首页 > 文章中心 > 气候变化的对策

气候变化的对策

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇气候变化的对策范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

气候变化的对策

气候变化的对策范文第1篇

气候变化对农业生产的影响

1.气温变暖对农业生产的影响气象条件影响作物的分布、生长发育、产量及品质的形成。气温升高将缓解本地区农业生产光照有余,热量不足的矛盾,积温增加,延长作物的生长季,减轻霜冻对作物的危害。同时,气候变暖扩大了农业生产布局,作物的种植北界北推、上界升高。气候变暖对蔬菜生产十分有利,有利于保护地栽培,缩短蔬菜淡季的时间,丰富人们的菜篮子。但是,随着气温的上升,将大大增加土壤的蒸发量,加重干旱程度。同时,暖冬可造成农作物病虫越冬基数增加、越冬死亡率降低,将增加来年的虫口密度,增加病原菌的繁殖能力,使农作物受害的几率增多,危害期延长,会加重农业病虫害的危害程度【3】。

2.降水量变化对农业生产的影响根据气象与环境监测资料分析表明,气候变暖干旱发生频次增加。海拉尔地区干旱化趋势在近10年不断加剧,降水减少和气温升高是干旱产生的主要因素。春季(4~5月)干旱,土壤墒情差,影响农作物播种与出苗。生长季(6~8月)降雨量影响农作物产量,造成农业减产。2001年,夏季降水量为最少年,发生了春夏连旱【4】;2004年入春以来,气温偏低,光照不足,3~5月,海拉尔平均气温与历年同期接近,但阶段气温偏低,尤其进入5月中旬,平均气温与历年同期相比低2.6℃,5月下旬比历年同期低0.4℃。5月份日照217.8小时,比历年同期少80.8小时,减少27%。低温和日照严重不足,致使海拉尔区设施蔬菜及马铃薯等大田作物播种延后半个月左右,农作物生长期缩短,影响了作物产量。5月26日、6月2日大风,致使海拉尔区189个大棚被刮坏,6360亩油菜、6230亩小麦田种籽被刮出,两次风灾共造成经济损失308.18万元【5】。

农业发展面临的主要困难

根据气象与环境监测资料分析表明,近60年来,海拉尔气候有明显变暖的趋势,尤其20年来气温升高明显;平均降水量有减少的趋势,未来水分亏缺状况会加剧,尤其是生长季的降蒸差会更大,水分亏缺是限制农业生产的主要因素。气候变化引起的作物种植结构和种植制度的变化在很大程度上取决于水分状况。若本地的水热变化不同步,热量资源增加的有利因素很可能由于水分的缺乏而无法得到有效利用。所以,海拉尔农业发展面临一些瓶颈:一是农业基础设施建设还比较落后,抗灾能力不强;二是极端性气候对农业生产的影响越来越多,越来越重,防灾避灾压力大;三是土地流转滞后于农村劳动力转移,从事农业生产的劳动力素质下降,新技术推广难度加大;四是免耕播种、座水种、地膜覆盖、喷灌等旱作节水技术等增产效果显著,推广势在必行,但又因投入不足,推广面积还不大。

农业应对气候变化的对策建议

海拉尔区按照发展现代农业的要求,合理利用气候资源,及时调整作物种植比例和最佳适应性布局,减少粮食生产的风险,已成为当地农业生产面临的主要问题。笔者就如何合理开发利用气候资源,科学规划,调整农牧业产业结构以及防御和减轻自然灾害的影响,提出了农业应对气候变化的对策建议:

1.调整农业结构和布局,改革种植制度。合理的调整农业结构,提高农业水分利用效率是解决水资源短缺,实现水资源可持续利用,减缓干旱化趋势,增加农业抗旱能力的重要途径之一。今后,要适当增加玉米等抗旱作物种植面积;采用免耕播种等防灾抗灾、稳产增产的技术措施,合理利用农业气候资源,防御农业气候灾害,提高应对气候变化的能力。

