首页 > 文章中心 > 人工神经网络发展史

人工神经网络发展史

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇人工神经网络发展史范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

人工神经网络发展史范文第1篇

【关键词】数据挖掘 异常数据挖掘 人工智能

1 引言

人工智能用于异常数据检测的方法很多,传统的如基于统计(statistical-based)的方法、基于距离(distance-based)的方法 [1]、基于密度(density-based)的方法[2],基于聚类的方法[3]等。但这么传统的异常数据检测方法仍然存在着一些缺陷与不足。基于统计的数据检测方法要求预先知道被检测数据的分布情况,基于距离的方法中距离函数与参数的选择存在较大的困难,基于密度的数据检测方法方法时间复杂度较高,这些问题极大地限制了异常数据挖掘算法在现实中的应用。本文重点论述人工智能方法用于异常数据挖掘的发展史,分析和比较各自的优缺点。

2 常用于异常数据挖掘的几种人工智能方法的分析

2.1 神经网络方法

神经网络模型主要由三层结构组成,主要包括输入层、隐含层和输出层。第一层为输入层,输入层的节点代表多个预测变量,输出层的节点代表多个目标变量,位于输入层和输出层之间的是隐含层,神经网络模型的复杂度取决于隐含层的层数和节点数。每一层的节点都允许有多个。神经网络模型主要用于解决回归和分类两类问题,其结构图如下图所示。

从上图可得,节点X1,X2,X3作为神经元的输入,代表多个预测变量,它可以是来自神经网络的信息,也可以是另一个神经元的输出;W1,W2,……,Wn是神经元的权值,表示各个神经元的连接强度。通过神经网络模型的结构图可知,该方法的实现过程:首先将每个训练样本的各属性取值同时赋给第1层即输入层;各属性值再结合各自的权重赋给第2层(隐含层的第1层),第1层隐含层再结合各自的权重输出又作为下一隐含层的输入,最后一层的隐含层节点带权输出赋给输出层单元,输出层最终给出各个训练样本的预测输出。

2.2 蚁群聚类算法

在数据挖掘中,聚类是一个活跃的研究领域,涉及的范围较广。许多计算机学者们通过模仿生物行为提出一系列解决问题的新颖方法。蚂蚁搜索模式样本所归属的聚类中心的概率计算公式如式(1)。

(1)

其中,α,β为参数,初始聚类中心为随机选取的k个模式样本点。τ(i,j)为样本Xj到聚类中心mj之问的信息素i=1,2, …,n,j=1,2, …,k ;η(i,j)为启发函数,其表达式如式(2)所示。

(2)

其中,dj为模式样本Xj到聚类中心mj的欧氏距离为(i=1,2, …,n,j=1,2, …,k)。

蚂蚁搜索整个模式样本空间,形成一个聚类结果后,聚类中心mj各分量的值为该类Cj中模式样本各属性的均值,计算公式如(3)。

(3)

2.3 基于知识粒度的异常数据挖掘算法

粒计算是人工智能领域新发展起来的一个研究方向,该方法针对不确定性信息进行处理。它主要包括三种模型,分别是粗糙集模型、模糊集模型与商空间模型。该方法的基本思想是利用不同粒度上的信息进行问题求解。该理论在多个领域得到了广泛的应用,如数据挖掘、决策支持与分析和机器学习等。知识粒度为异常数据挖掘处理不确定性数据提供一种新的解决方法。基于知识粒度的异常数据挖掘算法,该算法不需要预先知道数据的分布情况,并且采用知识粒度度量各个对象间的距离与异常度时,能有效挖掘出异常数据。

3 各方法的比较

通过以上各种方法的分析,各种方法具有各自的优点以及不足之处。基于聚类的数据挖掘方法侧重与于聚类的问题,该问题极大地限制了该算法在实际生活中的应用。神经网络方法用于数据挖掘,是人工智能中较早应用于数据挖掘领域的方法之一,能够较好的进行异常数据的挖掘,但是该方法的层数的确定比较困难,同时该方法的时间复杂度比较高;蚁群聚类算法是在聚类算法的基础上改进推广而得,能够达到异常数据检测的目的,但该算法的收敛速度慢,而且算法存在随机移动而延长聚类时间。

4 结束语

异常数据挖掘研究是一个有价值的研究问题,近年来引起越来越多的学者关注和研究,从而使得异常数据挖掘算法取得了新的进展,在生态系统分析、公共卫生、气象预报、金融领域、客户分类、网络入侵检测、药物研究等方面得到了广泛的应用。希望本论文中的方法可以给读者提供更多异常数据挖掘方面的思路,并且能够很好的将人工智能中的方法运用异常数据挖掘中,克服各种方法不足,让人们能够更好的应用。

参考文献

[1]Knorr E. Alothms for Mining Distance based Outliers in Large Datasets[C] //Very Large Databases(VLDB’98). New York: Proc of Int Conf, 1998: 392-403.

