流出。

e.额定电压高,不需要串联和平衡电阻

为了提高输出功率,混合动力汽车和燃料电池汽车的母线电压有不断提高的趋势。现在市场上给电机提供的电池电压典型值有280V,330V及480V,与之匹配的电容不同厂家不太一样,但大体是会选择比如450V,600V,800V,容量从0.32mF到2mF,而电解电容器的额定电压不高于500V,所以当母线电压高于500V时,系统只能通过串联电解电容器来提高电容器组的耐压水平。这样,不仅增加了电容器组的体积、成本,也增加了电路中的电感和ESR。

f.低ESR,通过耐纹波电流能力强

薄膜电容器大于200mA/μF,电解电容通过纹波电流能力为20mA/μF,这个特点能大大减小系统中所需要的电容器的容量。国内厂家比如厦门法拉主推的产品目前0.4-0.5mΩ,最大纹波电流值从几十安培到几百安培不等。

g.低ESL

逆变器的低电感设计要求其主要元件DC-Link电容器要有极其低的电感。高性能DC-Link直流滤波薄膜电容器通过把母线整合到电容器模块里,使它的自感降到最低(

h.抗浪涌电流能力强

能够承受瞬间的大电流,采用波浪分切的技术和电容镀膜加厚边技术,可以提高产品浪涌电流温度和机械冲击的能力。

i.使用寿命长

薄膜不易老化的特性决定了薄膜电容器优很长的寿命,特别在额定电压和额定使用温度下,使用寿命大于15000小时;如果按平均30Km/H,则在寿命期可以有450000Km,电容的寿命对于汽车的行驶里程是足够的。

3.薄膜电容的选择

为了达到节能的目的,提高电机的效率,减少线损,就必须把系统电压提高(见公式一),电压提高后,可以降低通过回路的电流,由于电流可以比较低,线损就会比较低。

P线损=I2R

(1)

目前系统电压范围从100多伏到300多伏,有些公司用于大功率驱动的达到400多伏,由于控制电路自感及其在汽车在不同工况下使用的缘故,大多公司选用是额定电压450V以上的电容。

根据电机功率的不同,目前有不同的IGBT模块可以使用,同样,对于直流支撑电容器,不同的厂家也推出了不同的产品,主流薄膜电容器厂商比如厦门法拉和EP公司都推出了不容容量和结构的电容可供选择。选择时主要考虑额定容量、允许容量的偏差、额定电压、最大电压、电池电压的波动范围、开关频率、纹波电流有效值、最大峰值电流、相间续流电流大小、电机额定功率、峰值功率、环境温度、最高工作温度、最高工作海拔、散热方式和寿命要求等指标。

4.应用分析

4.1 纹波电压产生的原因

IGBT工作的时候,电路两端负载发生变化,母线上会产生纹波电流。如果没有C3电容器,那么电流将全部流经电池组,导致Ur产生波动(Ur=Iripple×r),U=U1+Ur,所以U两端将产生较大的纹波电压,影响IGBT的正常工作。

4.2 电容器组的作用

如果在母线两端并上电容器组,当ESR+1/ωC

4.3 电容器的选择

要使ESR+1/ωC

工程应用上,可以通过计算机模拟得到系统需要的最小电容器容值。当然,如果设计前已知了电路中的最大允许纹波电压和纹波电流的有效值。那么,系统中需要的最小容值可以通过下面的公式计算:

(2)

由于系统中的滤波电流相对较大,而电解电容又有0.02A/μF的滤波电流限制,所以在开关频率较高的逆变器中一般不按最小容值选择电解电容器,而是按下面公式选择电解电容器的容值:

(3)

下面以某电机电机驱动系统是30KW的纯电动车型举例说明,驱动器上的参数为:Vw=336V; Uripple=4V;Irms=100A @10KHz。需要的最小容值为:

(4)

这个容量的薄膜电容器很容易找到。如果选用电解电容器,则需要的容量是:

(5)

由此可以得出,开关频率较高的逆变器中使用薄膜电容器可以大大减小应用中所需要的容值。

5.总结

高性能DC-LINK薄膜电容器是一种采用新的制作工艺和金属化薄膜技术的电容器,它增加了传统薄膜电容器的能量密度,即电容的体积也随之缩小。另一个方面它通过将电容器芯子和母排整合的方式来满足客户灵活的尺寸要求,不仅使得整个逆变器模块更加紧凑,也大大降低应用电路中的杂散电感,使电路的性能更加优越。电动汽车中使用的电路设计有高电压、高有效值电流、有过压、有反向电压、有高峰值电流、同时还有长寿命的要求,薄膜电容无疑是电动汽车作为直流支撑电容的最佳选择

参考文献

[1]王文伟,毕荣华编著.电动汽车技术基础[M].北京机械工业出版社,2010.