2.选育和推广适应气候变化的作物新品种。选育优良品种是农业应对气候变化最根本的适应性对策之一。引进、培育并大力推广良种和高新技术,提高作物自身的抗逆性,以增强农作物适应气候变化和抵御自然灾害的能力。

3.加强农田水利基础设施建设。农田水利基础设施是农业生产的基础,是农业抗灾减灾的有力保障。从长远考虑,要加强农田水利基础设施建设,增加对农田水利基础设施建设的投入,从而提高对气候变化的应变能力。

4.大力发展节水农业,提高水资源利用效率。气候变暖和干旱将使水资源成为制约农业发展的重要因素。因此,应大力发展节水农业,加大节水滴灌资金投入和政策扶持,优化整合国家农机购置补贴、农业综合开发等项目建设资金,加大财政扶持和政策倾斜,提高农业综合效益,实现水资源可持续利用。

5.建立及强化农技推广体系,提高科研成果的转化率。通过健全农技推广体系,做好先进生产技术综合配套的应用,加快良种、精量播种、节水滴灌、测土配方和病虫害综合防治等实用技术的综合集成应用,确保粮食生产的高产、优质、高效。

6.加强农业灾害性天气的中长期预测和预报。气候变化导致气象灾害的多发性、异常性日益突出,因此,提高气象灾害监测预报的准确性和灾害预警的时效性成为当务之急。各地政府部门应遵循趋利避害的原则,根据气候变化情况合理安排粮食生产;加强应急反应能力建设,提前做好预防工作,提高人们防灾减灾的意识。

气候变化的对策范文第2篇

关键词气候变化;农业气象灾害;影响;防御对策;新疆乌鲁木齐

中图分类号P467;S42文献标识码A文章编号 1007-5739(2011)03-0301-02

Effectof ClimateChangeonAgrometeorologicalDisastersandCountermeasuresinUrumqi

LIU Sheng-mei

(Meteorological Bureau of Urumqi in Xinjiang Uygur Autonomous Region,Urumqi Xinjiang 830002)

AbstractBased on Urumqi from 1960 to 2009 observational data of statistical analysis,the results showed that the Urumqi climate changed greatly,mild winter phenomenon was clear that the annual precipitation showed ascendant trend,main influence of Urumqi agrometeorological disasters had a corresponding change,mainly displayed in drought disasters increasing,frost,cold wave disaster reducing,pests increasingly severe. Countermeasures were proposed to achieve the disadvantages and guarantee the sustainable development of agriculture.

Key wordsclimate change;agrometeorological disasters;influence;countermeasure;Urumqi Xinjiang

乌鲁木齐是亚欧大陆的中心,是世界上距海洋最远的城市,属于典型的温带干旱大陆性气候,城东是海拔5 400 m的博格达峰,城南是雄伟壮丽的天山,复杂的地形、独特的地理位置形成了乌鲁木齐独特的气候[1-2]。

1数据来源与处理

乌鲁木齐市和乌鲁木齐县政府距离50 km左右,属同一气候带,乌鲁木齐市的气候资料完全可以反映乌鲁木齐县的气候情况。气候数据来自乌鲁木齐市气象站1960―2009年的观测资料,农业气象灾害资料来自1960―2009年乌鲁木齐县《乌鲁木齐县志》[3]。通过原始数据的统计分析,找出乌鲁木齐的气候变化规律,以及气候变化对灾害的影响。

21960―2009年的气温和降水量变化特征

2.1气温的变化特征

据资料统计乌鲁木齐市年平均气温6.9 ℃,利用线性回归法对气温进行分析(图1),结果表明:1990―2009年平均气温7.4 ℃,比前30年升高了1.0 ℃,2000―2009年平均气温7.8 ℃,比前40年升高了1.2 ℃[1]。其中冬季变幅最大,增温明显,夏季变化较小,相对较稳定,对气候变暖贡献最大的是冬季增温。随气候变暖,日平均气温稳定通过0 ℃的初日、终日分别提前和推迟。积温增多,无霜期延长使农作物得到更多的热量,提高了农作物的复种指数和产量,减少冻害,但暖冬出现也增大了病虫害的越冬存活率。同时气温升高,风力加大,会导致蒸发量加大,随着降水的减少,加剧了土壤水分的供需矛盾。