[2]Breunig M M, Kriegel H P. Sander, LOF: Identifying Density-Based Local Outliers[C]// ACM SIGMODC onference Proceedings. [S.I]:[s.n.],2000.

[3]王鑫等.数据挖掘中聚类方法比较研材[D].济南:山东师范大学管理学院,2006.

[4]魏海坤,徐嗣鑫,宋文忠.神经网络的泛华理论和泛化方法[J].自动化学报, 2001,27(6):806-814.

[5]庞胜利,吴瑰丽.人工神经网络在大型桥梁健康监测系统中应用研究[J].石家庄铁道学院学报,2002,15(2):63-65.

[6]金微. 蚁群聚类算法分析[J].计算机光盘软件与应用,2011,(13):199, 202.

[7]陈玉明,吴克寿,孙金华.基于知识粒度的异常数据挖掘算法[J].计算机工程与应用,2012, 48(4):118-121.

[8]苗夺谦,王国胤,刘清等.粒计算:过去、现在与展望[M].北京:科学出版社, 2007.

[9]苗夺谦,范世栋.知识的粒度计算及其应用[J].系统工程理论与实践,2002, 22(1):48-56.

人工神经网络发展史范文第2篇

【关键词】电力系统;继电保护;技术;发展现状

一、微机继电保护的主要特点

根据,研究和实践证明 ,与传统的继 电保护相 比较 ,微机保护有许多优点 ,其主要特点如下改善和提高继 电保护 的动作特征 和性 能 ,动作正确率高。主要表现在能得 到常规保护不易获得的特性 其很强的记忆力能更好地实现故障分量保护 可引进 自动控制 、新的数学理论和技术 ,如自适应 、状态预测 、模糊控制及人工神经网络等 ,其运行高正确率也已在实践中得到证明 。可以方便地扩充其他辅助功能 。如故障录波 、波形分析等 ,可 以方便地附加低频减载 、自动重合闸、故障录波 、故障测距等功能 。工艺 结构条 件优越 。体现 在 硬件 比较 通用 ,制造容易统一标准 装置体积小 ,减少了盘位数量 功耗低 。可靠性容易提高 。体现在数字元件的特性不易受温度变化 、电源波动、使用年限、元件更换的影响 且 自检和巡检能力强 ,可用软件方法检测主要元件、部件的工况以及功能软件本身。使用灵 活方便 ,人机界面越来越友好 。其维护调试也更方便 ,从而缩短维修时间 同时依据运行经验,在现场可通过软件方法改变特性 、结构 。可以进行远方监控 。微机保护装置具有串行通信功能 ,与变电所微机监控系统的通信联络使微机保护具有远方监控特性 。

二、微机继电保护的发展史

电力系统继电保护的发展经历了机电型 、整流型 、晶体管型和集成电路型几个阶段后 ,现在发展到了微机保护阶段 。微机继电保护指的是以数字式计算机 、(包括微型机) 为基础而构成的继 电保护。它起源于20世纪60年代中后期 ,是在英国、澳大利亚和美国的一些学者的倡导下开始进行研究的。60年代中期 ,有人提 出用小型计算机实现继 电保护的设想 但是由于当时计算机的价格昂贵 ,同时也无法满足高速继电保护的技术要求 ,因此没有在保护方面取得实际应用 ,但 由此开始了对计算机继电保护理论计算方法和程序结构的大量研究 ,为后来的继电保护发展奠定了理论基础 。计算机技术在 年代初期和中期出现了重大突破 ,大规模集成电路技术的飞速发展 ,使得微型处理器和微型计算机进人了实用阶段 。价格 的大幅度下降 ,可靠性 、运算速度的大幅度提高 ,促使计算机继 电保护的研究 出现 了。在70年代后期 ,

出现了比较完善的微机保护样机 ,并投人到电力系统 中试运行 80年代 ,微机保护在硬件结构和软件技术方面 日趋成熟 ,并已在一些国家推广应用 。90年代 ,电力系统继 电保护技术发展到了微机保护时代 ,它是继电保护技术发展历史过程中的第四代。

三、我国继电保护发展现状

我国从70年代末即已开始了计算机继电保护的研究 ,高等院校和科研院所起着先导的作用 。华中理工大学 、东南大学 、华北 电力学院 、西安交通大学 、天津大学 、上海交通大学 、重庆大学和南京电力自动化研究院都相继研制了不同原理 、不同型式的微机保护装置 。1984年原华北 电力学院研制的输电线路微机保护装置首先通过鉴定 ,并在系统中得应用 ,揭开 了我 国继 电保护发展史上新的一页 ,为微机保护的推广开辟 了道路 。在主设备保护方面 ,东南大学和华中理工大学研制的发电机失磁保护 、发 电机保护 和发 电机 、压器组保 护也相继 于1993、1996年通过鉴定 ,投人运行 。南京电力 自动化研究院研制的微机线路保护装置也于 年通过鉴定 。天津大学与南京 电力 自动化设备厂合作研制的微机相电压补偿式方向高频保护 ,西安交通大学与许昌继电器厂合作研制的正序故 障分量方向高频保护也相继于 ” 年通过鉴定 至此 ,不同原理 、不同机型 的微机线路和主设备保护各具特色 ,为电力 系统提供了一批 新一代性 能优良、功能齐全 、工作可靠的继 电保护装置 。可 以说90年代开始我国继电保护技术已进人 了微机保护的时代。随着微机保护装置的研究 ,在微机保护软件、算法等方面也取得 了很多理论成果 ,并且应用于实际之中。

