首页 > 文章中心 > 边坡工程论文

边坡工程论文

边坡工程论文

边坡工程论文范文第1篇

1.1边坡稳定性的影响因素①地质构造。地质构造因素主要是指边坡地段的褶皱形态、岩层产状、断层和节理裂隙的发育程度以及新构造运动的特点等。通常在区域构造复杂、褶皱强烈、断层众多、岩体裂隙发育、新构造运动比较活跃的地区,往往岩体破碎、沟谷深切,较大规模的崩塌、滑坡极易发生。②岩体结构。不同结构的岩体,物理力学性质差别很大,边坡变形破坏的性质也不同。③风化作用。边坡岩体,长期暴露在地表,受到水文、气象变化的影响,逐渐产生物理和化学风化作用,出现各种不良现象。当边坡岩体遭受风化作用后,边坡的稳定性大大降低。④地下水。处于水下的透水边坡将承受水的浮托力的作用,使坡体的有效重力减轻;水流冲刷岩坡,可使坡脚出现临空面,上部岩体失去支撑,导致边坡失稳。⑤边坡形态。边坡形态通常指边坡的高度、坡度、平面形状及周边的临空条件等。一般来说,坡高越大,坡度越陡,对稳定性越不利。⑥其他作用。此外,人类的工程作用、气象条件、植被生长状况等因素也会影响边坡的稳定性。

1.2边坡工程稳定性分析方法

1.2.1边坡极限平衡法。极限平衡法是根据边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)分析边坡各种破坏模式下的受力状态,以及利用边坡滑体上的抗滑力和下滑力之间的关系来评价边坡的稳定性。极限平衡法是边坡稳定分析计算的主要方法,也是工程实践中应用最多的一种方法。

1.2.2边坡可靠性分析法。边坡工程是以岩土体为工程材料,以岩土体天然结构为工程结构,或以堆置物为工程材料,以人工控制结构为工程结构的特殊构筑物。这些构筑物都程度不同地存在组成和结构上的不均匀性,天然边坡尤为突出,因为构成边坡的地质体经受长期的多循环的地质作用,而且作用强度不一,且又错综复杂,致使它们的工程地质性质差异很大。现阶段边坡可靠度分析的常用方法有蒙特卡洛模拟法,可靠指标法,统计矩法以及随机有限元法。

2边坡工程处治技术

2.1抗滑桩技术边坡处置工程中的抗滑桩是通过桩身将上部承受的坡体推力传给桩下部的侧向土体或岩体,依靠桩下部的侧向阻力来承担边坡的下推力,从而使得边坡保持平衡或稳定。抗滑桩与一般桩基类似,但主要承受的是水平荷载。钢筋混凝土桩是目前边坡处治工程广泛采用的桩材,桩断面刚度大,抗弯能力高,施工方式多样,其缺点是混凝土抗拉能力有限。抗滑桩施工最常用的方法是就地灌注桩,机械钻孔速度快,桩径可大可小,适用于各种地质条件;但对地形较陡的边坡工程,机械进入和架设困难较大。钻孔时的水对边坡的稳定也有影响。人工成孔的特点是方便、简单、经济,但速度慢,劳动强度高,遇不良地层(如流沙)时处理相当困难。另外,桩径较小时人工作业面困难。

2.2注浆加固技术注浆加固技术是用液压或气压把能凝固的浆液注入物体的裂缝或孔隙,以改变注浆对象的物理力学性质,从而满足各类土木建筑工程的需要;注浆加固技术的成败与工程问题、地质问题、注浆材料和压浆技术等直接相关,如果忽略其中的任何一个环节,都可能造成注浆工程的失败。工程问题、地质特征是灌浆取得成功的前提,注浆材料和压浆技术是注浆加固技术的关键。

