首页 > 文章中心 > 生物科学理论

生物科学理论范文精选

生物科学理论

生物科学理论范文第1篇

关键词:生物化学;沉浸式教学;医学教育

生物化学(简称生化)是研究生物体中化学进程的一门学科,研究内容侧重分子机制层面。对临床医学生来说,在生化课程的学习中,不仅要掌握基本的知识,还要具备探究临床疾病表象下的生化分子机制的能力,要知其然,更要知其所以然[1]。同时还要能够基于生化机制进而设计、创新临床疾病的治疗,最终实现“临床→机制→临床”的闭环学习。在这一过程中,医学生的理解分析、逻辑推理、应用创新的能力均得到培养和提高。但是,在目前的生物化学教学中,学生的学习状况还存在不少问题:(1)具有一定自学能力,但是缺乏学习兴趣,仍然以被动学习为主;(2)学生通过学习能掌握基本知识点,但缺乏对知识的理解和应用,仍然以记忆性学习为主;(3)缺乏科学思维、创新意识与创新能力[2]。卓越医生培养计划2.0的实施,对医学生能力培养的迫切需求。学生在教学中主体地位的确立与实现,成为医学教育的重要导向。传统的课堂教学中,学生的主体、中心地位难以实现,缺乏学习兴趣,不少学生都是漫不经心的观光式学习。如何改变这种现状?我们选择了沉浸式教学。沉浸式教育模式最早起源于20世纪60年代,初衷是促进第二语言的学习,取得了巨大成功[3-4]。沉浸式教学的关键是要给学习者带来沉浸体验,不仅能够构建个性化及情境式的课堂环境,而且能够重塑活力课堂,启发学生在交互与反思中获得全身心的学习体验。在沉浸式教学中,教师作为指导者和辅助者,通过情景设置、教学设计,引导学生主动学习,提高学生的学习兴趣和愉悦感,对知识的获得感和学习效率更高。在生物化学课堂教学中,我们采用了沉浸三式——案例沉浸式、历史沉浸式、分生(分子的一生)沉浸式。

1案例沉浸式

针对生物化学中与临床疾病紧密相连的内容,我们采用案例沉浸式。采用具体临床案例引导学生分析问题,主动思考,抽丝剥茧,探寻真相。物质代谢的整体性在传统教学中只是一个概念性问题,学生难以理解其深层含义。在案例沉浸式教学中,教师先以一个临床案例进行导入:老年男性,B超显示中度脂肪肝。通过超星学习通等平台进行课堂调查,让学生对该患者的身材和血脂情况进行推测。95%以上的学生认为,该患者应该体型肥胖,血脂升高。此时,再给出患者的具体情况:身高175cm,体重75kg;血糖、血脂均正常;不胖,常年严格素食,无饮酒,平时主食摄入量多。这个出乎意料的情况激发起了学生的兴趣,充满了一探究竟的好奇心。但是,教师没有直接给出解答,而是引领者学生一步步提出问题,再自己解答,犹如针对疑案,抽丝剥茧,拨开迷雾,去探寻真相。脂肪肝是以肝细胞中脂肪(甘油三酯)的过度贮积和脂肪变性为特征的临床病理综合征。于是,学生首先会提出第一个问题:肝细胞中的脂肪是从何而来的呢,是肝脏自己合成的,还是饮食中的脂肪吸收到了肝脏?结合之前脂代谢的学习,学生马上会得出答案:肝细胞中的甘油三酯是肝细胞合成的,所用原料主要由葡萄糖代谢提供。接下来,学生又提出了第二个问题:肝细胞合成的甘油三酯去路如何呢,运出肝外还是储存在肝细胞内?结合血浆脂蛋白的代谢,学生马上找到答案:肝细胞合成的甘油三酯会形成脂蛋白输出肝外,载脂蛋白是此过程中的关键分子。于是,学生继续探究,提出第三个问题:协助脂肪输出肝外的载脂蛋白是如何产生的呢?学生回顾之前所学后发现:载脂蛋白是肝细胞以自身基因为模板,利用氨基酸作为原料,通过翻译过程合成的。氨基酸中有9种为必需氨基酸,需要由食物提供。至此,关键知识点都已提出,但教师并未直接解答,而是让学生综合思考。通过超星学习通在课堂上直接进行选择,患者的脂肪肝是由于肝细胞中甘油三酯合成过多,还是由于肝细胞合成的甘油三酯无法顺利输出肝脏?此时,学生容易出现不同意见,再组织持不同观点的学生进行阐述和辩论,各抒己见,最终找到真正的答案。学生明确了氨基酸代谢、糖代谢对脂代谢的影响,深刻体会“物质代谢的整体性”。通过案例沉浸式,学生结合具体临床案例进行分析和思考,在兴趣驱动下主动学习,实现基础与临床的有机融合。在案例沉浸式中,学生始终是学习的中心与主体,教师只是引导者。