2.2降水的变化特征

乌鲁木齐市1960―2009年的平均年降水量为265.1 mm,1990―2009年平均降水量241.3 mm,比前30年增加了66.6 mm;2000―2009年平均降水量比前40 年增加了54.5 mm(图2)。上述分析表明,乌鲁木齐市气候变化中,气候变暖和变湿几乎同步进行。

3乌鲁木齐市主要农业气象灾害

3.1干旱

农业生产离不开水,没有水也就没有农业。长期无降水或降水偏少,不仅空气干燥,土壤缺水,还会导致河水断流、水库缺水甚至干涸。干旱作为灾害的概念,不仅意味着气候干燥,长期少雨甚至无雨,也标志着农田水分供应不足,导致农作物产量下降甚至颗粒无收。乌鲁木齐县1960―2009年,旱年16年,发生频率32.0%,特别是进入2000―2009年,旱年6 年,有很多年份春夏秋连旱,2000―2002年3年连旱,这与全球气候变暖有着密切的关系,旱灾不同程度的发生,严重威胁着农业生产和人民生活。例如2006年干旱:乌鲁木齐市区从7月8日至8月16日,连续39 d无明显降水,从7月下旬至8月上旬连续19 d气温在30 ℃以上,7月31日最高气温40.6 ℃,是近30年来的最高值,持续多日晴热少雨,加大了蒸发,使各地不同程度出现了干旱。乌鲁木齐县萨尔达坂乡马家庄村44.67 hm2玉米和苜蓿颗粒无收,萨尔达坂村土豆减产30%,大麦减产20%;水西沟镇1 200 hm2大麦减产12%,山区20%牧草提前进入枯黄期,从5月下旬至8月底31 402.2 hm2农作物出现不同程度的旱情,其中成灾面积7 070.2 hm2,直接经济损失600万元;牧草减产1万t,直接经济损失500万元。

3.2霜冻

霜冻分春霜冻和秋霜冻,秋霜冻往往过早来临,春霜冻也常常结束较晚,导致各种不同程度的霜冻灾害发生。秋霜冻主要危害秋粮和秋延晚蔬菜,春霜冻主要危害小麦、春播作物。霜冻对农作物的危害程度巨大,造成不可挽回的经济损失[4]。乌鲁木齐县1960―2009年发生霜冻5次,发生频率10.0%,其中有3次春霜冻,2次秋霜冻。2004年9月28―29日乌鲁木齐县出现降温天气,29日清晨出现霜冻,五一农场1 333.33 hm2、三坪农场2 333.33 hm2、头屯河农场133.33 hm2的番茄全部冻成了水泡果,直接经济损失960万元。

3.3寒潮

寒潮是高纬度地区的冷空气在特定天气形势下迅速加强南下,造成当地大范围的剧烈降温和大风雪天气,使降温幅度达到一定强度标准时,就称为寒潮[5]。寒潮危害性很大,春、秋、冬3个季节均有可能发生,而春秋两季是农牧业生产的重要季节,春季出现的寒潮可给喜温作物和大田蔬菜幼苗造成危害;秋季出现的寒潮又使霜冻较早来临,使秋延晚作物产量降低、品质下降,给农业生产造成较大的经济损失。1960―2009年乌鲁木齐县发生寒潮9次。1997年4月21―24日寒潮天气,乌鲁木齐县各乡草莓、蔬菜等受害面积逾400 hm2。三坪农场合计793.4 hm2油葵、玉米绝收,番茄、棉花合计33.33 hm2受冻;头屯河农场葡萄、果树、草莓、蔬菜全部绝收,直接经济损失640万元。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