2.3加筋边坡和加筋挡土墙技术加筋土是一种在土中加入加筋材料而形成的复合土。在土中加入加筋材料可以提高土的强度,增强土体的稳定性。因此,凡在土中加入加筋材料而使整个土工系统的力学性能得到改善和提高的土工加固方法均称为土工加筋技术,形成的结构亦称为加筋土结构。和传统支挡结构相比,加筋边坡和加筋挡土墙的特点有:结构新颖、造型美观、技术简单、施工方便、要求较低、节省材料、施工速度快、工期短、造价低廉、效益明显、适应性强、应用广泛等。由于加筋边坡和加筋挡土墙的这些优点,目前其已从公路路堤、路肩发展到应用于其他各种支挡结构和边坡防护。目前已用于处理公路边坡、市政建设、护岸工程、铁道工程路基边坡、工民建配套的支挡及边坡工程、防洪堤、林区工程、工业尾矿坝、渣场、料场、货场等;甚至还用于危险品或危险建筑的围堰设施等。

2.4锚固技术岩土锚固技术是把一种受拉杆件埋入地层中,以提高岩土自身的强度和自稳能力的一门工程技术。由于这种技术大大减轻结构物的自重,节约了工程材料并确保工程的安全和稳定,具有显著的社会效益和经济效益,因而目前在工程中得到极其广泛的应用。锚杆在边坡加固中通常与其他只当结构联合使用,例如以下几种情况:①锚杆与钢筋混凝土桩联合使用,构成钢筋混凝土排桩式锚杆挡墙。排桩可以是钻孔桩、挖孔桩或预置桩;锚杆可以是预应力或非预应力锚杆,预应力锚杆材料多采用钢绞线(预应力锚索)、四级精轧螺纹钢(预应力锚杆)。锚杆的数量根据边坡的高度及推力荷载可采用桩顶单锚点作法和桩身多锚点作法。②锚杆与钢筋混凝土格架联合使用形成钢筋混凝土格架式锚杆挡墙。锚杆锚点设在格架节点上,锚杆可以是预应力锚杆(索)或非预应力锚杆(索)。这种支挡结构主要用于高陡岩石边坡或直立岩石切坡,以阻止岩石边坡因卸荷而失稳。③锚杆与钢筋混凝土板肋联合使用形成钢筋混凝土板肋式锚杆挡墙,这种结构主要用于直立开挖的Ⅲ,Ⅳ类岩石边坡或土质边坡支护,一般采用自上而下的逆作法施工。④锚杆与钢筋混凝土板肋、锚定板联合使用形成锚定板挡墙。这种结构主要用于填方形成的直立土质边坡。

2.5预应力锚索加固技术用高强度、低松驰型钢绞线预应力锚索对滑坡体或崩落体施加一定的预应力,提高它们的刚度,使预应力锚索作用范围的岩石相应挤压,滑动面或岩石裂隙面上摩擦力增大,加强它们的自承能力,可有效地限制岩体的部份变形和位移。

2.6排水工程的设计地表排水工程的设计要求:①填平坑洼、夯实裂缝。坡面产生坑洼和裂缝,往往是滑坡的先兆,也是导致严重滑坡的主要原因。大气降雨、地表水就会汇集在坑洼处或沿着裂缝渗入土层,使土的抗剪强度降低,造成坡体滑动。因此,对坑洼和裂缝应仔细查找,认真夯填。②合理确定截水沟的平面位置。截水沟的平面布置,应尽量顺直,并垂直于径流方向。如遇到山坡有凹地或小沟时,应将凹地填平或与外侧挡土墙相连,内侧与水沟联结,避免水沟内的水流越出或渗入截水沟沟底,导致水沟破坏。应该结合边坡的区域地貌、地形特点,充分利用自然沟谷,在边坡体内外修筑截水沟、平台截水沟、集水沟、排水沟、边沟、急流槽等,形成树杈状、网状排水系统,以迅速引走坡面雨水。

3结语

论文对常用边坡工程的处治措施进行了初步探讨,指出了常用边坡工程处治措施的适用性,然而随着工程建设规模的不断增大,边坡高度增高,复杂性增大,对边坡处治技术的要求也越来越高。可以预见,随着科学技术的发展,边坡处治技术将得到进一步的发展,并逐步趋于完善。

参考文献:

[1]彭小云,张婷,秦龙.高陡边坡稳定性的影响因素分析[J].高陡边坡稳定性的影响因素分析.2002.

[2]赵明阶,何光春等.边坡工程处治技术[M].北京:人民交通出版社.2003.

[3]郭长庆,梁勇旗等.公路边坡处治技术.北京:中国建筑出版社.2007.5.