2历史沉浸式

随着科学的发展,近年疫情的侵袭,医学生科学创新能力的培养得到了大家的重视。老师们通过“科研实例”来实现知识重构[5],而在生化课堂教学中,针对生化中与科学进展关系紧密的内容,我们采用历史沉浸式。将学生投入特定的历史时期,教师给学生提供那一时期的背景资料,让学生自己思考科学进展中每一步该做什么,如何做,然后给出数据,让学生自己分析得到结论。历史沉浸式有助于培养学生的创新能力。例如,遗传信息的传递是生物化学中的重要内容,也是难点。此部分讲述的是遗传信息的传递过程,跟临床关联较小,内容较为枯燥乏味。此时,我们选择历史沉浸式。将学生置于特定历史时期:已经发现了DNA是遗传信息的传递分子,引导学生思考,下一步的研究重点是什么?学生思考之后,认为接下来应该研究DNA的分子结构。此时,教师给出基础背景知识:查加夫规则,DNA的X线衍射图,引导学生尝试自行推理DNA的分子构象。最终,学生通过自己的推导和分析,确定了DNA的双螺旋结构。如此这般,引导学生步步思考,步步推测,仿佛自己真的身处历史长河中,通过自己的思考和分析,推动科学进展。历史沉浸式,充分锻炼了学生的逻辑思考和科研创新能力,而在这一学习过程中,学生与历史同步前进,从学习中获得了巨大的成就感和满足感,大大提高了学生的学习兴趣。

3分生(分子的一生)沉浸式

目前主流生物化学教材将基础的生化内容分解为生物大分子(蛋白质、核酸和酶)的结构和功能、主要物质(糖、脂、蛋白质、核苷酸)的代谢、遗传信息的传递(复制、转录、翻译、基因表达调控)这样几部分来分篇进行讲解。这种横向的教学方式可以让学生对生物化学的主要内容有所了解,对各部分的知识点精细掌握,但是学生往往很难将这些人为割裂开的生化知识重新整合到“人”这个整体中。这对学生整体掌握生化知识以及未来进入临床工作非常不利,这就要求我们在生物化学的教学过程中穿插使用纵向的教学方式来弥补传统教学方式和单纯按教材教学的缺陷。针对此,我们采用了分生(分子的一生)沉浸式。以“胰岛素”这一人体中唯一降低血糖的激素为例,教师通过“胰岛素的一生”这一议题,帮助学生将各部分生化知识纵向串联起来,了解生物体中各种生化过程的运作,使生物化学不再只停留在虚构层面。这一题目中包括了几乎整个生化教材的各章节内容:胰岛素基因(核酸的结构)通过遗传信息的表达(即转录、翻译)合成蛋白质(前胰岛素原),而作为一种分泌型蛋白质,胰岛素的成熟需要进行翻译后加工,加工成熟的胰岛素(蛋白质的结构)释放进入血液,通过和靶细胞的细胞膜上的胰岛素受体结合进而发挥作用,经由信号转导从而影响靶细胞内部代谢相关酶的表达和活性(物质代谢),作用结束的胰岛素则经血流入肝进行灭活(蛋白质的降解)。“纵向”的串联与内容重构,将生物化学理论课程中的蛋白质的结构,核酸的结构,酶的功能,糖、脂、蛋白质三大营养物质的代谢,基因的转录、翻译,蛋白质翻译后加工,细胞信号转导等内容连贯起来。如此,学生就能更加系统地了解这些生化机制在人体中究竟是如何运作和整合的以及它们所处的地位及发挥的作用。分生沉浸式,引导学生对生物化学内容进行重构,形成立体、系统的生化知识体系。

4讨论小结

在生物化学理论教学中,70%的学时为教师讲授,30%的学时则通过沉浸三式对知识进行整合重构。引导学生主动思考,激发学生的学习兴趣,培养创新能力,将有助于构建立体知识体系。沉浸三式的使用,让学生的课堂学习由漫不经心的观光式学习转化为学生掌握主导的沉浸式学习,真正实现了学生的课堂主体和中心地位。同时,案例沉浸式促进了生化基础知识与临床疾病的融合,培养学生分析、推理和主动思考的能力;历史沉浸式以历史为主线进行内容重构,培养学生主动思考和科研创新的能力;分生沉浸式以一个分子的一生为主线进行内容重构,帮助学生构建立体、系统的知识体系。课程进行中,我们对学生的学习行为和学习成果进行了分析,对课程中的多次任务及考试试题进行分类分析,观察学生在基础识记性题目、逻辑推理类题目、理解分析类题目和应用创新类题目的得分。结果发现,与传统教学的学生相比,在沉浸式教学下学生的学习态度和基础知识掌握虽没有显著提升,但是,学习兴趣与积极性得到明显增强,同时,逻辑推理、理解分析、应用创新等能力均得到了大幅提升。可见,沉浸三式对学生能力的培养,实现岗位胜任力具有重要效用。在未来的生物化学教学中,我们将进一步完善改进,将沉浸式教学的优势充分发挥。

参考文献

[1]高云,缪明永,卢小玲,等.临床相关知识在医学专业生物化学教学中的运用.西北医学教育,2013,21(5):954-956

[2]黄晓,巫光宏,罗娜,等.本科《生物化学》课堂教学实战经验总结.广东化工,2021,48(9):272-273

[3]央青.美国犹他州汉语沉浸式教学模式——以UintahElementarySchool为例.民族教育研究,2016,27(4):130-136

[4]韦莉萍.加拿大沉浸式教学法对我国高校双语教学的启示.教育与职业,2015(2):162-163

生物科学理论范文第2篇

关键词:初中物理新课标学困生转化

一、初中物理学困生的存在是一种普遍的现象。

但新课标实施以来初中物理学困生的转化工作也相应地被提到正常的教育教学工作的日常事务中来。笔者根据自己在初中物理学困生转化工作所取得的经验,结合初中物理新课标的特点,对初中物理学困生的内部成因和转化策略进行阐述。

一个初中物理学困生的形成的原因是复杂的,但总体上说有外部原因与内部原因。事实上,在形成学业不良的过程中有些因素可以单独起作用,也可交互作用。大多数学生的学业不良是由于各种不良因素交织在一起而形成的。[1]在这些因素中,由于学生个人的内部因素造成的成分也比较复杂。笔者现主要从初中物理学困生(学业不良的学生)形成的个人因素特点出发,谈谈初中物理学因生的内部成因:

(一)畏惧困难

根据笔者与所结对的初中物理学困生共同分析寻找学业不良形成的原因和时间时发现,许多初三的学困生是在刚入初二时对初中物理畏惧困难的情绪造成的。从初中物理新课标安排顺序来看,虽然义务教育初级中学课本是在原有教材基础上的一大飞跃性的大进步(首先体现出来的是合科教学,打破了传统的初中分科教学的很多弊端,减少学科界限),但是因为学科的特点而造成学生学习上的困难也是显而易见的。从教材的编排上看,初中二年级的学生所学习的是介绍性的有关物质结构的内容。这些内容一般仅要求学生对所教内容的认识、了解,学生在学习过程中一般都结合自然界中的实物(或模型)进行学习,以学生的形象思维作载体进行学习;进入初中三年级后,学生首先学习的是具体较高抽象思维的物理学抽象概念的内容,如密度、功、能、压强等。一向习惯于利用形象思维方式的初中学生,突然要求其具有抽象思维,学生在这一过程中对抽象思维能力的培养需要一个过程。当然在这一过程中不可避免地出现了一些学生对这一转变过程的畏难情绪。

由于学习内容的改变,必然造成学习方法、策略的改变。但是,并不是所有的学生都能够很顺利地得以转变。学习方法、策略一般容易转变的人是很容易适应不同学习环境和方法的人。在我们的学生当中,并不是所有学生都能做到这一点。所以,做不到这一点的学生,容易成为学困生。

(二)不喜欢动手

在学习过程中,我们发现不同的学生的兴趣爱好是不同的,有些学生喜欢具有一定思辩的问题,有些学生则喜欢动手做实验。虽然说并不是所有的初中物理学困生都不喜欢做实验,但确实存在一部分学困生与不喜欢动手做实验有关。这些学生往往在上实验课时是旁观者,只看同组的其他同学动手做实验,而自己则对动手实验毫无兴趣。

学好初中物理,学会观察和实验是最关键和最基础的技能,这里的实验不但是教师在探究课上要求学生动手完成的实验,而且要求在学习过程中怎样懂得发现问题、用实验解决问题。这就是科学实验探究性学习的一种重要方式。

(三)独立学习能力差

我在教学就有遇到这样的学生,自己不能独立完成作业。这样的学生一般对自己不自信。初中物理的学困生一般就是这一类学生。独立完成一项作业,独立完成一个问题的思考、独立完成一个实验、独立回答一个完整的问题。这些对于一名学困生是非常重要的。但是学困生缺少的就是这些方面的能力,他们在学习上总想有所依靠,完成作业时必须与同学坐在一起;即使偶尔能解决一个问题,但总是不自信,寻找答案或与别人核对答案后才放心;有一个问题时不敢单独提出来,原因是怕教师和同学笑话他

(四)没有养成良好的习惯

对于一名初中物理的学困生来说,由于长期的得不到在学习上的成功的体验,学困生久而久之形成了一些不良的学习习惯:

(1)缺乏思维的毅力。

思维的品质中表明思维具有一定的持久性。在思考一个初中物理的问题时,思维的持久性品质对解决这一问题起到非常重要的作用,学困生面对初中物理的一些问题普遍存在缺乏思维毅力的倾向,遇到一些稍有一定难度、需要学生认真仔细地去思考的问题时,学困生往往显得很不耐烦。这样,很多学困生在面对一些稍难的题目或作业时,不是选择怎样去面对困难迎面而上,而是选择了逃避,有些学生为了应付教师的作业检查而去抄袭其他学生的作业。

(2)缺乏注意的稳定性。

心理学表明,每个人都具有一定限度的注意的稳定性,但是不同的人注意稳定性的强度是不同的,注意的稳定性也并不是一个人的先天性功能,它是一个人后天在学习生活中"锻炼"的结果与产物。由于学困生在对待初中物理的一些问题时显得明显的不足,学困生对待一些问题总是"心不在焉"。

(3)学习态度差。

由于学生在学习时遇到一些问题,并然会引起一系列的学习不良反应:学生面对一些问题觉得无所谓、解题时马虎、书写潦草、作业完成后不检查等毛病。

(五)缺少好的学习方法与策略

学习需要一定的方法与策略。它是追求学习效率的学习者在特定的学习情景中为了达到学习目标,在认知加工过程中所运用的学习方法技能,以及对整个学习活动及其有关因素进行监控的方法技能。[2]显然初中物理的学困生普遍缺乏的是无认知的能力、即对自己的学习过程进行监控的能力。比如说面对初中物理的整个学习过程,学困生对学习计划、学习过程的监视、学习过程的调节等很缺乏。

另外,由于初二学生所学习的初中物理的学习内容是物质的基本性质等的介绍性内容,一般的初中物理学困生的学习由于没有很好的学习方法作指导,学习过程中只重视对一些物理的概念、名称的"死记硬背",并把这种"死记硬背"带到以后的学习中来。针对初二学生来说,生物理学上的一个个概念与名称仅是文字上的抽象概念,没有实际上的现实意义。故此,学生根本无法理解这些内容,当然记忆的长久性就无从谈起了。

二、初中物理学困生的转化策略

针对上述对初中物理学困生的内部成因的分析,笔者采用了如下的转化策略:

(一)形象开路,抽象渐入:

从初中学生生理上的发展特点分析,初中学生已经逐渐地从形象思维转变为抽象思维了,这种转化对学生来说是一大难点。但是在转化初中物理的学困生时,我们要重视形象思维的训练,并作为学生学习初中物理概念、规律的基础,而抽象思维可在形象思维基础之上得以培训与提高。比如在学习光的折射规律时,学生对"当光从空气斜射入水或其他透明物质时,折射角小于入射角;当光从水或其他透明物质斜射入空气时,折射角大于入射角"的理解时,学生对于这一规律的理解是非常表面化的、是对文字面上的一种感性认识,根本不能够理解这句话的真正含义。但是,若教师引导学生以形象化的思维理解这一规律,则这一规律显得简单:如可以做实验,不管是光从空气斜射入水中时还是光从水中斜射入空气中,在水的这个角(不管是入射角还是折射角)总是小于空气中的角。通过实验后,让学生形成固定的有关这一实验概念的"表象",则学生在以后应用到这一问题时自然而然地会想起这一表象。再比如,当学生在学习"物体的沉浮条件时,对于物体的上浮、下沉还是漂浮是液体与物体(实心)密度的大小比较有关",学生很容易混淆这一关系。所以,对于这问题,单纯从文字或公式的理解是很难的,学生不容易记忆。但当我们从形象的具体例子出发,从类比的方法出发,这一问题就可得以解决:如我们可以举例子进行类比,把木块浸没于水中,木块上浮,(木块的密度小于水的密度,故可类推)其他同理。从上述的举例分析可以看出,以形象的思维去表达抽象的概念规律,是初中学生以形象思维为基础培养抽象思维的一种重要的方法。

(二)勤奋作基,方法作径:

一类初中物理学困生是因为学生本身不努力、不勤奋造成的,而有些学困生很勤奋地学习,但是缺乏必要的方法而使自己成为了学困生。要想学好初中物理这门学科,勤奋与方法这两者是不可或缺的内容之一。对于勤奋,不管是从一些伟人的事迹中还是从学生身边的例子中都能说明问题,这里勿需多言。但是一般的学困生都缺乏科学的学习方法的指导,下面简述之:

1.加强学习的计划性。

有计划的学习活动可以促使学习目标的实现,可以磨练学习意志,有利于良好学习习惯的养成,也可以提高时间利用率。[3]指导学生制定一个科学的学习计划是非常必要的。

2.加强预习、复习活动。

3.培养学生对学习过程的元认知能力。

不管是对整个学习过程还是解决某一个简单问题的,都需要学生具有一定的元认知能力。简而言之,元认知即是对认知的认知和监控。也就是说,人可以跳出一个系统来观察这个系统并且控制这一系统,通过元认知了解、检验、评估和调整自己的认知活动。[4]在经过一段时间的学习后,学生若懂得怎样去反思、总结前一段时间的学习过程中的经验,为下一阶段的学习做好打算或吸取教训,学生在下一阶段的学习效率和水平将会有所提高。同样,解决了一道初中物理的一个问题后,学生若懂得怎样去反思、回顾这个问题的解法、思路及自己解题时存在的优势与不足,这样,学生的解决问题的水平将不断提高。

4.加强学困生解决问题的方法。

一般说来,解决初中物理的问题有如下的步骤与方法:

(1)全面理清问题,通过较快速地浏览整个问题的整体框架大致了解问题的状况,但一定要明确提出了什么问题,这个问题提出的目的性是什么。

(2)以问题为思维的中心,以问题中已知各数量关系为主线,理清已知问题中的各数量关系与问题存在的关系是什么。

(3)从整体上把握问题的类型,大致以什么方式回答。

(4)初中物理的问题一般很注重思维过程。面对一个问题,我们首先通过明确问题的目的性,通过逆向推理的方法进行解题。如下题的解题思路:

题目:一金属块挂在弹簧秤的下端,弹簧秤的读数是0.89牛;若把金属块全部浸入水中,弹簧秤读数是0.79牛,求金属块的密度。

解题思路:

①解决什么问题:求金属块的密度ρ金;

②逆向思维:求金属块的密度,只要求金属块的质量与体积;求金属块的质量,只要知道金属块受到的重力(已知在空气中金属块的重量);求金属块的体积,则只要求金属块浸没于水中排开水的体积;求金属块排开水的体积,则只要求金属块浸没于水中受到的浮力(浮力的大小可以用弹簧秤的两次示数差表示)。

(5)克服思维定势。从总体上说,初中物理中哪一部分问题应用哪一知识去解答,在学生的思维中已经有一定的思维定势,思维定势对于一般的解题是有好处的,它可以减少学生思维的时间;但是思维定势也往往把学生的思维带入了解题的"死胡同",故在解决一些问题时,有时要充分地利用思维定势的优势,有时则要克服。如上题中,求体积时并不能利用密度与质量的关系进行求解,则需要打破思维定势,利用浮力的知识。

(6)选择多种方法进行解题。每一个题目的解题都有一定的方法,且思路不同,这可以锻炼学生的发散性思维。培养学生形成这样的一种习惯:当以自己的方法完成解题时,让学生从不同的角度去思考另外的解题方法。

(7)解决一定问题之后,培养学生总结问题,反思问题的能力。

(三)化整为零,化零为整

学习初中物理的过程就是"化整为零,化零为整"的过程。当学困生面对初中物理内容时,要把整体上的知识体系各个击破,从细处学习知识内容。但是,毕竟初中物理是一门有系统性的学科,这一学科中各知识点间存在必然的联系,通过理顺这一关系,学生对知识形成网络化。

