首页 > 文章中心 > 砌体结构论文

砌体结构论文

砌体结构论文

砌体结构论文范文第1篇

对已有建筑抗震加固的首要任务是地基基础的加固,根据地基的竖向承载力、水平承载力及不利地基因素,分别采取加强上部结构刚度、加固处理地基(注浆加固法、锚钎静压桩)、加大基础底面积、加大或加钢筋、结合灌浆等措施,提高基础承载能力,延长基础的使用年限。

上部结构根据实际工程概况分析加固原因和目的,进而确定结构的抗震加固方法。对抗震承载力不足或开裂受损的房屋而言,宜采取面层或板墙加固、拆除重砌、增设砌体或钢筋混凝土抗震墙、裂缝灌浆加固等措施。对于整体性差的砌体结构,采用增设构造柱、圈梁、钢拉杆或锚杆等措施加强纵横墙及其与楼屋盖的连接;也可采取增设托梁、预制楼屋盖增设叠合层等方法加强楼屋盖,从而提高结构的整体性。局部薄弱部位,如无拉结筋的填充墙、“女儿墙”、悬挑构件、平面不规则处等,采取有关拉结、增强承载力、拆除或平面切割等措施。以上的加固措施均属于传统加固方法,其基本原理是提高砌体结构的抗震承载力或整体性,主要措施是增大材料强度、加大构件截面、增设新构件等。

适用于砌体结构的直接加固方法[3,4]1)钢筋混凝土外加层加固法———属于复合截面加固法。其优点是施工工艺简单、适应性强,加固后的承载力提高明显,技术经验比较成熟;常用于加固柱、带壁墙,但其现场湿作业施工时间长,加固后建筑结构的净空有所减小。2)钢筋水泥砂浆外加层加固法———属于复合截面法。其原理是把欲加固墙体表面粉刷层剔除,在墙体两侧附设4mm~8mm的钢筋网片,然后抹水泥砂浆面层,常用于砌体墙加固及钢筋混凝土外加层加固带壁柱墙时两侧穿墙箍筋的封闭。3)增设扶壁柱加固法———属于加大截面加固法。其优点与钢筋混凝土外加层加固法相近,但承载力提高有限,不易满足结构的抗震要求,一般仅用于非抗震设防地区。

适用于砌体结构的间接加固方法1)包钢加固———也称粘结外包型钢加固法,以环氧树脂化学灌浆等方法粘结时,称之为湿式包钢加固。这种措施受力可靠,施工简便,现场作业量小,但用钢量较大,加固费用高,防护措施要求较高,适用于使用上不允许显著增大原构件截面尺寸,但又要求大幅度提高结构承载能力的加固。2)预应力撑杆加固法———其优点是最大幅度地提高砌体柱的承载能力,适用于加固高应力、高应变状态的砌体结构;缺点是不能在600℃以上的高温环境中使用。

砌体结构构造性加固与修补1)增设圈梁———这种措施可用于既有砌体结构的圈梁设置不符合抗震要求、纵横墙交接处有明显缺陷及房屋整体性较差等工况。2)增设梁垫———该措施可用于大梁下砖砌体被局部压碎或大梁下墙体局部产生竖向裂缝等工况。3)砌体局部拆砌———当房屋发生局部破裂,且未影响承重及结构性安全时,将破裂墙体局部拆除,并采用高一级强度的砂浆及整砖砌筑。4)砌体裂缝修补———可根据砌体构件的受力状态和裂缝特征及其产生原因,针对性地进行裂缝修补或加固。常采用水泥砂浆填缝修补、配筋水泥砂浆填缝修补、灌浆修复等措施。2抗震加固新技术2.1减震隔震随着减震技术的发展,以及对历次强烈地震中建筑结构破坏形式的总结,我们可通过分析地震作用效应,采用减震隔震技术,减小既有砌体房屋在强震中所承受的地震作用。目前在既有建筑结构中常用的减震技术主要有基础隔震技术、消能减震技术以及调谐减震技术等被动减震方法。

砌体结构论文范文第2篇

关键词:砌体结构裂缝

1前言

由砖、石或各种砌块等块体通过砂浆铺缝砌筑而成的结构称为砌体结构。由于砌体结构的材料来源广泛,施工设备和施工工艺较简单,可以不用大型机械,能较好地连续施工,还可以大量地节约木材、水泥和钢材,相对造价低廉,因而得到广泛应用。许多住宅、办公楼、学校、医院等单层或多层建筑就是采用砖、石或砌块墙体和钢筋混凝土楼盖组成的混合结构体系。

但是由于砌体的抗拉、抗弯、抗剪性能较差,并且由于设计、施工以及建筑材料等多方面原因引发的砌体结构的质量事故也较多,其中砌体出现裂缝是非常普遍的质量事故之一。砌体中出现的裂缝不仅影响建筑物的美观,而且还造成房屋渗漏,甚至会影响到建筑物的结构强度、刚度、稳定性和耐久性,也会给房屋使用者造成较大的心理压力和负担。在很多情况下,裂缝的发生与发展还是大事故的先兆,对此必须认真分析,妥善处理。

2砌体结构裂缝产生的原因及防治措施

引起砌体结构墙体裂缝的因素很多,大体上有地基的不均匀沉降,收缩和温度的变化,设计上对房屋的构造处理不当,施工质量不合格、使用的建筑材料不合格等。

2.1地基不均匀沉降引起的裂缝

当地基发生不均匀沉降后,沉降大的部分砌体与沉降小的部分砌体会产生相对位移,从而使砌体中产生附加的拉力或剪力,当这种附加内力超过砌体的强度时,砌体中便产生相对裂缝。这中裂缝一般都是斜向的,且多发生在门窗洞口上下。这种裂缝的特点是:(1)裂缝一般呈倾斜状,说明系因砌体内主拉应力过大而使墙体开裂;(2)裂缝较多出现在纵墙上,较少出现在横墙上,说明纵墙的抗弯刚度相对较小;(3)在房屋空间刚度被削弱的部位,裂缝比较集中。

为防止地基不均匀沉降在墙体上产生的各种裂缝而采取的措施有:

(1)合理设置沉降缝将房屋划分成若干个刚度较好的单元,或将沉降不同的部分隔开一定距离,其间可设置能自由沉降的悬挑结构。

(2)合理地布置承重墙体,应尽量将纵墙拉通,尽量做到不转折或少转折。避免在中间或某些部位断开,使它能起到调整不均匀沉降的作用,同时每隔一定距离设置一道横墙,与内外纵墙连接,以加强房屋的空间刚度,进一步调整沿纵向的不均匀沉降。

(3)加强上部结构的刚度和整体性,提高墙体的稳定性和整体刚度,减少建筑物端部的门、窗洞口,设置钢筋混凝土圈梁,尤其是要加强地圈梁的刚度。

(4)加强对地基的检测,发现有不良地基应及时妥善处理,然后才能进行基础施工。

(5)房屋体形应力求简单,横墙间距不宜过大。

(6)合理安排施工顺序,宜先建较重单元,后建较轻单元。

2.2收缩和温度变化引起的裂缝

热胀冷缩是绝大多数物体的基本物理性能,砌体也不例外。由于屋盖系统温度变化出会使砖墙产生裂缝,由于温度变化不均匀使砌体因不均匀收缩产生裂缝,或由于钢筋混凝土圈梁与砖墙伸缩量不同也会产生裂缝。

(1)屋盖系统温度变化时使墙体产生的裂缝:

这类裂缝较典型和普遍的是建筑物(特别是纵向较长的)顶层两端内外纵墙上的斜裂缝,其形态呈“八”字或“X”型,且显对称性,但有时仅一端有轻微者仅在两端1~2个开间内出现,严重者会发展重房屋两端1/3纵长范围内,并由顶层向下几层发展。此类裂缝对那种刚性屋面的平屋顶,未设变形缝、隔热层的房屋就更易发生。产生的直接原因是混凝土结构屋面的伸缩变形牵引其下砖砌体超过其材料抗拉强度的结果。一般来说,在阳光照射下,屋面板温度可高达60~70℃,而其下的砌体仅为30~35℃,温差引起的砌体主拉应力大于砌体本身的抵抗力的50%~300%不等。又加上房屋两端为自由端,水平约束力小,上部砌体垂直压力较小,如无相应措施,则上述裂缝在所难免。当屋面向两端热胀时,会使下部砌体出现正“八”字裂缝,当冷缩时,就会出现倒“八”字缝,一胀一缩则易出现“X”型缝。

(2)由于温度变化不均匀使砌体产生不均匀收缩产生的裂缝:

由于房屋过长,室内外温差过大,因钢筋混凝土楼盖和墙体温度变形的差异,有可能使外纵墙在门窗洞口附近或楼梯间等薄弱部位发生向竖向贯通墙体全高的裂缝,这种裂缝有时会使楼盖的相应部位发生断裂,形成内外贯通的周圈裂缝。另外,当房屋空间高大时,墙体因受弯在截面薄弱处(如窗间墙)会出现水平裂缝。

(3)由于钢筋混凝土圈梁与砖墙伸缩量不同产生的裂缝:

当材料随时间发生收缩变形和自然界温度发生变化时,由于钢筋混凝土和墙砌体材料收缩系数和线膨胀系数的不同,会在房屋的墙体及楼盖结构中引起因约束变形而产生的附加应力,当这种附加应力过大时会在墙体上产生局部竖向裂缝。

防止收缩和温度变化引起裂缝的主要措施有:

(1)在墙体中设置伸缩缝。将过长的房屋伸缩缝应设在因温度和收缩变形可能引起应力集中、砌体产生裂缝可能性最大的地方。

(2)屋面设保温隔热层。屋面的保温隔热层或刚性面层及砂浆找平层应设分隔缝,分隔缝的间距不宜大于6m,并与女儿墙隔开,其缝宽不小于30㎜。屋面施工宜避开高温季节。

(3)楼(屋)面板下设置现浇钢筋混凝土圈梁,并沿内外墙拉通,房屋两端圈梁下的墙体宜适当设置水平钢筋。

(4)遇有较长的现浇屋面混凝土挑檐、圈梁时,可分段施工,预留伸缩缝,以避免砼伸缩对墙体的不良影响。

2.3设计上对房屋的设计和构造处理不当而引起的裂缝

有一些砌体结构的房屋的设计是套用图纸,应用时未经校核;有时参考了别的图纸,但荷载增加了或截面减少了而未作计算;有的虽然作了计算,但因少算或漏算荷载,使实际设计的砌体承载力不足;有的虽然进行了墙体总的承载力计算,但忽视了墙体高厚比和局部承压的计算。如果砌体的承载力不足,则在荷载作用下将出现各种裂缝,以致出现压碎、断裂、倒塌等现象,这类裂缝的出现,很可能导致结构的失效。

预防措施:

(1)细心认真地设计。对拟建砌体结构的房屋,要做到力学模型准确,传力清楚;荷载统计无误;大梁下砌体要设垫块并进行验算;加强对圈梁的布置和构造柱的设置,以提高砌体结构的整体安全性。

(2)裂缝一旦出现,要注意观测裂缝的宽度及长度的发展情况,并及时采取相应的有效措施,如灌缝,封闭等,必要时要进行结构加固。

2.4施工质量不合格、使用材料不合格而引起的裂缝

当施工质量出现问题,砂浆稠度过大,吸水后干缩、砂浆不饱满或砂浆稠度不够时,会在平拱砖过梁处产生沿砖缝斜向的裂缝。

砖的质量不合格,砂浆强度不够,这些都会造成整个砌体的强度不够,而造成砂浆强度偏低的原因是使用了不合格的水泥,施工配合比不准确,施工时不润湿砖等。当砌体质量较差,砌体灰缝饱满度不当时也会影响到砌体的强度。而这些都可能在砌体结构中产生裂缝。

预防措施:

提高施工质量,保证结构所使用的材料,严格按照施工工艺进行施工。

砌体结构论文范文第3篇

〔关键词〕 无筋砌体 配筋砌体 绿色建材

In this paper, a brief introduction to the achievements in the field of masonry since the founding of P.R. China, which include the usage of all kinds of masonry structures, the development of new masonry materials and its structures and systems, the studies and researches on masonry theory. A recommendation to the development of masonry in future based on the authors knowledge.?

〔keywords〕 unreinforced masonry; reinforced masonry; green building material.

中国是砌体大国,在历史上有举世闻名的万里长城,它是两千多万年前用“秦砖汉瓦”建造的世界上最伟大的砌体工程之一;有在春秋战国时期就已兴修水利,如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程;有在1400年前由料石修建的现存河北赵县安济桥,这是世界上最早的敞肩式拱桥。该桥已被美国土木工程学会选入世界第12个土木工程里程碑。这些都是值得我们自豪和继承的,也对弘扬我国文化遗产起到积极作用。[1]?解放后我国在砌体结构方面有了很大的发展,分三个方面加以概要介绍。

一 砌体结构量大面广[2]?

解放以来我国砖的产量逐年增长,据统计[3]?,1980年的全国年产量为1600亿块,1996年增至6200亿块,为世界其它各国砖每年产量的总和。全国基建中采用砌体作墙体材料约占90%左右。在办公、住宅等民用建筑中大量采用砖墙承重。50年代这类房屋一般为3-4层,现在已为5-6层,不少城市一般建到7-8层。现在每年兴建的城市住宅建筑面积多达1亿m2以上。根据重庆市1980~1983年新建住宅建筑面积为503万m2,其中采用砖承重的占98%,7~7层以上的占50%,1972年还建成12层住宅。

? 在中小型单层工业厂房和多层轻工业厂房,以及影剧院、食堂、仓库等建筑也广泛采用砖墙、柱承重结构。

? 砖石结构还用于建造各种构筑物。如镇江市建成的顶部外经2.18m、底部外径4.78m、高60m的砖烟囱;用料石建成的80m排气塔;在湖南建造的高12.4m、直径6.3m、壁厚240mm的砖砌粮仓群;福建用毛石建造的横跨云宵—东山两县的大型引水工程—向东渠,其中陈岱渡槽全长4400m,高20m,槽支墩共258座,工程规模宏大。此外我国在古代建桥技术的基础上,于1959年建成跨度60m、高52m的石拱桥,接着又建成了敞肩式现代公路桥,最大跨度达120m——湖南乌巢河大桥。我国建成的100m以上的石拱桥有10座(包括乌巢河桥),每座都有新发展和世界纪录。

? 我国还积累了在地震区建造砌体结构房屋的宝贵经验。我国绝大多数大中城市在6度或6度以上地震设防区。地震烈度≤6度的砌体结构经受了地震的考验。经过设计和构造上的改进和处理,还在7度区和8度区建造了大量的砌体结构房屋。据不完全统计,从80年代初至今10多年间我国主要大中城市建造的多层砌体结构房屋建筑面积已达70-80亿m2[4]。

