首页 > 文章中心 > 电网信息论文

电网信息论文

电网信息论文

电网信息论文范文第1篇

关键词:网络化控制;电力系统运行与控制;信息传输;智能二次设备;二义性

1引言

现代大型电网的安全控制是一个未能很好解决的复杂问题,2003年的美加大停电便是例证,美国《技术评论》杂志已将其列为九个开拓性的新兴科技领域之一。电力系统中现有的各种控制系统(如继电保护、综合自动化、功角稳定控制、无功电压控制)之间相互独立,且大多数采用点对点式的专线通信方式。如将基于网络的控制系统(NetworkedControlSystem,NCS)技术引入电力系统,可望为解决大系统的安全控制问题提供一条崭新的途径。

NCS系指在控制系统的信息传输途径中含有网络成分,有些文献也称其为网络化控制,或网络环境下的控制。NCS具有可靠性高、控制灵活、易于维护、扩展方便等众多优点,一经提出便已在众多领域中得到了广泛应用,如网络化家电、基于网络的智能制造等。

NCS的巨大优越性使其必然也会在电力系统中得到更广泛的应用。但建设专用网络的投资巨大,不太可能为各种特定的功能建设各自独立的网络,各种控制信息及电力系统的其他运行信息运行于同一电力信息专用网络平台上的可能性比较大(也可能将公用网络纳入电力信息网络中,以实现某些特定信息的传输,或作为某些运行情况下传输某些信息的备用)。本文称这样的电力信息专用网络平台及其所联的各种电力二次设备,为基于网络的电力系统运行与控制系统(PNCS)。

PNCS的实现可显著简化控制设备的连接方式,实现各种异构控制设备的网络集成和信息共享,使全局稳定控制和全局继电保护等一些崭新的控制功能成为可能,它的进一步发展可能会模糊现有电力系统控制设备之间的界限。但电力系统各种控制设备的信息差异很大,通过网络传输控制信息将存在时延不确定、路径不确定、数据包丢失、信息因果性丧失等问题,在实际应用PNCS前必须从理论上解决这些问题。目前还没有学者明确提出就该问题进行系统的研究。解决上述共性问题、掌握基于网络的电力系统控制的标准和协议,将是我们在新一代电力系统控制设备竞争中面临的一大挑战。

在过去的一段时期内,数字化是电力技术发展的标志性成果之一;信息网络技术的应用应是下一阶段的发展主题之一。在数字化发展过程中,对具体装备的数字化研究工作比较关注,与数字制造等领域相比,针对数字化的概念、共性问题等开展的宏观性研究工作相对较少。在网络化发展过程中,选择哪一种研究模式也是一个值得探讨的问题。基于这样的认识和对未来的评估,本文针对PNCS的一些相关问题进行了讨论。

2发展展望

网络化带来的最直接变化是变电站二次设备接线形式的改变。数据采集和控制命令由点对点的专线传输转向由公共网络传输。这一转变将使二次设备的接口规范化、简单化、便于维护和扩展。规范化和简单化系指使用同样的网络通讯接口采集或输出数据,二次设备的输入输出接口在形式及数量上都将变得简单,且不同设备采用相同的技术。

在变电站网络上接入大量二次设备以后,人们便会考虑调整一些二次设备的功能,因而影响到网络传输的信息的变化。如:在点对点时代,可能对许多二次设备采集同一电流或电压量,再进行滤波处理。在网络化时代,可在采集装置中进行这些模拟量的各种公共的前期处理,再将处理结果量通过网络传给众多二次设备。因此使变电站二次设备的组成及各种设备的软件发生变化,智能的数字化采集装置将得到广泛应用。

发展的第三阶段便是基于网络的各类二次设备的数据交换和信息集成,实现变电站数据的无二义、可重用。网络为数据交换和数据集成提供了最为广阔的空间,但要完成这一步非常艰巨,考虑到二次设备制造厂家众多及变电站已有的众多数字二次设备,这一步的实现将需要较长的时间。