(四)重视解疑,更重激疑

对于初中物理的学困生,学生的很多问题没有得到解决。帮助学生解决一些问题是进行学困生转化的一项重要的工作。在平时的学困生转化过程中,我们发现学困生的一个共同特点是:一般的学困生很难提出问题。爱因斯坦说过,提出一个问题比解决一个问题更重要。确实,对于初中物理的学困生,平时的他(她)们很少把时间投入到思考一些初中物理的学习问题上来,即使有些学生平时有思考学科上的一些问题,但由于其在思考的过程中,他(她)们所获得的失败的消极体验机会比积极体验机会多得多,所以这给他(她)们下一次积极主动地去学习形成一定的障碍,教师在转化过程中的一个重要工作是如何创设问题情境,使学生产生问题。有问题的学生往往是对某一个方面经过认真思考的。通过点拨后引导学生思考解决问题,并在思考解决问题的过程中产生新的问题,使学生产生兴趣。

(五)倾情投入,师生共感:

学困生的转化工作是一个教育系统工程,转化过程是一长期的过程。这过程需要教师投入大量的精力。转化一名学困生,笔者认为教师在情感的投入方面必须做到如下几点:

1.取得学困生的信任与支持。

学困生的转化工作并不仅仅是学业上的指导工作,更是对学生心理上支持、理解、信任工作。我们不得不承认:由于受到社会、学校、家长等的升学压力的影响,教师在教育教学过程中总是对学业优秀生比较重视,而对学困生则忽视了。长期受到这一意识的影响,学困生与教师之间形成了一条不可逾越的心理鸿沟。学困生的心理相对教师来说是封闭的。这时要转化这名学困生,首先教师的一切行为必须取得学困生的信任与支持。

2.相信学困生具有可发展的潜力。

笔者认为,"真诚地相信学困生是可以转化的"这一点是转化初中物理学困生的工作的基础。从人的发展与学困生的形成原因等角度分析,这一点是不难理解的。超级秘书网

3.与学困生建立类似于"互惠互利"的"平等关系"。

转化学困生时,教师不要以高姿态对待学困生,不要以为对学困生学业上的帮扶工作是对学困生的"施舍"。教师要以平等的身份加入学困生的转化工作中来,使学困生感觉到教师与学困生的关系是一种"互惠互利"的"平等关系":教师可以从学困生身上学到很多知识,同理,学困生也达到了被转化的目的。

4.教师是学困生学业上的指导者,又是精神上的支持者。

任何一个学困生,其总是回避着自己在学业上的后进,总是以自我封闭的形态出现在教师的面前。其实学困生在班集体中的心理压力是无形的,也是非常大的。教师在这里的角色并不仅仅是对学困生进行学业上的指导工作,更重要的是给学困生以精神上的支持,使学困生走出"自卑、自闭"的心理。

总之,初中物理学困生的转化工作是一艰巨而富有挑战意义的工作,它需要更多的教师以更多的精力投入到这项工作来。笔者相信,一名好教师不但能使优秀生更加优秀,同样能使后进生不再后进了。

参与文献:

[1]刘晓明傅贵芳编著中学生学业不良的评价与干预长春:东北师范大学出版社1999年10月21页

生物科学理论范文第3篇

生物教学提问首先要有明确的目的.课堂教学中教师的提问要始终围绕本节课的教学目标来进行.在课堂上可以提问的地方很多,但要注意适时适量,提出来的问题应有价值.因此,教师要对课堂教学提问进行精心的设计,挑选那些最主要、最关键的问题来问.在考虑选择什么问题的同时还要考虑到目的性,即通过这个问题可以让学生想到哪些知识?加深理解哪些知识?例如,在讲“多倍体育种”时,教师介绍秋水仙素法的方法和原理之后,及时追问:为什么要处理萌发的种子或幼苗,成熟的植株可不可以?从而再次把学生的注意力吸引到这种方法的原理上,使学生对多倍体育种原理有一个更加深刻的理解和认识.

2.生物教学提问要有层次性

生物教学提问策略要注重层次性,由“表”及“里”.通过教师设计的问题组把学生引入思维的深处,同时,教师提出的问题应前后关联,层层深入,所以教师设置的问题要循循善诱,这些问题能帮助学生拾阶而上.例如,在讲“质膜的结构模型”时,教师可提出一系列“层递式”的问题:

(1)溶于脂质的物质容易通过质膜,不溶于脂质的物质不能通过质膜,这一事实可以推测质膜的组成成分中含有什么物质?

(2)将红细胞膜上的磷脂在空气—水界面上展开,这片磷脂层的面积是原来红细胞膜表面积的2倍,据此得出什么结论?为什么?

(3)质膜易被蛋白酶水解,说明质膜的组成成分中有什么物质?

(4)质膜中只有蛋白质和脂质这两种物质吗?(5)组成质膜的三种物质是如何排布的?

(6)质膜会流动吗?通过以上问题组的设计,学生就能充分理解质膜的成分及流动性,并且帮助学生建立一种质膜的动态模型,犹如在观看质膜结构模型的动画,栩栩如生.

3.生物教学提问要有科学性

(1)联系生活实际提问生物科学来自于实践,应用于实践.教师在课堂教学提问时一定要做到理论和实践相结合,让学生在理解生物学理论时有思考的落脚点.

(2)利用生物科学史提问生物科学的发展经过了一段漫长的历史过程,生物科学史记载的是科学家们不畏艰难困苦、奋力攀登科学高峰的历史.在这些科学史中,蕴涵了很多令人欣喜的成功,也有很多令人遗憾的失败.利用生物科学史作为课堂教学提问的背景材料,不仅能让学生获得新知识,还可以让学生了解生物科学严谨的研究方法.另外,可让学生学习科学家不怕困难、不畏艰辛、持之以恒的探索精神,从而促进他们养成质疑、求实、创新和勇于实践的科学精神和科学态度.