二 新材料、新技术、新结构的研究与应用

60年代以来,我国粘土空心砖(多孔砖)的生产和应用有较大的发展,在南京建造了6-8层的空心砖承重的旅馆。当时空心砖孔洞率为22%,与实心砖强度等效,但可减轻自重17%、墙厚减小20%,节省砂浆20~30%,砌筑工时少20-25%,墙体造价降低19~23%。根据节能进一步要求,近年来我国在消化吸收国外先进技术的基础上,制造出规格为380×240×190、孔洞率为40%的烧结保温空心砖(块),这种保温砖的密度为1012kg/m3,抗压强度10.5Mpa,热阻1.649m2K/W。在主要力学和热工性能的指标接近或达到国际同类产品的水平[5]。《多孔砖砌体设计与施工技术规程》行业标准,为这种砖的推广创造了条件。

? 近10余年来,采用砼、轻骨料砼或加气砼,以及利用河砂、各种工业废料、粉煤灰、煤干石等制无热料水泥煤渣砼砌块或蒸压灰砂砖、粉煤灰硅酸盐砖、砌块等在我国有较大的发展。1958年建成采用砌块作墙体的房屋,经过四十多年的实践,砌块墙体已成为我国墙体革新的有效途径之一。砌块种类、规格较多,其中以中、小型砌块较为普遍,在小型砌块中又开发出多种强度等级的承重砌块和装饰砌块。据不完全统计[6],1996年全国砌块总产量约为2500万m3,各类砌块建筑

约5000万m2,近十年砼砌块与砌块建筑的年递增都在20%左右,尤其以大中城市推广迅速,以上海推广砌块建筑为例,1994年约50万m2,1995年100万m2,1996年约150万m2,到1999年一季度累计完成的砌块建筑450万m2。这些砌块建筑大多是多层的,至于中高层、高层砌块建筑我国于80年代就着手和进行试点工作,如1982年建成的广西区科委十层砌块住宅试验楼、1986年建成的广西区建二公司十一层小砌块试验楼(7度设防),[7]为我国砌块中高层的发展作了开创性的工作。从90年代初期,在总结国内外配筋砼砌块试验研究经验的基础上,我国在配筋砌块结构的配套材料、配套应用技术的研究上获得了突破,在此基础上开展了更具代表性和针对性的试点工程[10],如1997年建成的盘锦市国税局15层砌块住宅,1998年建成的上海砼空心砖块配筋砌体住宅试点工程[8]。试点工程实践表明,中高层配筋砌块建筑具有明显的社会经济效益:前者15层砌块建筑,节省钢材45%、土建造价降低18%;上海18层节约钢材25%,土建造价降低7.4%。因此,将中高层配筋砌块结构体系纳入到我国砌体结构设计规范中是理所当然的。由此可见,作为粘土砖的主要替代材和某些功能强于粘土砖的砌块的发展前景是非常好的。

? 我国在50年代~70年代,采用预制大型墙板建造多层住宅,如采用振动砖墙板、烟灰煤渣、矿渣砼墙板建造了几十万m2的建筑。近10多年来北京等地采用内浇(砼)外砌的混合结构建造中高层建筑,取得了较好的经济效益。最近几年清华大学开展了多层大开间砼核心筒、砌体外墙的混合结构的试验研究和小规模试点工程,在改进和扩展砌体结构的性能和应用范围作了有益的探索。[12、13]

? 我国配筋砌体应用研究起步较晚,60年代衡阳和株州一些房屋的部分墙、柱采用网状配筋砌体承重,节省纲材和水泥。1958~1972年在徐州采用配筋砖柱建筑了12-24m、吊车起重量50-200t的单层厂房36万m2,使用情况良好。70年代以来,尤其是1975年海城—营口地震和1976年唐山大地震之后,对设置构造柱和圈梁的约束砌体进行了一系列的试验研究,其成果引入我国抗震设计规范。在此基础之上,通过在砖墙中加大加密构造柱形成所谓强约束砌体的中高层结构的研究取得了可喜的成果。如辽宁省沈阳市、江苏徐州、湖南长沙、兰州等地先后建造了8~9层上百万m2的这类建筑,获得了较好的经济效益。这些研究成果有的已纳入到地方标准或国家标准[14、15、16]。这是我国科研工作者在粘土砖砌体低强材料情况下,向中高层作出的贡献。利用如此低的砌体材料在地震区建造如此之高的建筑唯有中国!

? 和约束配筋砌体对应的是所谓均匀配筋砌体,即国外广泛应用的配筋砼砌块剪力墙结构,这种砌体和纲筋砼剪力墙一样,对水平和竖向配筋有最小含钢率要求,而且在受力模式上也类同于砼剪力墙结构,它是利用配筋砌块剪力墙承受结构的竖向和水平作用,是结构的承重和抗侧力构件。配筋砌体具有强度高、延性好,和钢筋砼剪力墙性能十分类似,可以用于大开间和高层建筑结构[6]。如美国抗震规范规定,配筋砌体的适用范围同钢筋砼结构。我国在80年代初期主持编制国际标准《配筋砌体设计规范》[11]起至今对其进行了较为系统的试验研究[7、8、9],表明用配筋砌体可建造一定高度的既经济又安全的建筑结构,如广西的10-11层、盘锦的15层、上海的18层等。目前正在筹建的配筋砌块高层有首钢十八层配筋砌块住宅工程(8度设防),辽宁抚顺6栋16层砌块住宅、哈尔滨2栋18层砌块住宅等。可见配筋砌体中高层的研究和应用具有十分广阔的前景。

? 我国有着用砖砌筑拱和券的丰富经验,解放以来,又向新的结构形式和大跨度方向发展。50-60年代修建了一大批砖拱屋盖和楼盖,还建成了10.5×11.3m的扁球形砖壳屋盖,16×16m的双曲扁球型砖薄壳和40m直径的园形球砖壳。60年代南京用带勾空心砖建成14×10m双曲扁壳屋盖仓库,以及10m直径的园形壳屋盖油库,在西安建成了24m双曲扁壳屋盖等。70年代我国还在闽清梅溪大桥工程中建成88m跨的(砼助)双曲砖拱桥等。