边坡工程论文范文第2篇

1.1原方案分析

挂网喷播防护和框架锚杆防护(锚杆混凝土框架+混凝土空心块+喷播植草)为两边坡处的原方案。

1.1.1挂网喷播防护

挂网喷播主要应用于土质边坡及沙石土混合型边坡,特别是土质贫瘠的较矮路堑边坡和土石混填的路基边坡,一般不超过1:1.25,常用坡度1:1.5,试验证明:当坡面角为45°时,如果并且在草皮形成之前,对于挂网喷播(平面网)防护来说,一般的挂网植草垫的同土阻滞率约为74%;而挂网植草垫固土阻滞率在坡面角为60°的情况下一般都为0%,这样的情况下,同土作用就已经失去了。所以当边坡坡面角较大时,不宜使用挂网喷播防护。

1.1.2框架锚杆防护

对于锚杆混凝土框架植草防护来说,一般的适用情况如下,包括岩石路堑边坡、以及边坡高度较大、稳定性较差的土质边坡。这样的情况下,非预应力的系统锚杆往往采用于风化破碎的岩石路堑边坡,以及坡体中无不良结构面的情况下;预应力锚索则往往采用于滑动面(或者破坏面)的土质边坡和岩石路堑边坡,以及边坡中存在不良结构面的情况下。

1.2改善方案

1.2.1K58+500边坡

这里考虑到K58+500处风化土质边坡的情况,表1为两种组合防护方案(,这些都是在工程实际情况的实地考察分析的基础上得到的,唯一目的就是要在保证边坡稳定性基础上,还能满足景观观察的需要。

1K58+500和K62+500处边坡防护

1.1原方案分析

挂网喷播防护和框架锚杆防护(锚杆混凝土框架+混凝土空心块+喷播植草)为两边坡处的原方案。

1.1.1挂网喷播防护

挂网喷播主要应用于土质边坡及沙石土混合型边坡,特别是土质贫瘠的较矮路堑边坡和土石混填的路基边坡,一般不超过1:1.25,常用坡度1:1.5,试验证明:当坡面角为45°时,如果并且在草皮形成之前,对于挂网喷播(平面网)防护来说,一般的挂网植草垫的同土阻滞率约为74%;而挂网植草垫固土阻滞率在坡面角为60°的情况下一般都为0%,这样的情况下,同土作用就已经失去了。所以当边坡坡面角较大时,不宜使用挂网喷播防护。

1.1.2框架锚杆防护

对于锚杆混凝土框架植草防护来说,一般的适用情况如下,包括岩石路堑边坡、以及边坡高度较大、稳定性较差的土质边坡。这样的情况下,非预应力的系统锚杆往往采用于风化破碎的岩石路堑边坡,以及坡体中无不良结构面的情况下;预应力锚索则往往采用于滑动面(或者破坏面)的土质边坡和岩石路堑边坡,以及边坡中存在不良结构面的情况下。

1.2改善方案

1.2.1K58+500边坡

这里考虑到K58+500处风化土质边坡的情况,表1为两种组合防护方案(,这些都是在工程实际情况的实地考察分析的基础上得到的,唯一目的就是要在保证边坡稳定性基础上,还能满足景观观察的需要。

对于一级碎落台自然式栽植观赏性来说,这包括有灌木及地被植物黑心菊等;而对于二级碎落台以上自然式来说,则一般应该栽植适应性较强的灌木以及种植迎春、蔷薇等垂枝植物,还有就是,应该对于在碎落台上下部栽植地锦问题进行注意。刺槐、山杨、旱柳、沙棘、杏、云杉弹子松、榆树、刺槐一般往往是挡墙端头进行遮挡裁植的树种。

2其他土质边坡防护分析及改善方案

关于植物防护和工程防护相结合的综合方式,可以根据边坡的具体情况,选用土质边坡的防护形式。

2.1植草防护

为了达到减少坡面土体冲刷,降低雨水,从而保证公路绿化效果的目的,在实际调查基础上,采用的植草防护措施主要是利用配合混凝土预制块或块片石的综合防护技术。对于观赏性要求较高的路段,包括服务区站点附近的公路边坡或者立交区匝道高边坡等特殊要求的边坡,这种植草综合防护尤其适用。