3.4病虫害

随气温的升高,乌鲁木齐县的病虫害也日趋严重,每年发生的病虫害灾情不容忽视。究其原因,一是冬暖,虫卵越冬基数大,存活率高;二是随风速的加大,有助于小型害虫,如蚜虫、红蜘蛛和病菌的传播,扩大发生面积[6]。乌鲁木齐县从1960―2009年,病虫害发生12次,发生频率24.0%,其中发生8次蝗虫灾害,2次蔬菜病害,2次动物疫情。1980年,乌鲁木齐县约22.47万hm2草场(含农田)发生蝗虫,21.47万hm2草场受灾。1981年,乌鲁木齐县蚜虫受灾面积7.33万hm2,重灾4.67万hm2。1989年5月达坂城东沟乡、王家庄等地蝗虫发生面积1 000 hm2,严重发生面积266.67 hm2,蚕豆蚜虫发生面积200 hm2,严重发生面积20 hm2。1989年7月水西沟乡部分油菜和小麦被蝗虫啃噬的只剩下光秆,颗粒无收,造成绝产。1995年乌鲁木齐县森林病虫害3 320 hm2,其中虫害3 253.33 hm2。1997年,由于春季气温高、干旱,进入5月之后,南郊板房沟、水西沟、托里牧场及东山区芦草沟乡相继发生了严重的蝗虫灾害,发生面积达1.67万hm2以上。1998年5月以后,乌鲁木齐县发生1.33万hm2蝗虫灾害。2002年,乌鲁木齐县发生1.33万hm2病虫害,主要是黄瓜霜霉病、茄子黄萎病、番茄及辣椒疫病、棉花棉铃蚜虫、美洲斑潜蝇等,蝗虫发生面积8 000 hm2。2006年,受4―5月降水偏多的影响,乌鲁木齐县萨尔达坂乡萨尔达坂村200.1 hm2的油菜发生叶甲虫病,吞噬66.7 hm2的草场。

4农业防灾减灾对策

科学调整种植制度,减缓气候变化对农业的不利影响;加强农田水利建设,搞好排水灌溉沟渠的配套,做到旱能浇、涝能排,建设旱涝保丰收的稳定高产田;分析未来光、热、水资源的重新分配和农业气象灾害的新格局,改进作物品种分布;改良土壤,测土配方施肥,选择优良品种,增加作物自身抗灾能力;积极做好人工影响天气工作,人为地减轻气象灾害;在农业生产中,尽量采用生物方法防治病虫害,通过对污染的治理和减少化学农药的使用,改善生态环境,恢复动植物资源,形成绿色食品基地,走可持续发展之路;强化气象服务,提高预报准确率,健全气象灾害预防体系。

5参考文献

[1] 黄建,成秀虎.农业气象观测规范[M].北京:气象出版社,1993:212.

[2] 刘盛梅.1951―2009年乌鲁木齐气候变化特征分析[J].现代农业科技,2010(23):291-293.

[3] 乌鲁木齐县地方志编纂委员会.乌鲁木齐县志[M].乌鲁木齐:新疆人民出版社,2009.

[4] 张学文,张家宝.新疆气象手册[M].北京:气象出版社,2006.

[5] 张家宝.短期天气预报指导手册[M].乌鲁木齐:新疆人民出版社,1986.

[6] 刘明春,蒋菊芳,魏育国,等.气候变暖对甘肃武威主要病虫害发生趋势的影响[J].安徽农业科学,2009,37(20):9522-9525.

气候变化的对策范文第3篇

[关键词]气候变化经济学;减缓;适应性

一、导论 气候变化经济学及经济政策是一个刚刚起步的研究领域,伴随着科学家们对气候变化认识加深和国际社会特别是联合国的大力推动,初步形成了自己独特的研究内容。目前气候变化经济学一般包括全球变暖、节能减排、对气候变化的适应性等内容。 气候变化经济政策的研究主要是在三个框架中进行的。一是收益一成本框架。气候变化政策成本即减少温室气体或增强对气候变化的适应性的机会成本。气候变化政策的收益指削减排放以降低气候变化风险以及在增强对气候变化的适应性方面所得收益。Cline (1992)和Stem (2007)认为富裕国家需支出其GDP的2%来采取行动。二是国际公共品框架。气候变暖源于跨国外部性效应的影响,但气候变化问题并不是传统外部性问题的一个简单拓展,一个国家的行为使其他国家获利或受损,无法通过市场来进行弥补( Sandler&Hart-ley,2001)。因此,气候变化需要国际间有效合作。“京都议定书”就是国际合作的一项成果。三是博弈论框架。该框架主要用于国与国之间气候变化责任与义务的确定,强调每一个参与主体都是自利的,只有一个有效合作博弈才是对所有参与者有利的策略( Schelling,2005;Carraro&Siniscalco,1993)o