在实现了变电站数据无二义后,网络化的优势才开始真正体现,带来变电站数字设备的变革,即数字设备功能的结构性调整和新功能新设备的层出不穷。具体举例如下:现有各类数字设备和系统中的某些功能是相互重复的,这些重复的功能在数据无二义的基础上可以合并。经过以上发展后,许多装置的功能已变得非常简单,加上计算机技术本身的发展,许多装置作为物理硬件存在的必要性将受到质疑,许多硬件平台将被合并,变电站装置的数目将显著减少,且不同功能硬件平台的结构都将实现标准化,数字设备的硬件多样性也许将一去不返,只剩下规范化的硬件平台,具体功能由软件来实现。此外,由于网络提供了联系手段,数据的无二义将使各类数字设备之间可以相互交流,一些以前不能实现的新功能将变为现实,如各类数字设备记录的电力系统故障信息的综合分析和应用。

从系统级的角度来看,网络化带来的变化主要集中在后两个阶段,目前颇受关注的广域控制和广域保护、故障信息处理系统等均是这方面的代表。网络化的发展将使获得全局信息的成本大为降低,获取信息的速度也越来越快,系统级的新功能将越来越多。最终网络将使电力系统中的任何数据和信息均可简单地得到,且无二义性,变电站的数字设备被功能强大的标准化计算设备所替代,研究人员的主要精力将用于开发各类功能强大的软件,而变电站“新设备”的安装,也可能由某一个电力系统软件管理中心的值班人员在远距离完成,将某单位开发的新型功能软件通过网络传送到某个变电站的超级计算机,由软件去适应变电站的网络环境,并开始发挥作用。电力系统的实时控制现在大多数由就地装置完成,在网络发展到足够快速以后,也可能由超级计算机在收集全局实时信息以后作出控制决策,从根本上改变电力系统二次系统的面貌。

3研究现状

现有的研究工作主要集中在网络时延对电力系统控制系统稳定性的影响分析、信息传输特性的分析、网络信息流控制技术、通信体系结构等方面。尽管以往没有明确提出对PNCS进行研究,但许多研究工作都可归结为以下几方面:

(1)网络时延对控制系统的影响。文[1]对基于信息网络的三方负荷频率控制(LFC)进行了仿真研究,研究结果表明,在参与调频的电厂中,当超过66%的电厂收到的频率控制信息延时超过两个数据包的传输时间时,电力系统的频率将发生振荡。文[2]对基于网络的电力系统稳定器(PSS)的动态特性进行了仿真研究,结果表明,网络时延大于250ms时,发电机的有功出力将出现振荡。其他类似的研究也都表明控制系统的稳定性表现出很强的时延依赖性。

(2)对信息传输特性的分析。目前,这方面的研究方法主要有实验验证和基于统计模型的网络仿真方法[3-7]。文[3]以实验验证了通过ATM网络传输远程保护信息的可行性,实验结果表明,当网络负载大于96%时,网络的丢包率和时延会增加,为确保安全可靠地通信,应采取有效的流量控制策略限制网络流量为链路容量的95%以下。文[4]采用网络仿真方法,在不同的网络流量环境下,对基于Agent的差动保护信息通过网络传输的时延特性进行了仿真评估,认为必须构建企业专用通信网络来满足差动保护信息传输的需要。文[5]采用网络仿真方法验证了通过专用IP通信网络传输远程保护信息的可行性和有效性。文[6]采用网络仿真方法对两区域四机系统中PSS的远程稳定信息的传输时延特性进行了研究,认为速率为56kbps(56Klink)、1.544Mbps(DS1)、44.736

Mbps(DS3)、100Mbps(100BaseX)和594.43Mbps(OC-12)的专用通信链路都能满足远程稳定信息传输时间的要求。采用基于统计模型的网络仿真方法得到的结果只是网络的平均动态特性,用于分析保护和控制信息的传输特性可能不够,有必要采用确定性的信息建模方法进行研究,以得到系统网络时延最大值及避免一切由缓冲区溢出带来的包丢失。