三 砌体结构理论研究与计算方法

解放前直至1950年我国谈不上有任何结构设计理论。国家建委于1956年批准在我国推广应用苏联《砖石及钢筋砖石结构设计标准和技术规范》NUTY120-55,直到60年代。60~70年代初,在我国有关部门的领导和组织下,在全国范围内对砖石结构进行了比较大规模的试验研究和调查,总结出一套符合我国实际、比较先进的砖石结构理论、计算方法和经验。在砌体强度计算公式、无筋砌体受压构件的承载力计算、按刚弹性方案考虑房屋的空间工作,以及有关构造措施方面具有我国特色。在此基础上于1973年颁布了国家标准《砖石结构设计规范》GBJ3-73。这是我国第一部砖石结构设计规范。从此使我国的砌体结构设计进入了一个崭新的阶段。70年代中期至80年代末期,为修订GBJ3-73规范,我国对砌体结构进行了第二次较大规模的试验研究,其中收集我国历年来各地试验的砌体强度数据4023个,补充长柱受压试件近200个,局压试件100多个,墙梁试件200多根及2000多个有限元分析数据和进行了11栋多层的砖房空间性能实测和大量的理论分析工作等。这样在砌体结构的设计方法、多层房屋的空间工作性能、墙梁的共同工作,以及砌块的力学性能和砌块房屋的设计方面取得了新的成绩。此外对配筋砌体、构造柱和砌体房屋的抗震性能方面也进行了许多试验研究。相继出版了《中型砌块建筑设计与施工规范》JGJ5-80、《砼小型空心砌块建筑设计与施工规程》JGJ14-82、《冶金工业厂房钢筋砼墙梁设计规程》YS07-79、《多层砖房设置钢筋砼构造柱抗震设计与施工规程》JGJ13-82等,特别是《砌体结构设计规范》GBJ3-88,使我国砌体结构设计理论和方法趋于完善。我国砌体结构可靠度的设计方法,已达到当前的国际先进水平。对于多层砌体房屋的空间工作,在墙梁中考虑墙和梁的共同工作和局压设计方法等专题的研究成果在世界上处于领先地位。近10余年来,特别是《砌体结构设计规范》GBJ3-88颁行后,进入了第三次较大规模的修订时期。如1995年颁行的《砼小型空心砖块建筑技术规程》JGJ/T14-95,通过试验增强抗震构造措施,使原规范(JGJ14-82)可增加一层,扩大了地震区的应用范围。1999年6月1日颁行的《砌体工程施工及验收规范》GB50203-98,取代了《砖石工程施工及验收规范》GB203-83。它主要补充了近年来新型材料和配筋砌体施工技术、施工质量控制等级方面的内容。目前正在修编的《砌体结构设计规范》GBJ3-88,主要在砌体结构可靠度方面、配筋砼砌块砌体、墙梁的抗震方面作了调整和补充。砌体结构可靠度,根据我国当前国情,作了适当的上调。这样作主要为促进采用较高等级的砌体材料,提高耐久性和适当提高抗风险能力。配筋砌体,特别是配筋砼砌块中高层,根据我国主编的国际标准《配筋砌体结构设计规范》和我国近年来各地较大规模的试验研究和试点建筑的经验,使我国配筋砌体的理论更完善,应用范围和限制有了较大的扩展和突破。如其应用范围,已达到钢筋砼剪力墙的适用范围。配筋灌孔砼砌块砌体是作为一个体系纳入到砌体规范中的,它的未来的实施,对促进我国砌块结构向高档次发展具有重要作用。

? 另外本次修订增补了墙梁在地震区的设计方法,进一步扩大了这种结构形式的使用范围。另外根据多年来砌体结构,特别是新型墙体材料结构的温度裂缝、干燥收缩裂缝普遍比较严重,进行深入研究后,增加了比较有效的抗裂构造措施。

? 我国砌体结构理论近年来有较大提高,反映在《砌体结构设计规范》GBJ3-88颁行前后,陆续出版了许多教材和著作,如丁大钧主编的《砌石结构》、《砌体结构学》、施楚贤主编的《砌体结构理论与设计》,以及《砌体结构论文集》、《砌体结构设计手册》等。这些对促进我国砌体结构的发展有一定作用。

四 展望?

砌体是包括多种材料的块体砌筑而成的,其中砖石是最古老的建筑材料,几千年来由于其良好的物理力学性能、易于取材、生产和施工,造价低廉,致今仍成为我国主导的建筑材料。但是我国的砌体材料普遍存在着自重大、强度低、生产能耗高、毁田严重、施工机械化水平较低,和耐久性、抗震性能较差等弊病。因此我认为要针地这些问题开展下列方面的工作。

1、积极开发节能环保形的新型建材[3]

? 1988年第一次国际材料研究会议上首次提出“绿色建材”的概念,1992年6月联大巴西里约热内卢环境和发展世界各国首脑会议,通过了“21世纪议程”宣言,确认了“可持续发展”的战略方针,其目标是:依据环境再生、协调共生、持续自然的原则,尽量减少自然资源的消耗,尽可能对废弃物的再利用和净化。保护生态环境以确保人类社会的可持续发展。

? 近年来发达国家在实施《绿色建材》计划上取得了较大的进展,我国以1992年联合国环境与发展首脑会议为契机,遵照同志“经济的发展,必须与人口、环境、资源统筹考虑,决不能走浪费资源和先污染后治理的老路,更不能吃祖宗饭、断子孙路……。”的指示精神,迅速行动起来,广泛研制“绿色建材”产品,取得了初步成果。

?1) 加大限制高能耗、高资源消耗、高污染低效益的产品的生产力度。如对粘土砖(按1996年生产6000亿块的代价是毁田10万多亩、能耗6000万吨标煤)国家早就出台了减少和限制的政策。近年的限制力度越来越大,如北京、上海等城市在建筑上不准采用粘土实心砖,这间接地促进了其它新材的发展。

?2) 大力发展蒸压灰砂废渣制品。这包括钢渣砖、粉煤灰砖、炉渣砖及其空心砌块、粉煤灰加气砼墙板等。这些制品我国80年代以前生产量曾达2.5亿块,吃掉工业废渣几百万吨,但由于种种原因大多数厂家已停产,致使粘土砖生产回潮。今后应加大科研投入、改进工艺、提高产品性能和强度等级、降低成本,向多功能化发展。

?3) 利用页岩生产多孔砖。我国页岩资源丰富,分布地域较广。烧结页岩砖具有能耗低、强度高、外观规则,其强度等级可达MU15~MU30,可砌清水墙和中高层建筑。页岩砖在四川、湖北和大连等地已初步应用。如城都的“绵城苑”小区16万m2的建筑均采用这种砖。

?4) 大力发展废渣轻型砼墙板。这种轻板利用粉煤灰代替部分水泥,骨料为陶粒、矿渣或炉渣等轻骨料,加入玻璃纤维或其它纤维。以及其它轻材料墙板,提高砌体施工技术的工业化水平。

?5) GRC板的改进与提高。这种板自重轻、防火、防水、施工安装方便。GRC空心条板是大力发展的一种墙体制品,需用先进的生产工艺和装配,以提高板的产量和质量。

?6) 蒸压纤维水泥板。我国是世界上第三大粉煤灰生产国,仅电力工业年排灰量达上亿吨,目前的利用率仅为38%。其实粉煤灰经处理后可生产价值更高的墙体材料。如高性能砼砌块、蒸压纤维增强粉煤灰墙板等。它具有容重低、导热系数小、可加工性强、颜色白净的特点,目前全国的产量已达700万m2。

?7) 大力推广复合墙板和复合砌块。目前国内外没有单一材料,既满足建筑节能保温隔热,又满足外墙的防水、强度的技术要求。因此只能用复合技术来满足墙体的多功能要求。如钢丝网水泥夹芯板。目前看来,现场湿作业,抹灰后难以克服龟裂现象有待改进。

?复合砌块墙体材料,也是今后的发展方向,如采用矿渣空心砖、灰砂砌块、砼空心砌块中的任一种与绝缘材料相复合都可满足外墙的要求,目前已有少量生产。我国在复合墙体材料的应用方面已有一定基础,宜进一步改善和完善配套技术,大力推广,这是墙体材料“绿色化”的主要出路。

2、发展高强砌体材料

? 目前我国的砌体材料和发达国家相比,强度低、耐久性差。如粘土砖的抗压强度一般为7.5~15Mpa,承重空心砖的孔隙率≤25%。而发达国家的抗压强度一般均达到30~60Mpa,且能达到100Mpa,承重空心砖的孔洞率可达到40%,容重一般为13KN/m3,最轻可达0.6KN/m3。根据国外经验和我国的条件,只要在配料、成型、烧结工艺上进行改进,是可以显著提高烧结砖的强度和质量的。如我国中美合资大连太平洋砖厂可生产出20Mpa~100Mpa的页岩砖。由于强度高、耐久性、耐磨性和独特的色彩,可作清水墙和装饰材料,已出口和广泛用于高档建筑。高强块材具有比低强材料高得多的价格优势。