2.2骨架植物防护

作为一种常用的一种综台防护方法的骨架植物防护,主要是利用在框内进行种草、铺草皮的防护,并且一般来说框格是由混凝土、浆砌块(片)石等骨架做成的。

对于护坡植物来说,主要有以下几种:草地早熟禾、紫羊茅、紫花苜蓿、无芒雀麦、冰草、小冠花等等,而花卉为地被菊或当地的野花。花灌本为丁香、连翘等。

对于植生带来说,一般具有、种子肥料不易移动以及播种施肥均匀特点,也就是说种子、肥料、无纺布综合为一体,这样对于运输和现场施工情况,采用捆卷包装更为方便。

3叠拱及窗式防护方案分析及改善方案

3.1叠拱防护

这里采用K107+000~K128+120为例子进行说明,其中,草灌结合普通喷播对于叠拱边坡二层以下(含两层)是原来方案的设计,普通喷播主要对象为灌木为主。但是在实际过程中,叠拱防护则是由于某些地方的地下水过大而冲毁。所以,改善方案则为利用叠拱防护方式而进行的二次修补,这样就可以进行相关的绿化防护工作,达到,稳同边坡、上侧排水功能;同时,爬藤植物应该在叠拱边缘种植,还应该遮挡圬工材料。

3.2窗式防护

植生袋绿化方案原来为窗式护面墙,这里,一根锚杆固定每个植生袋,同时直径为8mm的锚杆的深度为20~30cm,地锦一般在沿窗式护面墙内侧栽植。存在的问题则是视觉效果得到影响,主要是因为窗式护面墙圬工面太大,同时也说明了窗室内填土不够。改善方案则是应该在栽种攀爬植物以遮盖墙体圬工的同时,当然范围是在在修建的窗式护面墙窗室内,还应该对于未施工的窗式护面墙边坡高度不大的情况下,修改成拱式或其他少圬工护面形式。

4其他石质边坡防护分析及改善方案

可以对于稳定的石质边坡不改变原貌,不进行人为防护。另外,最好采用光面爆破技术对于边坡进行开挖施工,这样就能够充分展示岩体的结构、纹理、质感等,个性的自然美也就相应的被展现出来。

边坡工程论文范文第3篇

论文关键词:边坡稳定性,极限平衡法,边坡支护加固

 

1.引言

边坡(斜坡)是人类工程和经济活动中最普遍的地质地貌环境。它是岩石圈的天然地质和工程地质的作用范围内具有露天侧向临空面的地质体,是广泛分布于地表的一种地貌形态。边坡稳定性研究已有一百多年的历史,特别是近几十年来,随着环境保护与减轻自然灾害十年活动在我国的开展,边坡稳定性评价与滑坡预测已经成为具有特色的工程地质课题之一。

对于煤矿岩石高边坡极限平衡法,影响稳定性的因素总体上分为地质因素及非地质因素两类。前者是滑坡发生的地质基础条件,后者则为滑坡的发生提供了外动力因素和触发条件。影响边坡稳定状态的地质因素包括边坡岩体的结构特性、介质结构特性、地下水状态、水文地质条件及地应力等;非地质因素包括大气降雨、振动、坡脚切层开挖以及边坡下面地下开采等。

2.边坡稳定性分析

边坡稳定性分析理论在国内外的发展经历了一个很长的历史时期,国内外不少专家学者对其进行过研究,稳定性分析方法很多,如:定性分析方法,定量分析方法,不确定分析方法,确定性和不确定性方法的结合,物理模拟方法等。

2.1极限平衡法基本原理

现在边坡稳定性分析中比较常用的方法是极限平衡法。该方法基于该原理的方法很多,如瑞典圆弧法、Bishop法、Janbu法、Sarma法、Morgenstern-Price法极限平衡法,Spencer法,不平衡推力法等,并且开发了相应的计算机程序。

极限平衡法的基本原理是根据边坡破坏的边界条件,应用力学分析研究的方法,对可能发生的滑动面,在各种荷载作用下进行理论计算和抗滑强度的力学分析。通过反复计算和分析比较,对可能的滑动面给出稳定性系数。