四 、继电保护的未来发展

继电保护技术发展趋势 向计算机化 、网络化、智能化和保护、控制 、测量 、数据通信一体化发展 。随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用 ,新的控制原理和方法被不断应用于计算机继电保护中 以期取得更好的

效果 ,从而使微机继 电保护的研究向更高的层次发展 ,出现了一些引人注 目的新趋势。

1.保护 、控制 、测量 、数据通信一体化在实现继 电保护的计算机化和 网络化的条件下 ,保护装置实际上就是一 台高性能 、多功能的计算机 ,是整个电力系统计算机 网络上的一个智能终端 。它可从网上获取 电力系统运行和故障的任何信息和数据 ,也可将它所获得的被保护元件的任何信息和数据传送给网络控制 中心或任一终端。因此 ,每个微机保护装置不但可完成继 电保护功能 ,而且在无故 障正常运行情况下还可完成测量 、

控制 、数据通信功能 ,亦即实现保护、控制 、测量、数据通信一体化 。

目前 ,为了测量 、保护和控制的需要 ,室外变电站的所有设备 ,如变压器 、线路等的二次电压 、电流都必须用控制 电缆引到主控室 。所敷设的大量控制电缆不但要大量投资 ,而且使二次 回路非常复杂。但是如果将上述的保护 、

控制 、测量 、数据通信一体化 的计算机装置 ,就地安装在室外变电站的被保护设备旁 ,将被保护设备的电压 、电流量在此装保护 、控制 、测量 、数据通信一体化在实现继 电保护的计算机化和 网络化的条件下 ,保护装置实际上就是一 台高性能 、多功能的计算机 ,是整个电力系统计算机 网络上的一个智能终端 。它可从网上获取 电力系统运行和故障的任何信息和数据 ,也可将它所获得的被保护元件的任何信息和数据传送给网络控制 中心或任一终端。因此 ,每个微机保护装置不但可完成继 电保护功能 ,而且在无故 障正常运行情况下还可完成测量 、控制 、数据通信功能 ,亦即实现保护、控制 、测量、数据通信一体化 。

目前 ,为了测量 、保护和控制的需要 ,室外变电站的所有设备 ,如变压器 、线路等的二次电压 、电流都必须用控制 电缆引到主控室 。所敷设的大量控制电缆不但要大量投资 ,而且使二次 回路非常复杂。但是如果将上述的保护 、控制 、测量 、数据通信一体化 的计算机装置 ,就地安装在室外变电站的被保护设备旁 ,将被保护设备的电压 、电流量在此装置内转换成数字量后 通过计算机 网络送到主控室 ,则可免除大量的控制电缆。如果用光纤作为网络的传输介质 ,还可免除电磁干扰 。现在光电流互感器OTA和光电压互感器(OTA)

已在研究实验阶段!将来必然在电力系统中得到应用。在采用OTA和OTA的情况下,保护装置应放在距OTA和OTA最 近 的地方 ,亦 即应 放在被保护设备 附近 。和 的光信号输人到一体化装置中并转换成电信号后 ,一方面用作保护的计算判断另一方面作为测量量 ,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到一体化装 置 ,由一体化装 置执行 断路器 的操作。1992年天津大学提 出了保护 、控制 、测量 、通信一体化问题 , TMS320C25数字信号处理器(DSP0)为基础的一个保护、控制、测量 、数据通信一体化装置 。

工神经网络在继电保护中的应用 年来 ,人工智能技术如神经网络 、遗传算法 、化规划 、模糊逻辑等在 电力系统各个领域都得到应用 ,在继电保护领域应用的研究也已开始 。

神网络是一种非线性映射的方法 ,很多难以列出方络方法则可迎刃而解 。

例如在输电线两侧系统电势角度摆开情况下发生经过渡 电阻的短路就是一非线性问题 ,距离保护很难正确作出故障位置的判别 ,从而造成误动或拒动 如果用神经网络方法 ,经