? 根据我国对粘土砖的限制政策,可就地取材、因地植宜,在粘土较多的地区,如西北高原,发展高强粘土制品、高空隙率的保温砖和外墙装饰砖、块材等;在少粘土的地区发展高强砼砌块、承重装饰砌块和利废材料制成的砌块等。

? 在发展高强块材的同时,研制高强度等级的砌筑砂浆。目前的砂浆强度等级最高为M15。当与高强块材匹配时需开发大于M15以上的高性能砂浆。我国正在起草的《砼小型空心砌块砂浆和灌孔砼》行业标准中砂浆的强度等级为M5~M30,灌孔砼的强度等级为C20~C40,这是砼砌块配套材料方面的重要进展,对推动高强砌体材料结构的发展有重要作用。

? 根据发展趋势,为确保质量,发展干拌砂浆和商品砂浆具有很好的前景。前者是把所有配料在干燥状态下混合装包供应现场按要求加水搅拌即可。天津舒布洛克水泥砌块公司已供应这种干拌砂浆,价格约高20%左右。商品砂浆的优点同商品砼。这类砂浆的发展一旦取代传统砂浆,将是一个多么巨大的变化!

3、继续加强配筋砌体和预应力砌体的研究。

我国虽已初步建立了配筋砌体结构体系,但需研制和定型生产砌块建筑施工用的机具,如铺砂浆器、小直径振捣棒(ф≤25)、小型灌孔砼浇注泵、小型钢筋焊机、灌孔砼检测仪等。这些机具对配筋砌块结构的质量至关重要。

?预应力砌体其原理同预应力砼,能明显地改善砌体的受力性能和抗震能力。国外,特别是英国在配筋砌体和预应力砌体方面的水平很高。我国80年代初期曾有过研究,但直至最近才有少数专家研究,如重庆建筑大学的骆万康教授对预应力砖墙的抗震设计提出了建议。[17]

4、加强砌体结构理论的研究

? 进一步研究砌体结构的破坏机理和受力性能,通过物理和数学模式,建立精确而完整的砌体结构理论,是世界各国关心的课题。我国在这方面的研究具有较好的基础,有的题目有一定的深度,[18]继续加强这方面的工作十分有利,对促进砌体结构发展也有深远意义。为此还必须加强对砌体结构的实验技术和数据处理的研究,使测试自动化,以得到更精确的实验结果。

?正如一位资深砌体结构学者,E、A、James指出“砌体结构经历了一次中古欧洲的文艺复兴,其有吸引力的功能特性和经济性,是它获得新生的关键。我们不能停留在这里。我们正在进一步赋予砌体结构的新的概念和用途”。我们对砌体结构的未来充满信心,在党的方针政策的正确指引下,坚持科学态度,敢于创新,不断努力,为我国及世界的砌体结构的发展作出更大的贡献。

参考文献

?1、丁大钧.《砌体结构》教学刍议.建筑结构.1999.(3)

?2、施楚贤主编.砌体结构理论与设计.中国建筑工业出版社.1992.

?3、周玉琴等.浅谈新世纪“绿色建材”在国内外发展趋势.天津墙改办.墙改与节能.1999.(2)

?4、建筑结构设计统一标准修订组.我国建筑结构设计可靠度设定水平分析与改进意见.1999.7

?5、郑墨林.烧结保温空心砌块的性能与应用初探.天津墙改办.墙改与节能.1999.(2)

?6、苑振芳.砼砌块建筑发展现状及展望.工程建设标准化.1998.(6)

?7、广西建科所.抗震设防(7度)配筋小砌块高层建筑研究—成果鉴定资料.1987.12

?8、肖小松.砼砌体的性质.同济大学博士后工作报告.1998.5

9、谢小军.砼小砌块砌体力学性能及其配筋砌体抗震性能的研究.湖南大学硕士论文.1998?

10、苑振芳.15层配筋砌块住宅试点工程简介.施工技术.1998.(7)

?11、苑振芳.国际标准《配筋砌体结构设计与施工规范》简介.工程建设标准化.1995.(5)

?12、方鄂华等.砼筒一组合墙及开洞组合墙模型试验及承载力研究.建筑技术.1997

?13、王绍豪等.带砼筒大开间砖混结构灵活住宅结构设计建议.建筑技术.1997

?14、沈阳市建设标准《钢筋砼—砖组合墙结构技术规程》SYJB2-95

?15、江苏省地方标准《约束砖砌体建筑技术规程》DB32/113-95

?16、甘肃省标准《中高层砖墙与砼剪力墙组合砌体结构设计与施工规程(试行)》DBJ25-56-95

砌体结构论文范文第4篇

关键词 混凝土砌块;芯柱;抗震; 抗剪;

the earthquake-resistance of concrete block walls by the use of core column system

LI Gen-hu 1,ZHAO Kao-zhong1,ZHANG Hong-lei 1

(1. Department of Civil Engineering, Shan dong jian zhu University , Jinan 250101,China)

Abstract In this paper, through an example in the engineering presented practice, we put forward and analysis the hollow concrete block walls with core column system.the aseismic behavior of these structures have heen studied by contrast testing.The analysis of the results show that the earthquake-resistance of concrete block walls were improved obviously by the use of core column system.

Key words: concrete block;core column;aseismicity;shear;

研究的背景和目的:

2000年6月,160多个大中城市都以政府令或通告形式,明令在住宅建设中禁止使用实心粘土砖。“禁实”带动了建筑墙体材料材质、规格的多样化发展。砌块墙体具有自重轻,施工方便,保温节能性能好,节省土地等经济效益和社会效益,应用天然或人工骨料做成小型混凝土空心砌块取代粘土砖是墙体改革的方向之一[1]。

在小型混凝土空心砌块的发展历程中,我们大部分都是将其作为自承重墙使用,但是很多时候要将其向承重结构转化。现在发展比较成熟的有无筋砌体结构、配筋砌体结构等。在无筋砌体结构中,为了充分利用小型混凝土砌块的“空心”,提高砌体结构的抗震承载力,我们在空心中灌注混凝土,形成“芯柱”。 国家对此出台了一系列的规范来指导我们进行设计。但是,在现行的规范下,芯柱配制的数量对于无筋砌体的抗震承载力影响有多大呢?我们可以结合实例以《砌体结构设计规范》(GB50003-2001)为主要指导从理论上进行分析。

实例原型:

该建筑位于山东省济南市东部一片住宅小区内,属于附属的公共建筑。其采用小型混凝土砌块作为承重墙。我们选择了一面长度最大的横墙作为研究对象。此墙长度为6.8m,截面上共有空洞34个,即最多可以设置34根芯柱。每个孔洞形成芯柱截面为120mm×120mm,插筋为一级钢,直径为,灌孔的混凝土强度等级为C20。混凝土砌块尺寸为390mm×190mm×190mm,砌块强度等级为MU15,砌块砂浆强度等级为Mb5。该建筑中空心混凝土砌块样式如下图1所示:

图1:混凝土砌块分析图及实图

理论分析:

为了从理论上分析芯柱对于混凝土砌块墙体抗震性能的影响,我们分别应用下列五种情况进行分析:第一:当墙体两端各填实2孔。第二:墙体两端各填实3孔。第三:两端各填实3孔条件下中间再填实10孔。第四:全部孔洞都填实。第五:墙体不进行填实。根据现行的砌体结构设计规范进行计算分析比较,理论上得出芯柱对抗震性能的影响。

该建筑施工质量控制等级为B级,龄期为28d的以毛截面计算的各类砌体的抗剪强度设计值根据砌体规范相关条文及表格可以得到,当采用Mb5砌块砂浆时混凝土砌块抗剪强度设计值=0.06Mpa。由《砌体结构设计规范》(GB50003-2001)给出的计算公式

(公式1)[2]

将数据带入公式1,易得Mpa。其中根据建筑上部传递的荷载和自身重力产生的平均压应力与砌体水平抗剪强度设计值的比例,统一采用墙体正应力影响系数取为1.25。

该横墙截面面积为1.292,其中每一根芯柱截面面积为0.0144,由现行的《混凝土结构设计规范》(GB50010-2002)可以得到C20的混凝土抗拉强度设计值为[3]

每根钢筋截面面积为113,设计的墙体两端都有芯柱,我们根据砌体规范中抗震设计的要求,承载力抗震调整系数都取用0.9[4].