一般建立在极限平衡原理基础上的边坡稳定性析方法包含强度准则、静衡、安全系数定义三个原则。

1)强度准则

现行的边坡稳定性分析方法中一般都是基于摩尔—库仑强度理论:

由库仑理论知,土的有效应力强度表达式为:

式中:——土的抗剪强度(kPa);

——作用在剪切面上的法向就力(kPa);

——土的内摩擦角(°);

——土的粘聚力(kPa);

——孔隙水压力(kPa)。

2)静力平衡条件

将滑动土体分成若干条块(如图1.1),每个条块和整个滑动土体都要满足力和力矩平衡条件,在静力平衡方程组中极限平衡法,未知数的数目超过了方程式的数目,解决这一静不定问题的办法是对多余未知数作假定,使剩下的未知数和方程数目相等,从而解出安全系数的值。

图1.1边坡稳定性分析简图

2)安全系数

边坡沿某一滑动面滑动的安全系数是指土体沿某一滑动面的抗滑力(矩)和滑动力(矩)之比值。

3. 工程实例

3.1工程概况

本工程为山西太原某煤矿边坡建筑场区。该建筑场区位于山脉东翼,呈西南高东北低的低中山区,区内山高坡陡,沟谷纵深。场区地貌单元属低中山斜坡,由勘探揭露,场区地层根据地层时代,成因类型和土特性的差异极限平衡法,大体划分为以下6个工程地质单元体:回填土、粉土、滑坡体产物、紫红灰绿色砂质泥岩、灰绿色细粒含泥质长石石英砂岩。

3.2边坡稳定性分析

选定其中剖面I—I’为计算分析的对象。

勘探结果表明,剖面I—I’的地层分布为,上部表面是主要有回填土、碎块石土、砂质泥岩强风化层和砂质泥岩微风化层,剖面图如图2所示

图2 I—I’剖面图

针对上述剖面,采用极限平衡法,计算正常状况下的安全系数以及在地震和暴雨情况的安全系数。剖面I—I’都存在着强风化泥岩,在地下水或者雨水的情况下,泥岩的力学性能明显降低,预计会产生滑坡。

由于所研究的边坡是折线形滑坡,因此采用不平衡推力法计算在不同情况下的最小安全系数。得到的滑动面如图3所示。由于滑动面均穿越强风化砂质泥岩极限平衡法,在遇水或者地下开采的情况下,其力学性能减弱明显,很容易产生变形,因此该滑动面成了边坡最不稳定部位,最容易出现滑移。表1是关于边坡通过不平衡力传递系数法计算在不同边界条件下的最小安全系数,可以看出边坡的稳定状态。

图3 I—I’剖面图滑坡图

表1 边坡计算剖面安全系数统计表

 

边界条件

正常

暴雨

地震

最小安全系数

0.977

边坡工程论文范文第4篇

关键词:路基边坡;稳定分析;边坡设计

路基边坡包括填方路堤边坡和挖方路堑边坡,是公路的重要组成部分。长期以来,路基边坡的综合防护技术一直是公路修筑中的一个常见但研究程度低的课题。80年代中期以前,我国主要以低等级公路建设为主,深挖高填较少,公路建设投资不大,因而路基边坡稳定问题较少,坡面防护工程不作为道路建设的主体工程,在公路工程建设中对边坡的防护常常被忽视。进入90年代以后,我国大量修建高等级公路,遇到大量的高填深挖路基,边坡稳定问题日渐突出。90年代初期,边坡防护与加固仍主要沿用低等级公路的边坡工程技术或借鉴铁道部门的经验来实施局部处理,由于在边坡处治时缺乏综合考虑,为工程埋下隐患。例如早期建成通车的沈大高速公路、深汕高速公路等。通车后路基边坡发生滑塌,造成了较大的经济损失和不良的社会影响。90年代后期,中国公路建设进入了前所未有的高速发展阶段,吸取前期公路建设的经验教训,高等级公路路基边坡的综合治理受到重视。各地结合当地工程实践开展了一系列公路路基边坡防护与加固技术研究,路基边坡工程理论与实践取得了很大的进展。