过大量故障样本的训练 ,只要样本集 中充分考虑了各种情况 ,则在发生任何故障时都可正确判别 。其它如遗传算法 、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适 当结合可使求解速度更快 。天津大学从 年起进行神经网络式继电保护的研究 ,已取得初步成果 。可以预见 ,人工智能技术在继 电保护领域必将得 到应用 ,并解决用常规方法难以解决的间题变电所综合 自动化技术现代计算机技术 、通信技术和网络技术为改变变电站目前监视 、控制 、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础 。高压 、超高压变电站正面临着一场技术创新 。继电保护和综合 自动化的紧密结合已成为可能 它表现在集成与资源共享 、远方控制与信息共享。以远方终端单元 、微机保护装置为核心 ,将变电所的控制 、信号 、测量 、计费等回路纳入计算机系统 ,取代传统的控制保护屏 ,能够降低变电所的占地面积和设备投资 ,提高二次系统的可靠性 。随着微机性能价格 比的不 断提高 ,现代通信技术的迅 速发展 ,以及标准化规约 的陆续推 出 ,变电站综合 自动化成了热门话题 。

目前 ,用于变电站的监视 、控制 、保护 ,包括故障录波 、紧急控制装置 ,虽然已实现了微机数字化 ,但几乎都是功能单一的独立装置 ,各个装置缺乏整体协调和功能的调优 ,且功能交叉 ,输人信息不能共享 ,接线复杂 ,从整体上降低了可靠性 ,同时不能充分利用微机数据处理的强大功能和速度 ,经济上也是一种浪费 。现在广泛应用 的变电站 自动化系统为常规 自动化系统 ,它应用 自动控制技术 、计算机数据采集和处理技术 、通信技术 ,代替人工对变电站进行正常运行的监视 、操作、电压无功控制 、量测记录和统计分析 、故障运行 的监视 、报警和事件顺序记录与运行操作 ,大多不涉及继 电保护 、紧急控制、故障录波 、 、维修状态信息处理等功能 ,功能相对 比较简单。竞争的电力市场将促进新的 自动化技术的开发和应用 ,在经济效益的驱动下 ,变电站将向集成自动化方向发展 。根据变电站 自动化集成的程度 ,可将未来的 自动化 系统分为协调 型 自动化和集成型 自动化 。协调型 自动化仍然保留间隔内各 自独立的控制 、保护等装置 ,各 自采集数据并执行相应的输出功能 ,通过统一的通信网络与站级相连 ,在站级建立一个统一的计算机系统 ,进行个功能的协调 。而集成型 自动化既在间隔级 ,又在站级对各个功能进行优化组合 ,是现代控制技术 、计算机技术和通信技术在变 电站 自动化 系统的综合应用 。所谓集成型 自动化系统是将 间隔的控制 、保护 、故障录波 、事件记录和运行支持系统的数据处理等功能集成在一个统一的多功能数字装置内,间隔内部和间隔间以及 间隔同站级 间的通信用少量的光纤总线实现 ,取消传统的硬线连接 。

人工神经网络发展史范文第3篇

关键词:继电保护技术;电力系统;应用

中图分类号:TM63 文献标识码:A

引言:近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

1.继电保护发展的现状

上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

2.电力系统继电保护装置的基本要求

(1)速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。(2)可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。(3)选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。(4)灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

3.继电保护技术的配置和运用

3.1继电保护装置的作用继电保护装置在供电系统中具有极其重要的作用,在电力系统发生故障时,必须要通过保护装置将故障及时排除,以防发生更大的故障。当电力设备处于具有危害性的不正常的工作状态时,保护装置必须及时发出警报信号报知给工作人员,以便其及时消除不正常的工作状态,防止电力设备和元器件发生损害,从而导致电力事故的发生。

3.2继电保护装置的基本原理

电力系统发生短路故障以后,电流会骤增,电压会骤降,电路测量阻抗会减小,电流和电压之间的相位角会发生变化,这些参数的变化能构成原理不同的继电保护,比如电流增大会构成过电流、电流阻断保护;电压降低会构成低电压保护。

3.3继电保护装置的运用

工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。

(1)线路保护,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。(2)母联保护 ,限时电流保护装置联同过电流保护装置一起装设。(3)电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。(4)主变保护,包括主保护 (重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。

4.电力系统继电保护发展趋势

4.1网络化发展趋势

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的数据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深入,继电保护的作用不只限于切除故障元件和限制事故影响范围 ( 这是首要任务) ,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。实现保护装置的计算机联网将使保护装置能够得到更多的系统故障信息,提高对电力系统故障性质、故障位置判断和故障测距的准确性。总之,微机保护装置网络化可大大提高继电保护的性能及可靠性,是微机保护发展的必然趋势。

4.2继电保护智能化

智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统继电保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络等逐步应用于电力系统继电保护中,为继电保护的发展注入了新的活力。人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题的研究。结合人工智能技术,分析不确定因素对智能诊断系统的影响,而提高诊断的准确率,是今后智能诊断发展的方向。

4.3控制、保护、数据通信、测量一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。

电力系统作为一个庞大复杂的系统,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。电力系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保电力系统的正常运行。必须正确地设置继电保护设备。