[2]TOYOTA.TOYOTA HYBRID SYSTEM THSII[J/OL].toyota.co.jp,2003.

[3]陈渊伟.高性能DC-Link薄膜电容器的应用及相关技术.

[4]厦门法拉电子股份有限公司产品目录,2012.

[5]陈清泉,詹宜君.21世纪的绿色交通工具-电动汽车[M].北京:清华大学出版社,2001.

电解电容器范文第4篇

关键词:变频器;煤矿;应用;故障分析

中图分类号:F32 文献标识码:A DOI:10.3969/j.issn.1672-0407.2012.04.028

文章编号:1672-0407(2012)04-059-02 收稿日期:2012-03-20

1.变频器在皮带机拖动上的应用特点

1.1 优越的软起动、软停止特性

隔爆变频器的起动、停止时间是任意可调的(0-10min),也就是说起动时的加速度和停车时的减速度任意可调,同时为了平稳起动,还可匹配其具备的S型加减速时间,这样可将皮带机起停时产生的冲击减少至最小,这是其他驱动设备难以达到的。

1.2 验带功能

煤矿的生产运输系统多以皮带机为主,运输系统检修维护的主要工作是皮带机的检修维护,低速验带功能是皮带机检修的主要要求,变频调整系统为无极调速的交流传动系统,在空载验带状态下,变频器可调整电机工作在5~100%额定带速范围内的任意带速。

1.3 平稳的重载起动特性

皮带机在运煤过程中任意一刻都可能立即停车再重新起动,必须考虑“重载起动”能力。由于变频器采用无速度传感器矢量控制方式,低频运转可输出1.5~2倍额定转矩,因此最适于“重载起动”。

1.4 功率平衡特性

煤矿井下皮带机系统多为双滚筒驱动或多滚筒驱动,为了保证系统内的同步性能,首先,要求位于机头的各滚筒应同步启停,在某一电机故障时能使系统停机,同时为了保证系统的运输能力,应尽量保证各滚筒之间的功率平衡。通过调整相应两变频器的速度给定来调整两电机之间的速度差,便可以任意增大或减小两驱动电机的电流差值的大小,因此可以通过单独的控制系统控制各电机的电流值,通过调整各电机的速度来使各电机电流值逐步趋于平衡,这便形成了一个动态的功率平衡系统。

1.5自动调速、节电效果明显

对应于煤矿的特殊生产条件,有时,煤的产量是极不均匀的,当然皮带机系统的运煤量也是不均匀的,在负载轻或无负载时,皮带机系统的高速运行对机械传动系统的磨损浪费较为严重,同时电能消耗也较低速运行大的多,但因生产的需要皮带机系统又不能随时停车,采用单独的控制系统对前级运输系统的载荷、本机运输系统的载荷进行分别测量,这样可控制变频器降速或提前升速。对于载荷不均的皮带机系统,可大大节约电能。

1.6 降低胶带张力

由于采用隔爆变频器所产生的良好起动特性,至少可降低起动张力30%,如在初期设计选择胶带强度时可降低一个标号。在实际应用过程中,由于降低了起动冲击,皮带机机械系统的设备损耗也随之降低,尤其托辊及滚筒的寿命成几倍的延长。

1.7具有工频转换功能

为了不影响生产,万一有故障,可以转换到工频旁路工作,检修时间维护变频器。在生产需要长期全速运行时,变频器起动后也可选择切换到工频运行,这样可延长变频器内电解电容寿命。

2. 变频器的故障原因及预防措施

变频器由主回路、电源回路、IPM驱动及保护回路、冷却风扇等几部分组成。其结构多为单元化或模块化形式。由于使用方法不正确或设置环境不合理,将容易造成变频器误操作及发生故障,或者无法满足预期的运行效果。为防患于未然,对故障原因进行分析尤为重要。

2.1主回路电解电容故障分析

主回路主要由三相或单相整流桥、平滑电容器、滤波电容器、IPM逆变桥、限流电阻、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。电解电容器会直接 影响到变频器的使用寿命,一般温度每上升10 ℃,寿命减半。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。在电容器维护时,通常以比较容易测量的静电容量来判断电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5 MΩ以下时,应考虑更换电解电容器。