(3)网络信息流控制。目前主要针对网络中间节点(如交换机或路由器)进行研究。为满足综合信息传输中保护、视频、管理等信息的不同服务质量需求,文[8]提出了在ATM交换机中采用混合优先级控制策略,研究结果表明,这些策略在保证各种信息服务质量的基础上提高了网络链路的利用率。文[9]提出了采用时延控制策略对同时到达交换机的保护信息流进行控制。这些方法并不能确保端到端的响应时间要求,因此有必要研究基于网络端节点和网络中间节点相结合的信息流控制机制。

(4)通信体系结构。华盛顿大学电力系和计算机系组成的GridStat研究组[10,11]从电力系统运行状态信息传输的实时性出发,提出采用网状通信结构连接厂站和控制中心。文[12]从网络的容错性和可靠性角度出发,提出了分层次的通信体系结构,该结构分为:厂站层、区域层和系统层三层。构建合适的通信体系结构还有许多问题有待解决。

4有待解决的问题

(1)适用于网络环境的电力系统控制方法。基于网络综合传输电力系统的各类数字设备的信息,将使控制设备面临时延不确定、路径不确定、数据包丢失、信息因果性丧失等问题,尤其是数据包丢失可能影响系统的可观性和可控性。现有的电力系统控制理论都是针对时延确定系统的,需研究这些新问题对于已有控制方法的稳定性的影响,并借鉴NCS的研究成果,构建新的网络化控制理论与方法。此外,网络为广域控制设备的实时信息交互提供了可能,可以改变基于先验知识的控制方法,显著改善各种控制系统的性能,但也对实时协同控制策略提出了挑战。应研究网络环境下多源、异构信息的感知和自主适应原理与方法,异构系统的协同决策支持理论,控制系统面向网络协作的行为模型,海量散乱测量数据的稳定、高效处理方法。

(2)电力系统综合传输的专用网络技术。电力系统是一个快速的分布式实时系统,对可靠性的要求很高,与网络化制造、网络化家电不同,现有的成熟的网络技术难以满足需要,可能必须针对PNCS的特点研究专用技术。包括典型的变电站控制网络结构和站间网络结构标准、电力高速专用网络的应用层协议、电力实时数据的流量均衡方法、信息分类方法、拥塞与流量识别及控制、电力系统故障等紧急情况下的信息调度方法、电力系统分布式环境下的实时中间件技术等。

(3)统一的电力系统信息模型。数字化的一个基本要求是彻底消除数据和知识的二义性,通常由公用的数据结构或协议来实现。在数字化时代,数字设备相互独立,无二义性是一个局部问题,且在制造厂家内部就可得到较好的解决。在PNCS时代,无二义性的实现则要艰巨得多,网络化使众多设备相互集成,必须实现全局的无二义性和不同厂家之间的无二义性。建立各种类型的标准数据和统一的公共信息模型是PNCS必须解决的问题。

(4)基于网络的电力系统控制的新功能与新设备。网络的应用将使以前不能实现的一些控制功能成为可能,如基于网络的稳定控制系统、基于网络的低频振荡抑制系统、基于网络的二次设备动态监控与协调等。PNCS带来的现有设备功能的结构性调整,也会出现一些新的功能设备。

(5)PNCS的一些具体共性技术问题。如数据采集问题。在网络化集成时代,必须解决数据采集的同时性、多采样率、多精确率等问题。又如海量数据的处理、计及信息网络动态特性的电力系统分析计算、电力信息综合传输特性分析仿真平台、电力系统控制专用通信网的物理仿真平台等均是网络化时代必须解决的新问题。

5结束语

PNCS的研究与实现才刚开始,到底会如何发展,今天很难对其有一个清晰的认识;但将其作为一个问题提出来以引起更多人的思考,也许会使其发展的道路相对平坦一些。

参考文献

[1]BhowmikS,TomsovicK,BoseA.Communicationmodelsforthirdpartyloadfrequencycontrol[J].IEEETransonPowerSystems,2004,19(1):543-548.

[2]WuHX,NiH,HeydtGT.Theimpactoftimedelayonrobustcontroldesigninpowersystems[A].IEEEPowerEngineeringSocietyWinterMeeting[C],NewYork,USA,2002,2:1511-1516.