(3)根据知识点和概念提问对于生物科学的基本原理和概念等基础知识,在课堂教学提问中,教师可以通过归纳和总结,用知识点和概念的形式直接进行提问.例如,在讲“分离定律”时,教师可利用课程中的知识点和概念,直接提问:什么是性状?什么是相对性状?什么是显性性状?什么是隐性性状?什么是性状分离?什么是等位基因?什么是表现型?什么是基因型?让学生直接理解提问中的知识点和概念.这样,既落实了和遗传定律相关的很多基本原理和概念,又帮助学生对概念的内涵和外延进行比较,更好地理解分离定律的实质和内容.

(4)借助知识的逻辑性提问布鲁纳认为,认知是一个过程,而不是一个结果,教一个人某门科学,不是要他把一些结果记下来,而是要教如何他参与到建立知识的过程中来.根据布鲁纳的认知理论,就要求教师在讲授生物科学知识时,重点是帮助学生建立生物科学知识体系,而不是仅仅给学生一个结果.例如,在讲“无籽西瓜的形成”时,教师可设计这样一组提问:培育无籽西瓜的方法是怎样的?正常雌花未授粉为什么不能结果?引导学生分析来源和作用,然后提出矛盾.无籽西瓜没有种子,为什么能形成果实?这组问题逐个深入,步步提高,逻辑性较强,教师可将学生已有的知识点作为启发点,借助前后提问之间的逻辑关系,引导学生的思维活动向纵深处发展.实践证明,如果教师在课堂教学中借助知识的逻辑性提问,对于帮助学生理解生物学原理和概念,形成生物科学知识体系是非常重要的.

(5)利用对比进行提问对于生物学中一些相近或相似的原理和概念,教师在课堂教学提问中可以通过建立图形、表格、概念图等进行对比,加深学生对相关概念的认识.例如,在讲“细胞呼吸”时,教师可从两种呼吸方式的反应条件、产物、分解程度、能量释放及对生物体生命活动的意义进行列表比较,从而帮助学生清楚地了解需氧呼吸和厌氧呼吸的异同点,认同两种细胞呼吸方式是相辅相成,共同为生命活动提供能量的.

4.生物教学提问要难易适度,因材施问

学生的生物科学素养,以及理解、接受生物学知识的能力各不相同,这就要求教师在课堂教学提问的过程中,一定要注意提问的难易程度,做到因材施问.例如,在讲授基因重组的时候,如果直接问“基因重组发生在什么时期?”对于有些学生可能一下子反应不过来,他们不知道该从哪个方向去思考和回答,很迷茫.如果换成以下问题:“哪些行为会导致基因重组?他们发生在什么时期?”这样,学生就可以很快回答出来.

5.生物教学提问要有趣味性

生物科学理论范文第4篇

一、神灵主义的医学模式

人类文明出现的最初阶段,生产力水平极端低下,人们认识水平有限,对生老病死的现象无法找出合理的解释。这个时期的人们将人类的健康、疾病、死亡都看做是受神灵支配的,人对此无能为力,健康是神灵的赐予,疾病与死亡是神灵的惩罚,只有通过对神灵的祈求才能实现健康的保护和疾病的治疗。处在这一时期的人们,对疾病的解释和治疗都具有浓厚的迷信色彩,这一历史时期医疗活动由神职和巫卜人员兼任,并没有独立的医学行业。

二、朴素自然哲学医学模式

伴随着的生产力的发展和文明的进步,人们开始摆脱神灵迷信的束缚,对自然进行哲学思考,逐渐有了朴素的辩证整体医学观念。这一时期的人们将人类健康疾病与自然现象联系起来观察与思考,把哲学理论作为基础的思维方式来解释健康与疾病,形成了朴素自然哲学的医学模式。古代中国的五行、阴阳、精气学说,古代希腊希波克拉底体液说都是在此时期产生,这些学说都是对神灵医学观的否定,哲学思考逐渐代替了神学的解释,哲学家医生代替了神卜人员。由于生产力水平和人们的认识水平有限,使得人们对自然现象和人的生老病死无法做出更加科学的解释,但是,它为以后医学走上科学道路奠定了一定的基础。

三、唯心的僧侣医学模式

基督教在中世纪迅速发展,为抵抗其它哲学和教派发展,上层传教士汲取希腊哲学中对其有利部分与基督教原有信仰建立成新的教义体系。英、法、意等大学在此期间设置了一系列为神学服务,为神学理论及宗教信仰辩护的学科,所讲授理论称为经院哲学。黑暗的中世纪,自然科学知识被扭曲,成为了神学的附属物,古希腊与古罗马的科学与文明被淹没。这个时期的医学停滞不前,甚至退步。受当时奥古斯丁原罪思想的影响,人们依赖祈祷进行疾病的治疗与健康的保护,带有不切实际色彩的点金术与返老还童灵药盛行,此时的医生为僧侣医生,有限的医学知识沦为了僧侣医学模式的牺牲品。