2.2主回路过电流跳闸故障分析

变频器在加速、减速或正常运行时出现过电流跳闸。首先应区分是由于负载原因,还是变频器的原因引起的。如果是变频器的故障,可通过历史记录查询在跳闸时的电流,超过了变频器的额定电流或电子热继电器的设定值,而三相电压和电流是平衡的,则应考虑是否有过载或突变,如电机堵转等。在负载惯性较大时,可适当延长加速时间,此过程对变频器本身并无损坏。若跳闸时的电流,在变频器的额定电流或在电子热继电器的设定范围内,可判断是IPM模块或相关部分发生故障。首先可以通过测量变频器的主回路输出端子U、 V、W, 分别与直流侧的P、N端子之间的正反向电阻,来判断IPM模块是否损坏。如模块未损坏,则是驱动电路出了故障。如果减速时IPM模块过流或变频器对地短路 跳闸,一般是逆变器的上半桥的模块或其驱动电路故障;而加速时IPM模块过流,则是下半桥的模块或其驱动电路部分故障,发生这些故障的原因,多是由于外部灰尘进入变频器内部或环境潮湿引起。

2.3 控制回路故障分析

控制回路影响变频器寿命的是电源部分,是平滑电容器和IPM电路板中的缓冲电容器,其原理与前述相同,但这里的电容器中通过的脉动电流,是基本不受主回路负载影响的定值,故其寿命主要由温度和通电时间决定。由于电容器都焊接在电路板上,通过测量静电容量来判断劣化情况比较困难,一般根据电容器环境温度 以及使用时间,来推算是否接近其使用寿命。电源电路板给控制回路、IPM驱动电路和表面操作显示板以及风扇等提供电源,这些电源一般都是从主电路输出的直流电压,通过开关电源再分别整流而得到的。因此,某一路电源短路,除了本路的整流电路受损外,还可能影响其他部分的电源,如由于误操作而使控制电源与公共接地短接,致使电源电路板上开关电源部分损坏,风扇电源的短路导致其他电源断电等。一般通过观察电源电路板就比较容易发现。

电解电容器范文第5篇

关键词:PLC;自动化生产线;教学设备

自动化生产线是在流水线的基础上逐渐发展起来的,是一种先进的生产组织形式,是能实现产品生产过程自动化的一种机器体系。自动化生产线由工件传送系统和控制系统组成,它不仅要求线体上各种机械加工装置能自动地完成预定的各道工序及工艺过程,使产品成为合格的制品,而且要求按照规定的程序自动地进行工作。

PLC(可编程序控制器)是采用微机技术研制的工业自动化装置,作为新一代的工业控制器,以其通用性强、灵活性好、运行可靠、易学易用、抗干扰性强等明显特点,越来越广泛地应用于工业自动化领域,成为自动控制的三大技术支柱(PLC、机器人、CAD/CAM)之一。用PLC来控制自动化生产线这样较复杂的生产设备,是理想的选择。

为适应教学的需要,使学生更好地掌握PLC在工业自动化生产线上的应用,我院教学人员研制了基于PLC控制的自动化生产线教学设备,可以模拟企业中铝电解电容器装配自动生产的过程。该自动化生产线综合应用了多种技术知识,如气动控制技术、机械技术、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等,模拟一个与实际生产情况十分接近的控制过程。

一、自动化生产线系统的组成

铝电解电容器装配自动化生产线的组成:自动化生产线安装在铝合金导轨式实训台上,由供料站、装配站、加工站、输送站和分拣站共5个工作站组成,其组成结构图如图1所示。各工作站均设置一台西门子S7-200系列PLC承担其控制任务,各PLC的具体型号标示在图上。另外,铝电解电容器装配自动化生产线设备是一套半开放式的设备,用户在一定程度上也可根据自己的需要选择设备组成工作站的数量、类型,最多可由5个工作站组成,最少时一个工作站即可自成一个独立的控制系统。

设备中的各工作站均安放在实训台上,便于各个机械机构及气动部件的拆卸和安装、控制线路的布线、气动电磁阀及气管安装。其中,输送站采用了最为灵活的拆装式模块结构:组成该单元的按钮/指示灯模块、电源模块、PLC模块、步进电机驱动器模块等均放置在抽屉式模块放置架上;模块之间、模块与实训台上接线端子排之间的连接方式采用安全导线连接,最大限度地满足了综合性实训的要求。

二、自动化生产线的工作流程

首先是铝电解电容器的组成结构。铝电解电容器由铝壳、素子和胶粒组成,其结构示意图如图2所示。

铝电解电容器装配自动化生产线实训教学设备的工作流程如图3所示:供料站供料,将铝壳(由黑、白二种颜色的塑料件代替)自动送出到物料台上,由输送站的机械手将铝壳抓取送往装配站的物料台;装配站将素子(由小圆柱塑料件代替)嵌入铝壳完成装配后,再由输送站的机械手将装配好的工件送到加工站的冲压机构下面,完成一次冲压加工操作后(模拟胶粒的封闭),然后再由输送站的机械手将工件抓取送往分拣站的传送带;分拣站将加工后的成品进行分拣,使加工好的黑、白色的工件从不同的料槽分流。