气候变化政策分为适应性气候政策和减缓性气候政策。前者强调用低成本政策来适应气候的变化,后者强调用低成本政策来减缓气候变化( Stern,2007)。减缓性政策研究较多的是碳税和限额,限额有助于达到预定的政策目标,碳税则有利于减少碳排放价格的波动(Metcalf,2009;Ka-plow,2010);适应性政策主要是在改善基础设施建设,完善气候变化信息,调整产业结构和调整经济的地理分布等方面展开( Stern.2007)。

近年来国内直接针对气候变化的研究有所增加,但集中在气候变化对敏感性行业的影响上(吕亚荣,2010;国家农业综合开发办公室,2010;刘恩财等,2010),经济政策方面的研究集中在财政和货币政策应对气候变化的必要性以及相应思路(刘晨阳,2010;张丽宾等,2010)。

气候变化对人类社会经济发展产生的影响越来越大,正在形成应对气候变化的新的国际经济和贸易规则。广西经济发展相对落后,农业占GDP比重较大,是气候变化的敏感地区。近50年来,年平均气温升高了0. 69℃,冬季气温上升趋势明显。1986年到2009年间,广西经历16个暖冬。极端天气气候事件发生的频率和强度不断增加。研究广西应对气候变化的经济政策,主要是希望通过制定合理有效的财政、金融、产业政策,减少排放,提高广西对气候变化的适应性,促进广西经济的可持续发展,对广西抓住机遇、实现经济和外贸的可持续发展具有重要的理论和现实意义。

一、气候变化对广西的主要影响

(一)气候变化影响广西农林业

气候变化对广西农业生产的负面影响正在显现,农业生产不稳定性增加。广西局部干旱和洪涝的频率有所增加,危害不断加大。气候变暖引起农作物发育期提前,暖冬现象加大了病虫害现象。气候变化对广西农业未来的影响虽有正面效应,但可能仍以负面为主。气候变暖以及降雨量分布变化引起的干旱和洪涝将减少甘蔗的产量、蚕桑生产的产量和使其质量下降,水稻和玉米也可能以减产为主。广西农业生产布局和结构将出现变化。土壤有机质分解加快,农作物病虫害出现的范围可能扩大,畜禽生产和繁殖能力可能受到影响,畜禽疫情发生风险加大。

随着全球变暖,亚热带、温带北界北移,物候期提前,未来广西大部分地区可能进入热带地区,部分地区林带下限上升,广西北部的林业种类将发生变化,广西动植物病虫害发生频率上升,分布变化显著。

未来气候变化将使广西生态系统脆弱性进一步增加,主要造林树种和一些珍稀树种分布区缩小,森林病虫害的爆发范围扩大,森林火灾发生频率和受灾面积增加。广西境内湖泊将进一步萎缩,湿地资源减少、功能退化,生物多样性减少。

(二)气候变化影响广西渔业和水产养殖业

广西是海洋大省,气候变暖导致海平面上升加剧,引发海水入侵、土壤盐渍化、海岸侵蚀,损害了滨海湿地、红树林和珊瑚礁等典型生态系统,降低了海岸带生态系统的服务功能和海岸带生物多样性;气候变化引起的海温升高、海水酸化使局部海域形成贫氧区,海洋渔业资源和珍稀濒危生物资源衰退。 人类食用的水生动物绝大多数属于变温动物,水温升高能够明显地影响到动物的新陈代谢、生长速度、繁殖情况以及对于疾病和毒素的抵抗能力。气候变化使广西依托海洋的水产养殖业将受到较大影响,可用于水产养殖的海域萎缩,养殖品种减少。由于气温升高,海水蒸发速度加快,表层海水中的盐分不断增加,引起鱼类的生理发生改变,进而影响到水产养殖业的种群和数量。