四、生物医学模式

欧洲文艺复兴运动推动了社会生产力的发展和科学技术的进步,十五世纪下半叶到十八世纪初是自然科学发展的鼎盛时期。哥白尼的日心说,开普勒的天体运行理论以及伽利略所领导的实验科学等较为先进的科学理论,科学的进步动摇了宗教神学的自然观。牛顿力学三大定律的提出实现了近代科学的第一次综合,形成了用力和机械运动解释一切自然现象的形而上学的机械唯物主义自然观。人们用这种机械唯物主义的观点认识生命和疾病,把人体看成是许多零件组成的机器,疾病就是机器出现故障或失灵,可以修补和完善达到健康的目的。随着资本主义的兴起与发展封建权威和宗教神权的统治被彻底推翻,为科学的进步扫清了障碍,自然科学开始迅猛的发展。近代的实验科学,特别是生物科学的巨大进步使得近代医学进入了一个新的历史时期。这个时期的人们对生命现象及其变化以及健康与疾病的认识,是建立在对生物科学认识基础上的,认为疾病从发生、发展、到治疗、预防,都是有生物学因素决定的。每种疾病都有特定的生物或理化因素,会给人的细胞、组织和器官带来形态或化学上的变化,且这种变化是可测量的。这种建立在生物科学的基础上,强调生物科学对医学的作用的医学模式称之为生物医学模式,它认为疾病的生成是因为细胞的病变引起组织结构病变进而导致器官功能障碍。建立在机械唯物主义基础上的生物医学模式极大地推动了医学的进步与发展,一直沿用至今。

五、生物———心理———社会医学模式

1755年,康德运用辩证的观点,概括综合当时的天文学、力学成就提出了太阳系起源的“星云假说”(《自然通史和天体论》)。恩格斯敏锐地预见到自然科学必然要回归到辩证思维,他在《自然辩证法》和《反杜林论》中首次提出了辩证唯物主义自然观“新的自然观的基本点是完备了:一切僵硬的东西融化了,一切固定的东西消散了,一切被当作永久存在的特殊东西变成了转瞬即逝的东西,整个自然界被证明是在永恒的流动和循环中运动着。”i20世纪20年代奥地利生物学家贝塔朗菲提出了“机体系统理论”指出“系统的定义可以确定为处于一定的相互关系中并于环境发生关系的各种组成部分(要素)的总体。”ii这个理论指出,对生命现象的解释应是整体性、系统性把握的,不应将其视为单纯的机械运动。美国罗切斯特大学精神病学和内科学教授恩格尔同样看到了生物医学模式的缺陷,于1977年在《科学》杂志上发表文章《需要新的医学模型:对生物医学的挑战》,文章提出了一种新的医学模式应替代已经不适应医学发展要求的生物医学模式,即生物———心理———社会医学模式,他指出:生物———心理———社会医学模式的基本内容是“立足于生物、心理、社会等各种学科,认识疾病和健康不仅应从生物学的变量来测定,而且必须结合心理、社会因素来说明,并且必须从生物的、心理的、社会的水平采取综合措施防治疾病、增进健康”iii。生物———心理———社会医学模式从生物学、心理学、社会学三个方面综合考察人的健康和疾病问题,它认为人的心理与生理、精神与躯体、机体内外环境是一个完整的统一体,心理和社会因素也是影响疾病发生发展的重要因素。

六、结语

生物科学理论范文第5篇

1网络科学的内涵

网络科学有不同领域的定义,总体来说可以认为,网络科学是研究各类实际系统复杂网络结构共同规律的新兴交叉科学,研究内容涉及网络结构及其性质、网络结构与功能之间的映射关系以及网络动力学行为和预测,并对网络的设计与控制提供可行的方法。网络科学的研究对象包括物理网络、信息网络、生物网络、认知网络与社会网络等。例如,自然界中存在新陈代谢网络、蛋白质作用网络、神经网络、生态网络等多个层次的生物网络,物理世界中存在人造的电力网络、城市交通网络、航空网络、计算机网络等基础设施类型的技术网络,人类社会中有商业经济网络、人际关系网络、恐怖组织网络等各类社会网络,同时万维网、科学引文网络、语言网络等又构成了新型的信息网络。另外,上述各类网络相互交叠渗透又会形成混杂网络。例如,在线社会网络是社会网络与计算机网络融合而成,物联网是物联网络与计算机网络融合而成,移动互联网作为新型计算机网络,既是人类社交活动的主要平台,也是地理位置等物理环境信息的感知工具;网络中心作战和基于信息系统的体系作战涵盖了信息空间、物理空间以及人的认知空间和社会关系与行动空间;生物网络则涉及基因、细胞到人脑等机体多个层次,纳米尺寸的量子世界更是呈现超大规模粒子之间的复杂相互作用。

2网络科学与其他学科的交叉

网络科学是基于数学和系统科学,结合物理学、复杂性科学、非线性科学、计算机与信息科学、生物科学、管理科学、社会科学发展起来的新兴交叉学科,同时网络科学亦日益渗透到各个学科,并对各学科发展产生了深远的影响。它不仅为人们提供了认识真实世界的复杂性的全新的科学知识和视角,而且将成为改造客观世界的新的方法论和有力武器。信息科学领域,网络科学用于分析通信网络等拓扑结构,对通信网络结构与通信协议的设计具有巨大的指导意义;社会科学领域,网络科学被应用于刻画和分析人类社会关系,产生了社会网络分析,根本上改变了社会学家以往依赖于采样调查的研究方式;生命科学领域,基因相互作用网、蛋白质相互作用网、基因与蛋白质相互作用网、代谢网络和神经网络等都得到了分析,尤其是传染病在人群传播的研究中,对人际接触网络的分析又将生物科学和社会网络分析结合起来;认知科学领域,大脑网络分析在语言学中得到大量应用,人们相继在各种不同语言的单词的共现性网络结构、语义网络结构和语法关系网络结构中发现了极其相似的结构特征,并且逐渐将网络分析拓展到认知、记忆和语言学等诸多方面;军事领域,近年来提出的大多数战争理论,如网络中心战、空海一体战等,均建立在网络科学理论基础上,对网络科学提出了重大需求。而在物理学领域,研究复杂网络的主要原因是理解网络拓扑结构对物理过程的影响,如网络拓扑性质对典型物理过程———渗流与疾病传播的影响。