5.结语

总之,在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能提高供电的可靠性。

参考文献:

人工神经网络发展史范文第4篇

【关键词】农村电网;继电保护;配置;可靠性

1 继电保护技术发展的历史概况

电力系统技术的发展对继电保护提出了新的要求,电子技术、计算机技术与通信技术的发展又为继电保护技术的发展注入了新的动力,继电保护技术的发展,也是科技实力的发展。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。20世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。在引进消化了当时国外先进的继电器制造技术后,建立了我国自己的继电器制造业。在60年代中期我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

20世纪50年代末,晶体管继电保护已开始研究。60年代中期到80年代中期是晶体管继电保护蓬勃发展和广泛采用的时代。我国研制的500kV晶体管方向高频保护和晶体管高频闭锁距离保护的成功运行,结束了500kV线路保护依靠进口的时代。从70年代中期,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。

20世纪70年代末开始计算机继电保护的研究,高等院校和科研院所起着先导的作用。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机变压器组保护也相继于l989年、l994年通过鉴定并投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于l993年、l996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。从90年代开始我国继电保护技术已进入了微机保护的时代,开始走上高科技的发展时代。

2 继电保护技术的发展前景

智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。随着计算机技术的飞速发展以及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,其未来趋势向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。微计算机硬件的更新和网络化发展在计算机领域,发展速度最快的当属计算机硬件,按照著名的摩尔定律,芯片上的集成度每隔18~24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新,使微机保护对技术升级的开放性有了迫切要求。未来的继电保护技术、变电所综合自动化技术现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。实现继电保护和综合自动化的紧密结合,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(RTu)、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变。

自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。这种新型保护原理的出现引起了人们的极大关注和兴趣,是微机保护具有生命力和不断发展的重要内容。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到一个新的水平。未来中国电力系统继电保护技术的发展前景,会以崭新的姿态走在世界前列。

3 10KV线路保护中容易被忽视的问题及解决方法

(1)10kV线路如装有大量的配电变压器,在线路投入时,这些配电变压器是挂在线路上,在合闸瞬间,各变压器所产生的励磁涌流在线路上相互迭加、来回反射,产生了一个复杂的电磁暂态过程,在系统阻抗较小时,会出现较大的涌流,时间常数也较大。二段式电流保护中的电流速断保护由于要兼顾灵敏度,动作电流值往往取得较小,特别在长线路或系统阻抗大时更明显。励磁涌流值可能会大于装置整定值,使保护误动。这种情况在线路变压器个数少、容量小以及系统阻抗大时并不突出,因此容易被忽视,但当线路变压器个数及容量增大后,就可能出现。

励磁涌流的特征,就是它含有大量的二次谐波,另一特征就是它的大小随时间而衰减,一开始涌流很大,一段时间后涌流衰减为零,流过保护装置的电流为线路负荷电流,利用涌流这个特点,在电流速断保护加入一短时间延时,一般为0.15~0.2s的时限,就可以防止励磁涌流引起的误动作,这样虽然会增加故障时间,但在对稳定运行影响较小的地方还是适用的。

(2)10kV线路出口处短路电流一般都较小,特别是农网中的变电所,它们往往远离电源,系统阻抗较大。对于同一线路,出口处短路电流大小会随着系统规模及运行方式改变而改变。随着系统规模的不断扩大,10kV系统短路电流会随着变大,可以达到TA一次额定电流的几百倍,系统中原有一些能正常运行的变比小的TA就可能饱和;另一方面,短路电流中含大量非周期分量,又会进一步加速TA饱和。在10kV线路短路时,由于TA饱和,感应到二次侧的电流会很小或接近于零,使保护装置拒动,影响供电可靠性,而且严重威胁运行设备的安全。

避免TA饱和一是在选择TA时,变比不能选得太小,要考虑线路短路时TA饱和问题,一般10kV线路保护TA变比最好大于300/5。另一方面要尽量减少TA二次负载阻抗,尽量避免保护和计量共用TA,缩短TA二次电缆长度及加大二次电缆截面等,就能很好的防止TA饱和现象。

人工神经网络发展史范文第5篇

【关键词】复杂性科学;中医药学;启示

【中图分类号】R2-031【文献标识码】A【文章编号】1007-8517(2010)18-012-3

复杂性科学[1](Science of Compledty)是一门研究复杂性和复杂系统的新兴的边缘、交叉学科。国外有学者称复杂性科学是科学史上继相对论和量子力学之后的又一次革命[2],国内成思危教授认为它是系统科学发展的一个新阶段[3,4],戴汝为院士称其为“21世纪的科学”。近年有关的学术会议和数量急剧增加,相关的研究在国内外掀起了热潮。总之,它方兴未艾,引起了国内外越来越多学者的关注。复杂性科学打破了线性、均衡、简单还原的传统范式,而致力于研究非线性、非均衡和复杂系统带来的种种新问题。复杂性科学的出现极大地促进了科学的纵深发展。使人类对客观事物的认识由线性上升到非线性、由简单均衡上升到非均衡、由简单还原论上升到复杂整体论。因此,我们认为复杂性科学的诞生标志着人类的认识水平步入了一个崭新的阶段,将是科学发展史上又一个新的里程碑。