[3]SerizawaY,ImamuraH,SugayaNetal.Experimentalexaminationofwide-areacurrentdifferentialbackupprotectionemployingbroadbandcommunicationsandtimetransfersystems[A].IEEEPowerEngineeringSociety1999SummerMeeting[C],Edmonton,Canada,1999.

[4]CouryDV,ThorpJS,HopkinsonKMetal.Anagent-basedcurrentdifferentialrelayforusewithautilityintranet[J].IEEETransonPowerDelivery,2002,17(1):47-53.

[5]SerizawaY,ImamuraH,KiuchiM.PerformanceevaluationofIP-basedrelaycommunicationsforwide-areaprotectionemployingexternaltimesynchronization[A].IEEEPowerEngineeringSocietySummerMeeting[C],Vancouver,Canada,2001.

[6]RauxGJ.Telecommunicationofstabilizingsignalsinpowersystems[D].WestVirginiaUniversity,2003.

[7]SerizawaY.ShimizuK,FujikawaFetal.ATMtransmissionsofmicroprocessor-basedcurrentdifferentialteleprotectionsignals[J].IEEETransonPowerDelivery,1999,14(2):335-342.

[8]DoiH,SerizawaY,TodeHetal.SimulationstudyofQoSguaranteedATMtransmissionforfuturepowersystemcommunication[J].IEEETransonPowerDelivery,1999,14(2):342-348.

[9]DoiH,SerizawaY.TheapplicabilityofhybridprioritycontrolforATMnetworkundertherequiredQoSconditions[A].IEEEPowerEngineeringSocietyWinterMeeting[C],NewYork,USA,1999,2:1511-1516.

[10]TomsovicK,BakkenD,BoseA.Designingthenextgenerationofreal-timecontrol,communicationandcomputationsforlargepowersystems[A].IEEEProceedings-SpecialIssueonEnergyInfrastructureSystems[C],Yokohama,Japan,2003.

电网信息论文范文第2篇

摘要:城乡网络设计建设

江苏省电力公司在2001年实施了电力信息网改造工程,县供电公司已和变电所实现了联网。根据江苏省电力公司电力营销管理信息系统的推广和应用要求,江苏省电力公司选择了十个县供电公司,作为实施城乡营销一体化营销信息系统工作的试点。如东县供电公司是试点中最大的一个县供电公司,共有19个变电所,42个乡供电所。省电力公司要求我公司的乡供电所采用统一的电力营销管理信息系统,同时各乡供电所配备行政电话进行业务和工作上的联系。下面就该系统网络方案的设计建设作个简述,以供参考。

1网络方案的背景和需求

在先期的电力信息网建设中,如东县供电公司采用的是SDH组网方式,在变电所采用SDH设备组成主干155M的环网,在公司本部和信息中心千兆主干网相连,接入江苏电力广域网。营销信息系统是江苏省电力公司县级电力信息网的组成部分。本方案将综合考虑这些已有的网络拓扑,充分利用电力信息网络提供信道和光纤。考虑到农村供电所和如东县供电公司的数据和语音通信,农村供电所的数据通信必须采用以太网技术,至少提供15个以上10/10MbpsRJ-45交换接口;语音通信每个供电所必须提供4门分机电话。在县供电公司农网工程中各乡供电所网络接入的基础上,构建一个可行、可靠、稳定、平安的综合信息平台,以便准确、快捷地进行数据和语音的业务应用。

2网络方案的设计和建设

网络整体方案采用以太网交换机组网,各供电所从最近的变电所通过光纤接入电力信息网,变电所到供电所之间,由变电所提供一个E1口。利用该端口通过光纤实现和供电所联网,每个供电所都对应有一条通向如东县供电公司的E1电路。从而在县公司和基层供电所之间实现数据传输及IP电话和传统PBX电话业务的互相通信。技术上,数据交换选择以太网交换机综合接入方案,网络协议采用TCP/IP技术。为了便于管理,统一选择Cisco网络设备,营销主交换采用Cisco3550,各乡镇供电所则选用Cisco2950交换机;语音接入采用VoIP技术,统一使用Cisco7910IP电话。