一、公路边坡现状及防治工程

1.公路边坡问题研究现状

研究分析阶段:人们已逐渐认识到岩体结构对边坡稳定的控制作用。边坡稳定性的可视化建模和非线性理论评价阶段:大量基础资料的积累和边坡工程实例的增加,使得可视化 建模在边坡稳定性评价和治理中的应用将表现出较强的实用性和光明的应用前景。

2.公路边坡工程设计的特点和要求

2.1 边坡工程设计的特点

非标准设计:不同类型的边坡有不同的特点,同类边坡和灾害也会因形成条件、成因机制、稳定状态等的差异而具有各不相同的特点,边坡治理工程设计对每个边坡的治理部位和范围、采取的方案和措施也是互不相同的。所以,边坡治理工程设计属非标准设计,必须对每个边坡进行具体的针对性设计。

风险性设计:a.不稳定边坡都是不良的复杂地质体;b.治理工程承受来自边坡体和外界的各种荷载,不仅自身应具有足够的抗变形和破坏的能力,而且还要求下伏的地质体也具有优良的性质;c.边坡治理工程技术迄今还是一门不严谨、不完善、不成熟的科学技术。因此,边坡治理工程设计必然存在着相当大的风险性。

应急设计:边坡形成虽然都有一个较长的孕育过程,但其发生灾害却往往具有突发性。 为了防止边坡地质灾害的发生或减轻其危害程度,在边坡灾害发生前后开展的防治工程设计,不少情况下具有应急设计的特点。此种情况下,通常是边勘察、边设计、边监测、边施工。

综合防治设计:单一的治理工程措施有时难以承受来自边坡体和外界的荷载,从而导致工程失效。因此,针对每个边坡的特点,在不同部位采取不同的措施,进行综合防治是非常 重要的。即使工程投资不能一次到位,也应在治理方案的基础上,进行分解,采取分期、分步实施的办法进行综合防治。

2.2 边坡工程设计的基本要求

在特殊荷载组合条件下,防治工程仍能保证灾害体的整体稳定性,不致造成危及人员生命等重大的地质灾害。在正常荷载组合条件下,防治工程应保证灾害体无明显的破坏,不会造成危及建筑物安全的地质灾害。应注意与公路、当地环境发展相适应,与市政规划、环境保护、土地管理和开发相结合,并在安全、经济、适用的前提下尽量做到美观。

2.3 防治工程设计的依据和基础资料

地形资料:地形图及平面、高程控制。气象水文资料:气温、降雨、冻结深度、暴雨;水文、流量、淹没、冲淤等。防治工程勘察资料:地质体的类型、年代、成因、产状、分布;岩土的工程性质及变异性;地质构造的性质、展布及对工程的影响;自然或人为不良地质现象及对工程的影响;地下水类型、水位及埋深、动态、补给排泄条件及地层渗透系数;水与土对建筑材料的腐蚀性;地震基本烈度,地震动参数;特殊岩土的测试与评价。

二、 路基边坡工程设计理论

公路是沿地表建设的线状构造物,延伸长度非常长,对环境影响大,跨越的地质地貌单元多,所遇到的工程地质条件好坏不一、复杂多样。判断一处边坡是否安全,取决于对边坡所处自然环境与地形地质环境的了解程度,以及能够把握住保持边坡安全的基本条件。工程边坡设计是否合理要综合考虑其安全性、经济性和环保性。现行的路基边坡设计在整个公路设计过程中受重视程度较低,究其原因,主要是在路线勘测设计阶段对工程地质条件了解不够充分,设计缺乏针对性,往往导致施工时边坡失稳,频繁变更设计,造成很大经济损失。反过来说,如果片面要求公路全线进行详细的工程地质勘察,同样也会由于路线长、工程地质条件好坏不一,增大很多投资,造成一些不必要的浪费,而且对地质资料的掌握仍然不容易满足设计要求。因此有必要调整边坡的设计思路。公路路基边坡加固与防护设计应遵循以下几个原则:

1.并行性。并行设计是现代设计的重要内容,在综合集成制造系统(CMIS)领域中广为应用。由于边坡工程条件非常复杂,因此严格按照岩土工程要求将滑坡治理过程明确划分为勘察、设计和施工几个阶段是不现实的。但是并行设计必须建立在非常充分的可行性研究基础上,国内典型滑坡治理工程中,长江三峡链子岩危岩治理过程是成功的并行设计范例,公路高边坡治理中,应用并行性思路进行设计的报道还未见。