二网络科学对数学的挑战

1数学是研究数和形的科学数学是研究

现实世界中数量关系和空间形式的科学。简单说,是研究数和形的科学,其中数的研究又可以分为连续数学和离散数学。综观世界的文明史,人类经济发展到每一个阶段,都会产生代表这阶段的科学技术,并存在一种通用的学科表达语言,以客观地描述人们所了解的一些发展规律。在工业经济时代,微积分的产生使得有关能量转换、动力、瞬时速度、运动加速度、运动与运动之间的关系等问题可以在分析数学这个层面上统一认识,许多有关工业经济中的问题可以通过解方程的方法进行求解,因此可以说微积分是工业革命时期的学科表达的数学语言基础。而离散数学则是计算机革命时期学科表达的数学语言基础,因为人们使用离散数学里面的概念和表示方法,来研究和描述计算机科学下所有分支的对象和问题,如电脑运算、编程语言、密码学、自动定理证明和软件开发等。那么,当今各类现实系统的复杂性需要什么样的数学语言来刻画和描述?可以说,网络科学是其中一种最有可能的选择。究竟什么样的网络的拓扑结构能够描述真实的系统呢?如前所述,人们的认识经过了3个阶段:19世纪40年代,人们认为系统各因素之间的关系可以用一些规则的结构表示出来,即规则网络;20世纪60年代随机图理论诞生后,人们认为系统中个体之间的关系是随机的,可以统一用一个概率来表达,即随机网络;世纪之交,人们进一步发现,很多真实的网络既不是规则网络,也不是随机网络,而是具有与前两者皆不同的统计特征的网络,被称为复杂网络。当然,复杂网络目前并没有严格的定义,但大致上包含以下几层意思:首先,它是大量真实复杂系统的拓扑抽象,具有大量的节点和复杂的连接,网络的拓扑不同于规则网络或随机网络;其次,复杂网络之上的动力学特征显著不同于规则网络或随机网络之上的动力学特征,无法用规则网络或随机网络两种理论来解释。由于复杂网络是大量复杂系统的拓扑抽象,因此对它的研究被认为有助于理解“复杂系统之所以复杂”这一至关重要的问题。但十余年已过去,尽管网络科学在各个领域的应用飞速发展,但理论本身的发展却停滞不前,亟待突破。

2如果我是欧拉,如何思考大数据

如果我是欧拉,我会再次用几何的思想来考虑当今世界各类系统的复杂性,下面以大数据分析为例进行阐述。数据是信息的载体,那么数据内蕴信息的本质是什么?几乎在网络科学进入第2个阶段的同时,通信的数学理论取得了突破,香农1948年发表了《通信的数学理论》,奠定了现代信息论的基础,解决了数据如何完整高效地传输的问题。传统的数据处理理论基于捕获、传输、存储和计算所有的数据,这一理念遍及过去所有的计算、通讯、数据获取与分析等研究工作。但时间到了21世纪,人类已经进入大数据时代,数据生成的速度远远超过能够及时捕获并存储的速度;数据积累的数量远远超过有效传输并集中管理的数量;数据携带的信息远远超过能够有效识别和提取的能力。在大数据时代背景下,美国AT&TShannon实验室2010年2月指出:迫切需要发展符合“只取所需”原则的数据处理新理论。而建立新的数据处理理论前提是必须给出大数据内蕴信息的数学表达原理。大数据分析之所以难,一是因为数据量巨大,但更本质的问题还在于数据内蕴信息的复杂性。数据属性之间关联,相互影响,彼此耦合,形成了错综复杂的关系,使得人们面对大数据一片茫然,无处下手。如果把我们自己置于数据属性空间中看这些复杂关系,就会理解到:数据属性间的复杂关系,从数学的角度可抽象为高维空间中复杂的几何结构,而且,我们的研究结果表明,数据之间的关系往往发生在高维属性空间中低维子空间上,这与高维空间中数据显著的稀疏特性是内在一致的,这就使得这种关联关系本质上呈现出高维空间不同子空间的聚集特性,其计算非常困难。高维空间中几何结构的拓扑识别是指利用拓扑学的方法分析高维空间中的几何结构,寻找刻画几何结构的拓扑不变量,从而发现大数据复杂信息本质结构的过程,因此大数据分析问题本质上可归结为不同子空间数据几何结构的拓扑识别问题,即在数字的世界里寻找有价值的形状,从而达到数与形的统一认识。这一观点与当年欧拉解决七桥问题的思路有异曲同工之妙,但难度却大了许多。首先,大数据复杂性信息表达的维数达到成千上万维,需要高维拓扑理论而不再是欧拉当年的一维拓扑;其次,从计算角度分析,现在的网络,其节点规模动则成千万上十亿,不再是欧拉当年可数的几个节点,需要基于高性能的计算平台才能实现大规模网络规律的发现。2012年11月16日,《自然》杂志的科学报告栏目报道了德米特里-克里欧科夫教授的一项研究结果:宇宙膨胀与大脑成长相似,一些尚未发现的基础规律可能支配着多种或大或小的系统,从脑细胞之间的电信号传递,到社交网络的扩张,甚至是宇宙的膨胀。这一结果正是由加州圣地亚哥超算中心大数据项目组取得的。

3网络科学的数学挑战

友情链接