复杂性研究最早的起源可以追溯到20世纪上半叶,1928年贝塔朗菲(Von Bertalanffy)完成了描述生物有机体系统的毕业论文。自此以后的20年,在这方面做出实质性贡献的人及其成果为:McCul-loch和Pitts的神经网络、冯・诺依曼(John Von Neuman)的元胞自动机(cellular automata)和维纳的控制论。上个世纪50年代到70年代,普里高津提出了耗散结构理论,沟通了非生命系统和生命系统的内在联系,说明这两类大系统之间并没有严格的界限,表面上的鸿沟是由相同的规律所支配的。耗散结构的理论是对系统宏观性质的研究,还没有和系统的微观性质联系起来。与普里高津同时代的哈肯的协同学则沟通了从微观到宏观的通路,使系统在宏观上表现出来的规律能和微观上的运动联系起来。远离平衡态的研究是欧洲复杂性研究的代表,但是从目前的情况来看,普里高津和哈肯所研究的系统特性仍属于“简单巨系统”特性的范畴,可以直接用统计学等定量工具进行处理。当这些方法运用到更复杂的系统中时,遇到了根本性的困难。1984年,在诺贝尔奖获得者盖尔曼(Gell Mann)等人的发起与鼓动下,一批物理学家、理论生物学家、经济学家和计算机专家及其它学科的研究人员聚集于美国新墨西哥州的圣塔菲组织了一个松散的研究团体,称为圣塔菲(Santa Fe)研究所。其前期的主要学术观点可概括为:复杂系统是由大量相互作用的单元构成的系统。复杂性的研究则是研究复杂系统如何在一定的规则下产生有组织的行为。近年来,圣塔菲研究所的一些科学家拓宽了复杂性的研究内容,把兴趣逐步转移到对混沌边界的研究上。总体来看,圣塔菲研究所认识到复杂性研究的困难在于不能用传统的方法来处理复杂系统所涉及的问题,并提出了复杂性科学这一概念。迄今圣塔菲研究所在复杂性科学研究方面所涉及的主要内容有:复杂适应系统、非适应系统(如元胞自动机)、标度、自相似、复杂性的度量。其中复杂适应系统是圣塔菲研究所集中研究的对象,而且复杂适应系统理论也是第三阶段复杂性科学的主要成果。

1复杂性

在复杂性科学研究中,复杂性是客观事物的一种属性,是客观事物跨越层次的、不能够用传统的科学理论直接还原的相互关系。复杂性与简单性是相对应的。简单性一向是现代自然科学的一条通则。许多科学家相信自然界的基本规律是简单的。爱因斯坦曾是这种观点的突出代表。虽然复杂现象比比皆是,但人们还是努力要把它们还原成更简单的行为主体(Agent)或过程。当然的确有不少复杂的事物或现象,其背后确实存在简单的规律或过程。但是,另一方面也存在大量的事物和现象不能用简单的还原论方法进行处理。事实上,简单性与复杂性是客观事物的两种不同表现形式。“复杂性必须用复杂性的方法来研究”。

2复杂系统

目前关于复杂系统的定义还很不统一,至少有30多种,如:复杂系统就是混沌系统(混沌学派);复杂系统是具有自适应能力的演化系统(圣塔菲);复杂系统是包含多个行为主体(Agent)具有层次结构的系统;复杂系统是包含反馈环的系统(Stacey);复杂系统是任何人不能用传统理论与方法解释其行为的系统(John Warfield,约翰.沃菲尔德);复杂系统是动态非线性系统。

对指导中医学研究而言,我们认为,复杂系统是具有自适应能力的演化系统,即有反馈环,又包含行为主体(Agent)及层次结构,而且是非线性系统。每一个层次的行为主体(Agent)对更高层次的作用者来说都起着建设砖块的作用。能够吸取经验,从而经常改善和重新安排它们的建设砖块。所有复杂的适应性系统都会预期将来。这种预期都基于自己内心对外部世界认识的假设模型之上,也就是基于对外界事物运作的明确的和含糊的认识之上。能够随着系统不断吸取经验而被检验、被完善和被重新安排。

3复杂性科学

3.1复杂性科学的概念

我们认为:“运用非还原论方法研究复杂系统产生复杂性的机理及其演化规律的科学”可以作为复杂性科学的定义。简单地说,复杂性科学就是运用非还原论方法研究复杂系统的科学。

3.2复杂性科学的基本原理

总结目前的研究成果,我们认为复杂性科学的基本原理主要有以下一些:

(1)整体性原理由于复杂性科学的研究对象是非线性系统,传统的叠加原理失效,因此,不能采用把研究对象分成若干个小系统分别进行研究,然后进行叠加的办法,而只能从总体上把握整个系统。

(2)动态性原理复杂系统必然是动态系统,即与时间变量有关的系统。没有时间的变化,就没有系统的演化,也就谈不上复杂性规律。

(3)时间与空间相统一原理复杂性科学不但研究系统在时间方向上的复杂演化轨迹,而且还试图说明系统演化的空间模式。一般说来,系统中非线性关系所导致的浑沌可以认为是一种时间演化轨迹,同时也可以用分形来描述系统长期演化后的空间模式。这两种描述通过奇怪吸引子的分数维和李雅普诺夫指数等概念相关联。

(4)宏观与微观相统一的原理复杂性科学认为,经济系统的宏观变量大的波动可能来自于组成系统的一些元素的小变化。因此,为了探讨复杂系统宏观变量的变化规律,必须研究它的微观机制。但由于非线性机制的作用,又不能将系统进行分解,所以说必须将宏观与微观相统一。

(5)确定性与随机性相统一原理复杂性科学理论表明:一个确定性的系统中可以出现类似于随机的行为过程,它是系统“内在”随机性的一种表现,它与具有外在随机项的非线性系统的不规则结果有着本质差别。对于复杂系统而言,结构是确定的,短期行为可以比较精确地预涵,而长期行为却变得不规则,初始条件的微小变化会导致系统的运行轨迹出现巨大的偏差。

3.3复杂性科学所涉及的几个主要概念

(1)自组织(Self-organization)从系统论的观点来说,“自组织”是指一个系统在内在机制的驱动下,自行从简单向复杂、从粗糙向细致方向发展,不断地提高自身的复杂度和精细度的过程。这一过程是适应性的,使得系统能够更好地应付或处理它们的环境。

(2)突现(Emergence)突现是指复杂系统中的行为个体(Agent)根据各自行为规则相互作用所产生的没有事先计划但实际却发生了的一种行为模式。正如安德森所指出的那样,复杂系统“每个复杂的层面都会出现全新的特征。每个阶段都需要全新的法则、概念和普遍化,需要与上一阶段同样多的灵感和创造性。”在每一个阶段,新形成的结构会形成和产生新的突然出现的行为表现,如心智是一个突现的特征。

(3)混沌边缘(Edge of Chase)这是指一个复杂自适应系统运行在有序和无序之间的相交过程中出现的有界非稳定性的一种形式。是复杂系统的层次的行为中,系统的元素从未完全锁定在一处,但也从未解体到骚乱的地步。这样的系统既稳定到足以储存信息,又能快速传递信息。这样的系统是具有自发性和适应性的有生命的系统,它能够组织复杂的计算,从而对世界做出反应。混沌的边缘就是生命有足够的稳定性来支撑自己的存在,又有足够的创造性使自己名副其实为生命的那个地方,是复杂系统能够自发地调整和存活的地带。进化似乎永远都导向混沌的边缘。系统是通过对环境的适应而到达混沌的边缘。

(4)人工生命(alife)人工生命是用综合的方法来理解生命,用计算机、或也许是机器人等新型媒介来探索生物学领域的各种发展的可能性。人工生命研究演衍出了三个伟大洞见:①有生命的系统似乎总是自下而上地、从大量极其简单的系统群中突现出来。“我们从计算机模拟复杂的物理系统中获得的最为惊人的认识是:复杂的行为并非出自复杂的基本结构。“确实,极为有趣的复杂行为是从极为简单的元素群中突现出来的。”②获得类似生命行为的方法,就是模拟简单的单位,而不是去模拟巨大而复杂的单位。是运用局部控制,而不是运用全局控制。让行为从底层实现出来,而不是自上而下地做出规定。做这种实验时,要把重点放在正在产生的行为上,而不是放在最终结果上。③从生命的特点在于组织,而不在于分子这一点上来说,生命有可能不仅只是类似计算机,生命根本就是一种计算法。在此之所以介绍人工生命概念,是出于我们如下的认识:中医学从某种意义上讲,也可以被视为一种人工生命。

4生物系统的复杂性研究

人们普遍认为,生物的复杂性和非生物的复杂性是两类不同的复杂性,前者的复杂性程度比后者要高得多,而且有质的不同。生物复杂性有三个特点,其一是在复制生物结构的过程中,存在指令和控制,并由此展现出生长性和自适应性;其二是生物具有无双性,这导致不同层次、不同类群,甚至不同个体生物的复杂性,显示有很强的个性,这是在生物学领域应用数学方法的一个难点;其三是生物复杂程度的超巨性,这也使得生物复杂性难以量化。研究表明,许多生物体中存在混沌现象,兔嗅觉识别的过程、穴位的红外辐射、人的脑电信号、大鼠的心动周期信号、健康人的心搏、儿童的心理周期都具有混沌特征。另外,不少医学研究者将混沌理论应用于疾病的研究,对心脏病、精神病、癫痫病、糖尿病等疾病的发生机理、诊断与控制方法以及疾病的传播过程进行了具有实践意义的探讨。