2.反馈性。反馈设计又可称为动态设计或信息设计,它建立于监测基础上。90年代以来,以潘家铮院士为代表的学者在设计和加固水利工程边坡时提出了该方法。其基于施工期逐步明朗的地质条件及监测结果,对岩体工程进行动态设计,达到优化设计结果。反馈设计的前提是要根据现场施工监测资料对原设计进行正确的反分析,在此基础上进行反馈设计,目前在深基坑支护,高边坡工程得到初步应用。

3.智能性。如前所述,智能科学应用于边坡工程领域是一个具有重要意义的研究方向,目前正处于开创性阶段。对复杂边坡工程系统,通过智能科学方法进行规划、决策和设计是二十一世纪的发展方向。

4.绿色性。绿色设计已成为现代边坡工程设计的重要组成部分。半个多世纪以来,发达国家高速公路建设和公路环境建设的发展里程清楚地告诉我们:生物环境工程是公路环境治理工程的主体,必须在公路规划、设计的同时予以考虑,应用先进的绿化工程技术恢复与重建植被是公路生物环境工程的内涵。因此在路基边坡加固与防护设计时,应当结合公路沿线的地形、地质、气候特征,正确设计边坡植被防护与加固工程。

三、结语

总之,搞好公路建设,确保路基边坡稳定、安全,搞好环境保护,要深入了解现场,针对不同的工程土质、水文、气候等特点设计灵活的防护形式,并加强施工管理,这样才能建设―条安全之路、生态之路、人文之路。

参考文献

边坡工程论文范文第5篇

关键词:路堑边坡;SRM法;桩板墙;支挡结构

边坡稳定性一直是岩土工程中的重点问题,近年来,我国出现多起滑坡事故让工程界更加重视边坡稳定分析和支挡防护工作。边坡稳定性的传统分析方法主要有:极限平衡法、极限分析法、滑移线场法等,这些方法的理论基础都是极限平衡理论,因为没有考虑土体内部应力――应变关系,无法分析边坡破坏的发生和发展过程,无法考虑变形对边坡稳定性的影响。有限元强度折减(SRM)法不仅弥补了上述极限平衡理论的缺陷,而且具有如下优点:(1)可以不假定滑动面,也无需进行土条划分便可以求解安全系数;(2)能够模拟边坡失稳过程及其滑移动面形状。

本文采用Midas/GTS有限元软件对某铁路工程的桩板墙工点进行SRM法数值模拟,通过对比有无桩板墙支挡情况来评价桩板墙的支挡效果。作为岩土专业的有限元软件,Midas/GTS为用户提供了友好的前后处理界面,分析功能涉及所有的岩土工程问题,能够更加真实地模拟岩土体非线性本构关系。本文边坡稳定性分析采用SRM边坡分析模块,分析结果更加接近边坡的真实状态,符合工程实际情况。

1 有限元强度折减理论

有限元强度折减法就是在边坡的有限元分析中,通过对坡体材料强度进行折减,使边坡达到失稳状态,此时抗剪强度折减的倍数即为边坡的安全系数。1975年,Zienkiewicz等首次在土工弹塑性有限元数值分析中提出了抗剪强度折减的概念,随后Griffiths&Lane等通过研究发现采用有限元强度折减法与传统方法得到的稳定安全系数比^接近。随着计算机程序的发展,有限元强度折减法逐渐成为了边坡稳定性分析的热点。有限元强度折减法通过计算程序能够直观地体现出边坡实际的滑裂面,把强度折减理论融入弹塑性大变形有限元边坡稳定性分析中,满足了力的平衡条件,同时考虑了材料的应力――应变关系,计算结果比传统边坡稳定性计算方法更加准确、合理。而且通过软件可以模拟边坡逐渐破坏的过程,能够直观地看出滑裂面形成的过程并给出准确的安全系数。