通过我们假定的四种情况,分别进行分析,主要应用规范为《砌体结构设计规范》中无筋砌体构件中混凝土砌块墙体的截面抗震承载力验算公式,抗震剪力设计值具体为:

(公式2)[2]

其中:―灌孔混凝土的轴心抗拉强度设计值,应按现行国家标准《混凝土结构设计规范》(GB50010-2002)采用:

―灌孔混凝土或芯柱截面总面积;

―芯柱钢筋的抗拉强度设计值;

―芯柱钢筋截面总面积;

―芯柱参与工作系数,根据《砌体结构设计规范》(GB50003-2001)提供的资料采用,表格一如下:

表一:芯柱参与工作系数

注:灌孔率指芯柱根数(含构造柱和填实孔洞数量)与孔洞总数之比

当两端各填实2孔时:

灌孔率=4/34=0.12

当两端各填实3孔时:

灌孔率=6/34=0.18,此时,由表一可以得出=1,但是通过简单计算可以知道两端芯柱之间最大净距约为5.6m,不符合《砌体结构设计规范》(GB50003-2001)中抗震要求的最大净距不大于2.0m的规定,所以在计算式我们不能考虑芯柱抗剪作用[5]。因此其抗震承载力计算式为

当两端各填实3孔条件下再在中间填实10孔时:

灌孔率=16/34=0.47,此时,由上表可以得出=1.1,芯柱之间净距的要求符合规定,考虑芯柱的抗剪作用,其抗震承载力计算式为

当全部孔洞填满时:

灌孔率=1,此时,由表一可以得出=1.15,其抗震承载力为

作为一个参照,当不进行灌孔填实时:

此时其抗震承载力全部由小型空心砌块承担。其大小同工况一相同。

综上分析,绘制成表格二如下:

表二:灌孔率对砌块墙体抗震承载力的影响

根据上述理论计算表明,每增加一根普通芯柱,大约增加6~7kN左右的抗剪承载力。当两端填实孔洞很少时,芯柱在计算中不起作用,但芯柱填实量加大后,对砂浆等级较低且正应力影响系数不大的小型混凝土砌块墙体,芯柱可以起到重要作用,甚至可以达到纯砌体抗剪承载力的两倍还要多。

结论:

在现行规范下,对灌孔砌块的研究深度还不够,因为构件的抗震承载力与很多无法量化的因素有关,数量存在“越级”现象,我们只能偏于保守的确定基本承载力。本文通过工程中的实例提炼进行理论分析,可以得出在工程实践中采用小型混凝土砌块墙体承重时,短墙将芯柱数量比例增加到25%以上,长墙芯柱数量比例增加到50%以上时,可以有效的提高混凝土砌块的抗震性能。

参考文献:

[1] 杨德健 高永孚 孙锦镖 王书祥. 构造柱-芯柱体系混凝土砌块墙体抗震性能试验研究建筑结构学报[J],2000.8 p22-p27

[2]GB50003-2001砌体结构设计规范[S]

[3] GB50010-2002混凝土结构设计规范[S]