整个网络分为两大部分摘要:

第一部分为各供电所到电力信息网的接入部分。主要利用环网上各变电所同相邻营业所之间的光纤,将供电所内的局域网同SDH设备的连接,包括各PC终端和电话。

每个供电所的PC终端和IP电话直接接入到Cisco2950交换机上,利用SDH上的E1端口,用一个E1到以太网桥将E1转成以太网,利用以太网的单模光电转换器将以太网的通道延伸到供电所,提供供电所的以太网端口接入。

第二部分为县供电公司中心网络的建设,主要是用电营销数据中心的建设,以及城乡供电所电话通讯网络和电力系统内部电话网的连接,公司数据网络中心提供对数据库服务器和其它应用服务器的连接。在SDH组网方式下,只需要增加相应数量的E1到以太网的网桥就可以了,而由于SDH设备直接提供RJ-45接口,则不需要增加网桥就可以直接连接到Cisco3550上。

对于IP电话,由于以太网交换机和基础通讯网(SDH,ATM,DWDM)构成了网络IP电话的智能基础架构,只要是能够进行TCP/IP的网络,我们就可以建立网络IP电话系统,且IP电话网络的结构可以是任意的,电话网络的各个单元(桌面电话,Callmanager等)可以在网络任何位置进行部署。

(1)营销系统内的IP电话通讯摘要:

根据分配到的号码段,我们可以为每一门桌面IP电话从该号码端中分配不同的号码,同样我们也可以给一门电话分配多个电话号码,不同电话之间的呼叫建立通过Callmanager来寻址实现,而呼叫一旦建立后,语音数据流就不必再经过Callmanager。

(2)IP电话和公司内线电话通讯摘要:

在县供电公司端,配置一台服务器用来作为IP电话的CallManager(交换机),配置一台Cisco2650路由器用作IP电话和传统的PBX电话程控系统互连。2650上配置有1个E1接口的卡,这样PBX通过E1接到2650路由器上,同时进行一些软件上的设置,在PBX交换机上添加一块E1的接口板。

3设计建设和应用的几点思索

3.1数据和语音网络的集成

(1)解决了公司本部同城乡营业所之间的通讯通道新问题,使得所有的城乡营业所都获得保证的带宽(2Mbps),并且营业所获得了同公司数据中心相连接的以太网通讯端口,建立了一个完整的从营业所到如东县供电公司直接的数据网络平台。在以上的数据网络平台上建立语音网络,即以网络IP电话的方式来实现在数据网络上实现完整的语音网络,实现数据、语音网络的统一。

(2)数据、语音综合传输带来的明显优势是成本下降摘要:①统一到计算机网络技术上的多媒体应用无论设备费用或线路费用都相对便宜。②不需对现有布线系统作任何修改。对供电所的布线可采用一套系统。③不必在每个分支机构均配备PBX。④桌面IP电话终端的增加非常方便,只需将电话直接插入以太网交换机就可以,在Callmanager上不需要任何的设置该电话就可以获得电话号码,并开始工作。

(3)统一的网管平台,可以利用现有的网络管理平台,集成数据语音网络的管理。智能的网络可以最大限度的发挥网络设备的能力,现在网络交换机均具有智能处理业务能力,能够对不同的IP业务采用不同的优先处理方法,采用基于IP的数据语音网络解决方案,可以充分的利用网络交换机的这方面能力。

3.2虚拟网技术和IP地址的分配

公司有多种应用系统,所以网络系统的设计应能在全网范围内实现虚拟网的划分,每个供电所分配16个IP地址,单独网关组成一个虚网。由于每个工作站和每部IP电话均需要一个IP地址,对于IP地址的分配,我们使用DHCP动态分配IP地址,这样能很好地保证网络语音系统正常运行及应用系统的平安性、数据可靠性。