2 SRM法2D数值模拟建模

2.1 工程概况

研究工程项目为阳泉北至大寨铁路K108+300~K108+404路基桩板墙工点,K108+300~K108+404北侧堑顶外有一水池,为避免拆掉该水池,于侧沟平台处设桩板墙进行支挡加固。工点勘探深度范围内地层为第四系上更新统坡洪积层(Q3dl+pl)新黄土;第四系中更新统洪积层(Q2pl)老黄土;第三系上新统(N2)粉质黏土,粗圆砾土;下伏奥陶系中峰峰组(O2f)石灰岩及角砾状泥灰岩。工点典型横断面图如图1所示。

2.2 有限元模型建模

有限元模型采用2D模型分析,模型具体尺寸、边界条件与实际工程相同。通过DXF格式文件直接导入Midas/GTS中建模,整个模型共10232个节点,10069个网格单元,具体网格划分如图2。边界约束条件为左右两侧节点约束X方向位移,底部节点为固定约束,同时添加属性改变边界条件来实现成桩过程。

模型的各项物理力学参数根据地质勘查报告及相应设计规范确定。具体各项岩土体及结构物的物理力学参数如表1所示。

模拟工况分为两种:无桩板墙支挡工况和有桩板墙支挡工况。通过施工阶段管理建模后,采用激活/钝化功能来实现土体开挖和岩土性质改变的过程。施工阶段分析采用Midas/GTS的SRM法边坡模块进行分析,进而得到相应的边坡安全系数及施工开挖过程的位移场。

3 数值模拟结果分析

3.1 边坡安全系数

对两种工况进行有限元强度折减模拟,得到两种工况相应的安全系数。图3、4分别为无桩板墙支挡工况和有桩板墙支挡工况塑性区破坏情况。可以看出,无桩板墙支挡工况边坡的滑动面沿坡脚划出,边坡安全系数为1.231,有桩板墙支挡工况边坡的滑动面沿桩顶划出,边坡的安全系数为1.412。从边坡稳定系数来说,桩板墙支挡结构起到了增强边坡稳定性的作用,安全系数提高了14.7%。可见设置桩板墙支挡对边坡稳定性有明显效果。

3.2 边坡位移场

对两种工况位移场计算结果进行分析,选取水塘上边缘点,水塘底边缘点及边坡位移最大点三处位移进行对比,评价桩板墙支挡结构对控制位移起到的效果。图5、图6分别为无桩板墙支挡工况总位移场和有桩板墙支挡工况总位移场。

选取水塘上边缘点(21857号节点),水塘底边缘点(21870号节点)及边坡位移最大点(21824号节点)三处位移。表2、表3分别为无桩板墙支挡工况各点和有桩板墙支挡工况各点位移。

可以看出,无支挡时边坡的最大位移87.45mm,有支挡时为85.12mm,减小了,无支挡时水塘上边缘的位移为13.86mm,有支挡时为11.47mm,减小了17.24%,无支挡时水塘底边缘的位移为3.13mm,有支挡时为2.16mm,减小了30.99%。桩板墙对控制水塘位移变形有明显的作用,而对边坡最大位移的改善并不明显。

4 结束语

(1)本文采用Midas/GTS有限元软件SRM法边坡分析模块对阳大铁路一桩板墙路堑工点的边坡进行2D数值模拟分析,通过塑性区破坏形态和位移云图找到有无桩板墙支挡边坡的滑动面及边坡开挖对堑顶水塘的位移影响。

(2)通过数值模拟发现,有桩板墙支挡时边坡最大位移减小2.66%,水塘上边缘位移减小17.24%,水塘底边缘位移减小了30.99%。

设置桩板墙对控制水塘位移变形有明显的作用,而对边坡最大位移的改善并不明显。

(3)本文采用有限元方法对阳大铁路桩板墙工点进行2D数值模拟,SRM法计算的边坡安全系数结果可靠,对有无桩板墙支挡的边坡位移场分析准确。模拟结果有效地评价了边坡开挖对堑顶水塘的影响,也为设立桩板墙的合理性给出了充分的依据。总体来说,此项研究对工程本身有着积极地指导作用,对类似工程有一定的借鉴意义。

参考文献

[1]赵尚毅,时卫民,郑颖人.边坡稳定性分析的有限元法[J].岩土工程学报,2002,24(4):487-490.