[4] 傅传国 砌体结构 科学出版社 2005.7

砌体结构论文范文第5篇

[摘要]本文介绍了十八层配筋砌块住宅的工程概况、结构整体内力分析、构件的承载力计算公式、计算结果,并与砼剪力墙结构比较作了经济分析,最后针对砌块建筑的计算特点及墙体构造的特殊性作了小结。本文按《砌体结构设计规范》GB50003(征求意见稿)进行设计。[关键词]配筋砌体,复合夹心保温墙,最小配筋率为进一步推动北京市高层配筋砌体结构的发展,经北京市建委、墙改办及首规委同意,北京首钢设计院在中国工程建设标准化协会砌体结构技术委员会、清华大学、中国建筑科学研究院高层建筑技术开发部的大力协助下,将在石景山金顶街地区建一座18层的高塔住宅,该建筑拟采用北京地区高强砼小型空心砌块,结合北京市墙改节能的要求和住宅建筑的具体特点,在设计、施工中将有多项新技术、新材料的应用,它将是北京地区利用配筋砌体建造的第一座高层建筑。下面将该十八层配筋砌体住宅分以下几个部分进行介绍:一.工程概况本工程为十八层配筋小砌块高层住宅建筑,地处石景山金顶街地区,属8°抗震设防区,场地土为Ⅱ类,此高塔住宅一梯八户,总建筑面积13350m2,地下两层,地上18层,局部20层,建筑平面图见图1。建筑设计在满足使用功能的同时,还考虑了结构专业的需要,故在平面设计中尽量减少小墙肢数量,做到外墙无小墙肢,且使多条轴线上的墙体贯通。墙体平面布置沿中心基本对称,使建筑物的质量中心与刚度中心基本重合,将结构扭转效应的影响减到最低,对建筑物抗震十分有利。结合砌块建筑的特殊性,本工程的建筑轴线间距、层高、洞口宽度均为200mm的倍数,水平及竖向灰缝均为10mm,这样排块简单,砌块型号少。本工程共需四种形式八种块型,详见图2,其中,K1、K2、K3用于有水平配筋的墙体,K4、K5、K6用于无水平配筋的墙体,K7、K8为清灰块,凡竖向灌实的孔洞最下一皮砌块均放清灰块,以清除墙体砌筑时掉入孔洞的多余的砂浆或杂物,因清灰块处无法放水平钢筋,故水平钢筋从第二皮砌块起设置。为保证结构的整体刚度,楼、屋面均采用现浇钢筋砼板,每层楼、屋面标高处沿所有承重墙体均设置400mm高现浇圈梁。图1标准层平面图2块形示意图墙体形式包括以下三种:(1)承重外墙:外墙采用复合夹心保温墙,即在190mm承重墙和90mm装饰墙之间填充保温材料,且每二皮砌块高度设一道fb4镀锌钢丝网片,作法详见图3。保温材料采用core-Fill500氮尿素发泡剂,这是一种集节能、隔音、防火为一体的建筑材料,施工非常简便,可在墙体砌筑完一层后填充保温层,完全不受钢筋、管道等障碍物的影响[5]。图3复合夹心保温墙(2)承重内墙:采用190mm系列单排通孔砌块砌筑,双面抹灰。(3)非承重内墙:采用90mm系列单排通孔砌块砌筑,双面抹灰。墙体砌筑砂浆要求使用强度高,粘结性、和易性好,保水性强的专用砂浆,而不是普通砂浆,这种专用砂浆适应砼小型砌块布浆面窄、砌块吸水率小、砌块竖缝高度大的特点,同时又能满足工程所需的强度要求。为了帮助工程监督、检测从业人员不断提高专业技术水平,二.内力计算分析配筋混凝土小砌块剪力墙与钢筋混凝土剪力墙受力性能相似[2],可以采用普通钢筋混凝土剪力墙结构计算程序进行内力分析。本工程计算理论及公式均以《砌体结构设计规范》(征求意见稿)GB50003-XX和《钢筋混凝土高层建筑结构设计与施工规程》JGJ3-91为依据。2.1本工程采用中国建筑科学研究院编制的多层及高层建筑结构空间分析程序TBWE进行结构计算,并请程序编制者根据本工程的具体要求修改了相关的计算公式及荷载分项系数等内容。2.2根据建设部关于适度提高建筑工程可靠度的指示精神及《砌体结构设计规范》GB50003-XX(征求意见稿)的规定,将楼面活荷载及荷载分项系数适当提高,楼面活荷载采用2.0kN/m2,分项系数取①恒载1.2,活载1.4②恒载1.35,活载1.0二组中不利组合。2.3砌体弹性模量按《砌体结构设计规范》(征求意见稿)第3.2.5条取E=1600fG(砂浆强度等级≥M10),fG为单排对孔砌筑混凝土小型空心砌块灌实砌体抗压强度设计值。2.4计算结果:自振周期X向:T1=0.87秒,T2=0.27秒,T3=0.15秒,Y向:T1=0.90秒,T2=0.26秒,T3=0.14秒。地震作用下层间位移及顶点位移列于表1。表1地震作用下层间位移及顶点位移(u/h)maxu/HX向1/25571/2888Y向1/24441/2916表中:u—楼层层间位移;h—层高;u—顶点位移;H—建筑物总高度。层间位移及结构顶点位移均满足《钢筋混凝土高层建筑结构设计与施工规程》JGJ3-91的要求:u/H<1/1100,u/h<1/1000(较高装修标准)。三.承载力计算3.1单排对孔砌筑混凝土小型空心砌块灌孔砌体抗压强度设计值:fG=f+0.6αfc,且同时满足fG/f≤2。式中f—空心砌块砌体的抗压强度设计值;fc—灌孔混凝土轴心抗压强度设计值;α—砌块墙体中灌孔混凝土面积和墙体毛截面面积的比值。3.2配筋砌块墙体偏心受压正截面承载力3.2.1大偏心受压按下列公式计算N≤(fGbx+fyAs-fyAs-ΣfsiAsi)NeN≤[fGbx(h0-)+fyAs(h0-as)-ΣfsiSsi式中:N—轴向力设计值;fy,fy—竖向受拉、压主筋强度设计值;b—截面宽度;fsi—竖向分布钢筋抗拉强度设计值;As、As,—竖向受拉、压主筋截面面积;Asi—单根竖向分布钢筋的截面面积;Ssi—第i根竖向分布钢筋对受拉主筋的面积矩;eN—轴向力作用点到竖向受拉主筋合力点之间的距离;—承载力抗震调整系数。3.2.2小偏心受压时按下列公式计算(不考虑竖向分布筋的作用)N≤(fGbx+fyAs-σsAs)NeN≤[fGbx(h0-)+fyAs(h0-as)]T形及I形墙体计算理论与砼构件相同,墙受压翼缘宽度取值详见GB50003-XX表9.2.5。3.3配筋砌块墙体斜截面抗剪承载力配筋砌块墙体承载力计算时,考虑抗震等级的剪力设计值VW在底部加强区范围内取VW=1.5V(一级抗震等级),其它部位取VW=V,式中V—考虑地震作用组合的剪力墙计算截面的剪力设计值。3.3.1截面限制条件VW≤式中b—剪力墙截面宽度或T形、倒L形截面腹板宽度;h—剪力墙的截面高度。3.3.2偏心受压时斜截面受剪承载力计算公式VW≤M、N、VW—考虑地震作用组合的剪力墙计算截面的弯矩、轴力、剪力设计值,当N>时,取N=;A—剪力墙的截面面积;AW—T形或I形截面剪力墙腹板的截面面积;λ—计算截面的剪跨比,当λ≤1.0时,取λ=1.0,当λ≥2.2时,取λ=2.2;h0—剪力墙截面的有效高度;S—剪力墙水平分布钢筋的竖向间距;fyh—水平钢筋的抗拉强度设计值;Ash—配置在同一截面内的水平分布钢筋的全部截面面积之和。3.3.3偏心受拉时斜截面受剪承载力计算公式VW≤注:当<0时,取=0。3.4剪力墙连梁承载力计算在地震荷载作用下,连梁抗剪钢筋较大,采用砌块连梁施工困难,故采用现浇砼连梁。连梁承载力按《钢筋混凝土高层建筑结构设计与施工规程》JGJ3-91中的公式计算。3.5根据承载力计算典型墙片的配筋和墙体配筋率列于表2和表3(P7)。表2计算配筋层数砌块砂浆注芯砼暗柱钢筋纵向水平钢筋灌孔率纵筋箍筋钢筋1-5MU20M20C40每孔一根φ22每孔一个φ8,竖向间距200φ18@4002φ14@400全部灌实6-9MU20M20C40每孔一根φ20每孔一个φ8,竖向间距200φ18@4002φ12@400全部灌实10-14MU15M15C30每孔一根φ20每孔一个φ8,竖向间距200φ16@4002φ12@600竖向孔洞每灌实一孔空一孔,水平方向每灌实一皮空一皮15-17MU10M10C20每孔一根φ18每孔一个φ8,竖向间距200φ16@4002φ12@600竖向孔洞每灌实一孔空一孔,水平方向每灌实一皮空二皮18MU10M10C20每孔一根φ20每孔一个φ8,竖向间距2002φ12@400全部灌实19-20MU10M10C20每孔一根φ18每孔一个φ8,竖向间距200φ16@4002φ12@400全部灌实所有墙体交接处及端部均设暗柱及端柱,墙体水平及纵向分布钢筋均满足《砌体结构设计规范》(征求意见稿)最小配筋率0.13%,暗柱配筋满足加强部位0.8%,其它部位≥3φ18的配筋率要求。四.非线性地震反应分析作为试点性建筑,基于慎重的考虑,我们请湖南大学作了非线性地震反应分析,计算采用质量串模型,分别按层剪切模型和层弯剪模型进行分析计算,其恢复力模型均取有下降段的三折线形式,各段刚度及折点荷载值均取单层墙片试验得到的数据,层间恢复力模型中的各值由各墙片相应值叠加而成。计算时输入两条地震波,1.TAF波,适用于Ⅱ类场地,Tg=0.44(s);2.ELCENTRO波,适用于Ⅱ、Ⅲ类场地,Tg=0.55(s)。最大加速度峰值按8度区调整为70gal,220gal和400gal。