3.3网络的一些不足之处

电网信息论文范文第3篇

通信平台支撑的业务主要有两个类型,第一是自动化业务,第二是电信信息采集营销业务。在进行输变电自动化通信过程中,一般信息传输量非常大,对信息传输的可靠性和实时性要求比较高。因此建立的主控通信中心传输容量应该得到保障。就当前的配用电通信网而言,因为低压输变电站在的位置是供电末端。因此,具有受众多、覆盖范围广以及布局密等特点。当前,配用电通信网的组成方式有载波、光纤以及宽带无线等。从中看出,这些传输方式各自存在优缺点,光纤通信相对于宽带而言,损耗率比较低,在实际使用中抗干扰能力比较强,成本低等优势,因此在电力通信中被广泛使用。在多种无线通信技术的选择上,宽带无线接入技术,该技术尤其独特的系统性能,例如:McWiLL。在我国已经被大量使用,该技术水平成熟度高。最有效的组网方式是将多种通信方式混合使用,发挥出组网优势。

2配电通信网网络架构

配电通信网络承载的业务内容比较广泛,有用电信息采集业务、配电自动化业务。其中,在电信信息采集业务中,有包含诸多业务,例如双向营销互动业务、视频通讯业务等等。这个时候的网络构架应该根据不同的网络业务需求进行搭建,需要满足实时性、安全性的组网技术要求。因此,在进行信息系统平台搭建时,应该融入多网融合,这个融合可以包含专业的营销管理系统,将该整个系统纳入配电通信网内,进行科学规划,这样可以将配电信息快速传输到用户营销侧,使得用户及时掌握电网运行情况,从而进行用电调整。用户接入网中的数据通过光纤、宽带无线和电力线载波通信方式接入配电通信网。配电通信网中的lOkV变电站负责接收用户用电信息。在整个输变电络中,有诸多组成,像配电室、开关站以及环网柜等等。选择自动化配置和自动化配变检测。当下,配电通讯网络,一般选择的是“光纤为主、无线宽带为辅、公网为补充”组网方式,这个方式最大特点是将大量的数据汇集在通信骨干网中。营销系统结合以后,就可以更加紧密关注变化。而且可以将更多注意力转移到用户中,了解用户的需求,根据实际需求,进行配电调整,实现电网运行水平提高,保障精细化、合理化以及高效化管理目标实现。

3电力营销与用户接入网网络架构

电力营销以及用户接入网过程中,已经形成一体化的信息通信平台,这平台能够发挥出巨大作用。可以实现对于户接入网监控目的,进行监控家用电器用电情况以及开关情况。最终的信息会于无线传感网将其智能反应在外网上,这些信息的积累是实现主动营销策略最关键依据。这个过程中,应该保障信息传输准确性和实时性。使用多个智能表计将其集中连接起来,实现对小区内用电信息进行采集,集中器会将前端设备进行屏蔽,给予统一的连接接口,最终传输到上层变电站中,这样就可以整合整个小区用电信息,并且可以快速传输给电网。

4结束语

电网信息论文范文第4篇

电力企业电网系统管理过程中,过于注重电网应用管理,忽视了电网运行管理,尤其是电网运行管理中的系统和网络安全,缺乏完善的运行管理制度,工作人员工作中缺乏指导,无法发现管理中存在的问题,管理工作不规范,电网管理人员随意更改网络和系统,网络和系统安全存在非常大的安全隐患,无法对电网调度自主化信息网络安全提供保障。

2电网调度自主化网络安全技术

安全技术在电力企业网络和系统管理中的应用,有效提高了管理质量,为电网调度自主化网络系统提供了充分的保障,促进了电力系统的安全运行,有效提高了电力企业的经济效益和社会效益,促进电力企业进一步发展。

2.1提高网络管理人员的综合素质

网络管理人员是电网调度自主化信息网络管理的核心,网络管理人员的专业水平和综合素质直接关系网络管理质量,因此,电力企业必须加强对网络管理人员的管理,提高他们的综合素质和专业水平,避免出现泄密和误用等风险性极大的事件,提高网络和系统管理质量,为电网调度自主化信息网络安全运行提供保障。

2.2完善运行管理制度

运行管理是电网管理工作的重心,电网安全运行才能实现电网系统的重要作用,所以电力企业必须完善运行管理制度,在相关制度规范下,指导网络管理人员的工作,使网络管理人员能够及时发现管理中存在的问题,及时解决问题,保证系统和网络安全运行,运行管理中要将系统和网络安全管理放在突出位置,为电网调度自主化信息网络安全运行提供保障。