输送站是自动化生产线中最为重要同时也是承担任务最为繁重的工作站,其机械手是一个能实现4个自由度运动(即上升下降、伸出缩回、夹紧松开及旋转)的装置,该装置整体安装在步进电机传动组件的滑动溜板上,在传动组件带动下作直线往复运动,精确定位到指定工作站的物料台,在物料台上抓取工件输送到指定地点然后放下。步进电机由步进电机驱动器进行驱动,其脉冲信号和驱动方向信号由输送站的PLC控制,如图1所示。

在分拣站中,采用异步电动机拖动传送带输送物料。异步电动机的转速及方向由变频器来控制,而变频器的启停是由分拣站PLC控制,如图1所示。

三、自动化生产线系统的软件实现

铝电解电容器装配自动化生产线教学设备的控制系统采用STEP7 Micro/WIN V4.0的编程软件。这是一款专为西门子公司S7-200系列小型PLC而设计的编程工具软件,为用户开发、编辑和监控自己的应用程序提供了良好的编程环境。它简单易学,能够解决复杂的自动化任务;同时支持STL、LAD、FBD三种编程语言,用户可以根据自己的喜好随时在三者之间切换;软件包提供无微不至的帮助功能,即使初学者也能容易地入门;包含多国语言包,可以方便地在各语言版本间切换;具有密码保护功能,能保护代码不受他人操作和破坏。使用该软件可根据控制系统的要求编制控制程序并完成与PLC的实时通信,进行程序的下载与上传及在线监控。

四、PLC控制系统的通信

S7-200的通信接口为RS-485,通信协议使用PLC自带标准的PPI协议进行数据通信。在使用PPI协议进行通信时,只能有一台PLC或其他设备作为通信发起方,称为主站,其他的PLC或设备只能被动地传输或接收数据,称为从站。

在铝电解电容器装配自动化生产线中,5台PLC分别控制5个工作站,因此需要将5台PLC联网,实现5台PLC之间的数据传送,完成自动化生产线的自动控制。在网络中,指定输送站为主站,其余各站为从站。各台PLC之间通过RS-485串行通信实现互连,构成分布式的控制系统,如图1所示。

铝电解电容器装配自动化生产线各工作站实现PPI通信组网的操作步骤如下:

1.设置各台PLC的系统块参数

使用PPI/RS485编程电缆分别对PPI网络内每一台PLC设置系统块参数,即PLC地址和波特率的参数设置。PLC地址一般将输送站的CPU系统块的端口0设为1号站(主站),而将供料站、装配站、加工站和分拣站的CPU系统块的端口0分别设为2、3、4、5号站(从站),如图1所示。另外,将5台PLC的波特率统一设为187.5kbit/s,如果波特率不一致,可能会产生通信错误或失败的现象。将5台PLC的系统块参数设置后,分别下载到各自的CPU。

2.计算机与主站、主站与从站之间的网络连接

使用西门子专用的网络连接器和连接线将每台PLC连接成PPI网络;将RS-485/RS-232PPI编程电缆插到主站PLC的带编程接口的连接器上,运行STEP7-Micro/WIN软件,刷新PPI网络内每一台PLC及其相应地址。若网络通信正常,会在该窗口显示出PPI网络内每一台PLC及其相应的地址。

3.编写主站网络读/写程序段

借助网络读写向导程序,可以快速简单地配置复杂的网络读/写指令(NETR/NETW)操作,并初始化指定的PLC为PPI主站模式,同时使能网络读/写操作。在PPI网络中,只有主站程序中使用网络读写指令来读写从站信息,而从站程序没有必要使用网络读写指令。输送站担任着主站的角色,它接收来自按钮/指示灯模块的系统主令信号,读取网络上各从站的状态信息,加以综合后,向各从站发送控制要求,协调整个系统的工作。

4.编写控制程序并运行调试

编写各站的控制程序,分别下载到各自的PLC,进行自动化生产线的整体程序运行及调试。

五、结 语

基于PLC的铝电解电容器装配自动化生产线教学设备在实训室通过调试、运行,现已投入课堂教学,取得了良好的教学效果。此设备可以根据生产需要由学生自己编程并调试,不但使学生掌握气动技术、PLC编程技术、传感器与检测技术、电机控制技术及自动化生产线的安装与调试技术的综合应用,而且使学生掌握自动化生产线设备现场管理和故障排除等技能,从而更好地培养学生的创新意识和动手实践能力。

参考文献:

[1] 吕景泉,等.自动化生产线安装与调试[M].北京:中国铁道出版社,2008.