计算结果表明,当输入地面最大加速度峰值为70gal时,结构处于弹性阶段,按两种模型所计算出的顶点位移u及层间位移u均满足u/H<1/1100,u/h<1/1000的规定要求。当输入地面最大加速度峰值为220gal和400gal时,结构处于弹塑性阶段。当输入加速度峰值为400gal时,其层间弹塑性位移角u/h=1/186(X方向)、1/211(Y方向)。由计算结果可知:19层由于层高较大,剪力墙布置较少,抗侧刚度较小,因而层间位移较大,为一薄弱层。施工图设计时,考虑适当增加剪力墙的数量。五.经济分析高层砼砌块配筋砌体除地面以上承重墙体以外的其他结构构件及相关专业的做法均与砼现浇剪力墙结构相同,故只进行砌块墙体经济比较,墙体直接费的计算以北京荣建建材有限公司与三个施工单位对八栋多层砌块住宅测算的经济指标为基础,结合《建设工程概算定额》,针对本工程具体材料的不同进行了钢筋、砼的调增,对比对象为正在施工中的苹果园四区9#楼(十八层全现浇剪力墙结构)。以1m2面积的墙体为标准,配筋砌块墙体的直接费是119.8元,而砼结构是159.7元,1m2墙体可节省直接费39.9元,地上十八层墙体总面积约18100m2,仅直接费一项就可节约71.8万元,加上其他直接费、现场经费、利润等预计能节省投资102万元。此外,砌块墙体比现浇墙体的施工速度快,整体施工周期短,由此可见,在经济效益上,配筋砌体结构比砼结构有着明显的优势。六.工程设计小结和混凝土结构相比,高层配筋砌体结构的建筑布置、结构整体分析、构件强度计算、构造要求、建筑材料性能及施工工艺等均有自己的特殊性。下面重点从计算理论和控制墙体裂缝两方面将工程设计作一小结。6.1配筋砌体和砼剪力墙结构的计算比较高层砼结构的内力与位移按弹性方法计算,并考虑各抗侧力结构的共同工作,连梁可按有关规定考虑局部塑性变形引起的内力重分布[4],一般二十层以下的砼剪力墙结构墙体厚度从首层至顶层是一样的,故墙体因砼强度等级不同而引起的弹性模量和刚度的变化很小,计算表明除个别小墙肢按柱要求配筋外,绝大多数墙体配筋均为构造配筋。砼剪力墙的最小配筋率,除延性要求外,主要考虑在塑性状态浇注,为限制在水化过程中产生显著收缩的需要[1]。《钢筋混凝土高层建设结构设计与施工规程》JGJ3-91对墙体水平、竖向分布筋的最小配筋率作了要求。配筋砌体通过钢筋和砼的共同工作,使钢筋在受力过程中强度达到流限,而彻底改变了传统的砌体结构脆性破坏的剪切特性,具有和钢筋砼结构同样的性能[2],故可用砼结构的计算理论对配筋砌体进行结构的整体分析。因在水平地震荷载作用下,连梁的抗剪钢筋较多,施工困难,故将连梁现浇,且对其按砼构件的有关规定进行刚度折减。配筋砌体由砌块、砂浆、注芯砼、钢筋组成,由材料强度等级特别是由灌孔率不同而引起的墙体弹性模量及刚度的变化比砼结构显得更为突出,这点由本文前面所介绍的计算公式中可以看出,而从下至上灌孔率逐渐减小,可减轻结构自重,从而减少水平地震作用,对建筑抗震十分有利。另外,由于砌体结构中存在许多竖向灰缝,地震时能吸收更多的能量,增加了结构的变形和耗能能力,是一种又刚又柔的性能良好的抗震建筑材料[1]。在试验过程中,配筋砌体结构的延性表现十分突出,优于砼剪力墙结构[2]。所以在抗震结构的体系选择上配筋砌体结构优于砼剪力墙结构。另外,由于配筋砌体施工时,作为主要材料的砌块块体尺寸稳定,仅在其孔洞中加入了塑性的砂浆和注芯混凝土,因此砌体墙可收缩的材料要比砼少得多,这就决定了同样考虑了结构延性要求的配筋砌体的水平及竖向钢筋最小配筋率比砼结构小[1],这正是配筋砌体比砼剪力墙能节省大量钢筋的原因所在。6.2控制墙体裂缝的措施及复合夹心保温墙砌块建筑最突出的问题就是墙体裂缝及渗漏问题,主要由温度应力与砌块块体干缩及砌块质量造成,控制砌块干缩对砌体的影响,必须保证砌块的相对含水率[3]。为防止由温度应力引起的墙体开裂,多层砌块房屋的常规作法是在顶层设保温隔热层,门、窗洞口边设芯柱,在墙体适当位置的灰缝中设水平镀锌钢丝网片,首层窗台下墙体灌实等。本工程根据计算及构造要求,1~9层、18~20层全部灌实,为墙体温度应力敏感区提供了抗裂保证,另外,墙体内部配置的水平钢筋取代了镀锌钢丝网片,能更有效地保证墙体抗裂。传统的墙体保温作法不管是内保温还是外保温,多采用保温板或保温砖,但这种作法有一个通病,就是在板缝或砖缝部位易出现裂缝,影响美观,对墙体抗渗造成隐患。而本工程采用的复合夹心保温墙作法,既能满足保温、抗渗要求,外装饰墙的清水墙面又能充分体现出砌块建筑的特点,美观大方,经济实用。经测算,夹心墙仅保温费用比砼剪力墙采用舒乐舍板外保温加抹灰和防水涂料每平方米墙面可节省19元,所以说复合夹心保温墙的抗裂保温性能和经济效益均优于传统作法。本工程作为我国在8°抗震设防区采用高强砼小砌块的高层配筋砌体建筑,对于北京市乃至全国发展新型墙体材料、推广和使用砼小型空心砌块将起着推动和示范作用,高层配筋砌体体系的研究,是一项涉及到建筑材料、实验、结构设计、计算及施工等多方面的系统工程,本工程的建成、使用将会为该体系的研究提供大量数据、指标,并填补我国在高地震设防区建造高层配筋砌体建筑的空白。参考文献[1]苑振芳,高连玉,混凝土砌块建筑发展现状及展望,′99全国砌体结构学术会议论文集,全国砌块结构标准技术委员会,浙江大学建筑设计研究院,浙江大学土木工程学会,1999.9[2]钱义良等,高层配筋砌块砌体房屋的设计,′97全国砌块建筑设计施工技术研讨会论文集,中国建筑砌块协会,1997.4[3]于本英,小型空心砌块墙体构造设计图集的编制和研究,′97全国砌块建筑设计施工技术研讨会论文集,中国建筑砌块协会,1997.4[4]钢筋混凝土高层建筑结构设计与施工规程JGJ3-91,中国建筑工业出版社,1991[5]Core—Fill500绝缘保温材料产品介绍(SureBlock公司)表3墙体的配筋率层墙肢计算所需钢配筋砌体最小配筋率(一级抗震)砼结构最小配筋率(二级抗震)筋的配筋率端部暗柱水平及竖向分布筋端部暗柱水平及竖向分布筋数编号V(kN)N(kN)M(kNm)端部暗柱水平钢筋底部加强区一般部位加强部位一般部位底部加强区一般部位加强部位一般部位1708.03575.32853.70.6%0.15%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%121058.94651.83018.10.6%0.15%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%3835.33906.85199.40.6%0.15%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%1583.83772.71269.30.6%0.11%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%52968.13806.71453.50.6%0.22%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%3694.04241.11706.50.6%0.11%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%1###0.6%0.10%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%92840.82769.0661.40.6%0.18%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%3###0.6%0.10%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%1###0.6%0.10%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%142575.61537.0518.70.6%0.14%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%3###0.6%0.10%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%1###0.6%0.14%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%182###0.6%0.10%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%3###0.6%0.10%0.8%且33φ203φ180.13%0.13%1.2%1.0%0.25%0.20%注:#所示控制内力表示墙肢配筋按最小配筋率控制即可。