2.3加强安全管理

安全管理的内容比较多,不仅要加强系统安全管理,还要加强信息资源管理,为了防止信息资源管理,应该根据不同的业务系统,对专用网络采取安全技术,例如,访问控制技术、加密技术以及身份验证技术等,每一个网络管理人员进行网络和系统管理的时候,要通过相关验证,对于外部访问用户,要严格控制系统安全性,限制外部访问用户使用系统信息,从而为系统安全提供保障,为了防止数据信息泄露,应该使用备份和恢复技术。除此之外,要加强信息使用者的理解,科学、合理地利用电网调度自主化信息网络,保证网络运行安全。

2.4加强设备安全管理

电力企业设立专门网络管理职位,明确管理责任,对网络管理人员进行严格的管理,避免网络管理人员在电网调度自主化信息网络中查阅其他无关信息,定期对设备进行维护,避免设备瘫痪造成网络和系统管理出现问题,完善监测技术,对网络和系统管理试行实时监测,及时发现管理中存在的问题,及时解决问题,从而保证电网调度自主化信息网络安全运行。

2.5实现信息单向传输

系统交互运行存在很多安全隐患,为了保证网络和系统安全,电网调度自主化信息网络系统运行过程中,应该实现信息单向传输,实现调度控制系统、调度生产系统、调度管理系统以及办公自动化系统之间的有效隔离,提高系统运行的独立性,避免系统运行过程中出现全面瘫痪的现象,提高网络和系统的安全性,为电网调度自主化信息网络安全运行提供保障。

3结束语

电网信息论文范文第5篇

由于EPON系统包含三层路由设备,可以天然隔离广播风暴和ARP攻击,即使发生异常,也可以把负面影响控制在其相应的VLAN区域内,避免对整网产生影响。所以,从后续实际运行维护的角度考虑,用户用电信息采集系统采用分布式三层架构比较合适。

网络物理规划。巢湖供电公司电力用户用电信息采集系统的通信方式,对公用配变用户信息的采集,采集主站到集中器使用光纤通信,集中器到采集器采用电力线载波通信的方式。对专用配变用户信息的采集,采集主站到专变采集终端采用的光纤通信的方式。根据巢湖市配网的结构和城市道路的走向,电力用户用电信息采集系统现期的光纤网络分为三个主环,然后采用分支到集中器和专变采集终端的方式。由于采集系统主站到采集终端是点到多点结构,故采用无源光纤以太网,简称EPON,网络的拓扑图如图一。EPON网络的主要优点是点到多点结构,且光纤的分支点使用的光分配器ODN是无源的,不需要电源,施工方便,运行安全可靠。由于只在集中器和专变采集终端设置IP地址,采集器不设置IP地址。巢湖电网集中器和专变采集终端数量按1万台考虑,网络按中规模网络进行规划。三个环网的局端设备OLT设备通过光纤网络汇聚到一台H3CS-7502的光交换机上之后,再通过综合数据网NE40的VPN通道,接入省电力公司的电力用户用电信息采集系统主站。

网络物理保护。由于EPON网络不支持环网结构,为对采集系统网络进行保护,我们采用双局端设备OLT,光纤用“手拉手”方式进入用户端设备ONU。ONU配备一主一备双光口,当光纤故障造成主光口无信号时,设备自动启用备用光口,ONU与采集设备采用双绞线连接。由于只在采集终端配置IP地址,ONU不需配置IP地址,故ONU在主、备光口切换时不需要重新配置IP地址,从而实现了信道的自动切换。“手拉手”的两根芯可以使用同一根光纤以节省投资,网络保护结构如图二。二、电力用户用电信息采集系统网络逻辑安全措施用电信息采集系统的逻辑安全采取四项措施。措施一为终端认证,ONU通过对集中器进行MAC认证以及IP对MAC绑定,实现对终端的安全识别,同时限制用户接入的速率,避免对上层网络和系统的流量冲击。