5复杂性科学对中医学研究的启示

中医学研究的对象是人体,由于人体是复杂巨系统,所表现的各种疾病也极其复杂,在此,在应对复杂的人体与复杂的疾病,中医也经历了从简单到复杂的漫长过程,不断重复着经验━规则━临床验证━更新经验━更新规则循环往复不断完善与发展起来的,中医的辨证论治是以由历代医学的临床经验为建筑材料堆砌起来的复杂适应系统。中医学应用“寒则热之,热者寒之,虚则补之,实则泻之”等基本规则。但在临床上,针对不同情况,往往可以做得很细化,如要考虑药物的产地、患者所处的地域、所处背景等人文社会情况,而针对这些情况,也有要应用不同的规则。中医与新兴的复杂性科学,其起点是不同的,中医是针对人体的复杂巨系统出现的偏颇,纠偏补缺,而达到整体的协调;而复杂性科学是从还原论出发,研究多个行为主体(Agent)通过自组织,在形成不同层次结构时,所涌现的的新的特征。但这并不能掩盖中医学的复杂性特征,如朱时清院士认为,中医的自组织自相似与复杂性科学的特征吻合;西医注重物质实体,中医重视协调,生物复杂系统最重要的特点各组分关系高度协调。乔宇认为中医的理论基础是“整体论”,可以说中医属于复杂性科学。中医学的理论体系本身就是一个开放的复杂巨系统,中医的哲学思想基础即“阴阳五行系统”,阴阳五行模型体现了复杂系统的非线性特征。中医脏腑理论与复杂性科学相通,诊疗方法与复杂性科学相通,辩证施治的意象说属于近代科学模式识别。以分子水平来看,作为自然药物的每一种中药也都是一个复杂系统,一味中药往往具有很多不同效用,而当多味中药以不同的搭配组成方剂,则又是一个不同的复杂系统。因此可以说,人体是一个复杂系统,与之相对应的中医药诊疗体系是一个开放的复杂巨系统。

关于研究方法,宋琳莉等提出用系统思维代替中医整体思维与形象思维、本能思维。潘国凤等认为应以系统论与还原论相结合的复杂性科学研究中药。白云静等提出整体性思维与还原性思维逆向对接等观点。中医学研究可以借鉴的研究方法有:复杂性适应系统、人工神经网络,数据挖掘,从定性到定量的综合集成法,模型构建、人工智能等。

关于从定性到定量的综合集成法是从上世纪80年代中期开始的。1986年开始,在钱学森指导的“系统学”讨论班,对有关复杂系统的一些问题进行了探讨。经过5年的探讨与实践后,于80年代末,把对系统的研究加以拓广,提炼出开放的复杂巨系统的概念,并总结概括了处理开放的复杂巨系统的方法论,形成了“从定性到定量的综合集成研讨厅体系”的构思,把复杂系统的研究推上了一个新的台阶。并从概念上弄清楚了“复杂性”问题,得出如下结论:“复杂性”实质上是开放的复杂巨系统的动力学特性。由于开放的复杂巨系统也把复杂系统、复杂巨系统和开放的简单巨系统作为特殊情况,所以复杂性的研究自然也把这些系统的动力学特性概括在其范畴之中。这就对复杂性的研究方向有一清晰的把握。综合集成研讨厅体系是处理开放的复杂巨系统的方法论,从思维科学的层次来看,它又是思维科学的一项应用技术。它的构思是把专家们和知识库、信息系统、各种人工智能系统、计算机象作战指挥厅那样组织起来,形成一个巨型的人机结合的智能系统,共同作用于复杂问题的求解。从对综合集成研讨厅体系的构思,我们可以看出,与历史上其它方法论不同的是,综合集成研讨厅体系不是一系列公式的汇总,也不是以某几条公理为基础搭建起来的抽象框架。它的实质是指导人们在处理复杂问题时,把专家的智慧、计算机的高性能和各种数据、信息有机地结合起来,构成一个统一的、强大的问题求解系统。因此,从软/硬件体系上和组织结构上实现该系统,使之能真正应用于复杂问题的研究实践显得尤为重要。我们对证候研究的研究,借鉴了从定性到定量的综合集成研讨厅体系的研究方法,取得了一定的成果。

参考文献

[1] 宋学锋.复杂性、复杂系统与复杂性科学[M].中国科学基金,2003(5):

262-269.

[2] Waldrop M.复杂:诞生于秩序与混沌边缘的科学[M].陈玲,译.北京:三联书店,1997,1-7.

[3] 成思危,冯英艳.复杂性科学探索[J].北京:民主与建设出版社,1999,