(三)气候变化影响广西的水资源分布

气候变化已经引起了广西水资源分布的变化。就全国来看,近20年来,北方黄河、淮河、海河、辽河水资源总量明显减少,南方河流水资源总量略有增加。广西洪涝灾害更加频繁,但由于降水量分布不均,干旱灾害更加严重,极端气候现象明显增多。气候变化加大了水资源年内和年际变化,气候变暖使得中国西部地区的冰川融化加速,未来广西干旱的可能性进一步加大。水资源的供需矛盾将更加突出。

(四]影响广西人的健康

气候变化对广西人健康的直接威胁包括由热应力引起的疾病和死亡、传染病(疟疾和登革热)、与水有关的疾病如腹泻和营养不良。气候变化会间接造成伤害甚至死亡,如泥石流、山洪爆发和热带气旋(强风)造成的结果。因日益恶化的空气污染造成的呼吸系统疾病也可能是气候变化引起的。

三、广西应对气候变化的政策思路

(一)加大对气候变化问题科学研究的支持

科学研究是应对气候变化决策的基础和依据。现有关于气候变化经济学理论分析主要以适应和减少排放绝对量为目的,且宏观层面讨论为主,这为进一步研究应对气候变化经济政策提供了良好的视角和方法。然而,气候变化的政策措施一定要考虑本地区的实际情况,结合广西的实际情况讨论气候变化的影响及相应的对策,才更具适用性。因此,广西要积极开展有关气候变化及其影响的相关科学研究,尽快取得相应的研究成果和基础数据,为政策决策服务,并在此基础上,制定适合广西自身特点的政策措施。

(二)抓紧制定应对气候变化的政策措施

随着全球温室气体排放量的不断累积,全球气温呈缓慢上升态势,极端天气发生的概率不断加大,世界各国政府在应对气候变化方面的合作将不断加强,节能减排的政策措施将不断强化,能否降低能耗、提高资源利用效率将成为广西能否稳定发展的重要条件。目前,国际合作框架内,主要集中在减缓性行动,如发展低碳经济、减少碳排放。此外,广西应对气候变化既是国际、国内压力的体现,更是广西经济发展的一种内生要求。随着气候的不断变化,广西的发展环境正在不断变化,为了可持续发展,广西必须制定合适的政策措施,并不断地进行调整。在市场经济环境下,气候变化作为一种外部性,在时间和地域上已超出了经典经济学范围,需要用一种更大的视角进行研究。市场仍是配置应对气候变化资源的基础性方式,广西应抓紧制定应对气候变化的政策措施,影响和优化资源配置。由于气候变化的外部性特点,仅仅依靠广西自己并不能有效遏制气候变化,通过适应性政策影响资源配置,在较小的政策成本下,提高广西对气候变化的适应性尤为重要。

(三)积极响应国家号召,推动减缓性行动

当前,全球将主要精力集中在减缓性行动上,广西应对气候变化的政策应积极响应国家号召,调整产业结构、发展低碳经济,减少温室气体排放。随着北部湾经济区和“两区一带”建设的不断推进,我区正处于资本密集型工业化和城市化加速发展阶段,投资规模在我国乃至世界历史上都是前所未有的,特别是资源富集区经济发展的加快,大的铝、锰等有色金属的冶炼厂的建设和扩能,能源消耗总量不断增加,温室气体排放量加大。如果只按传统常规技术的建设模式,一经投入,便有一个投资回报期技术和资金的锁定效应,将来大规模的二氧化碳排放不可避免。因此,我国未来发展技术路径的选择,对国家乃至全球节能减排、减缓气候变化具有重要意义。在节能减排的历史潮流面前,不论从对全球负责的角度,还是从实现我区可持续发展的角度,都必须积极探索节约发展、低碳发展之路,从法规制度、经济结构、能源利用、技术创新等多个层面,加快推进低碳经济发展。只有这样,才能以实实在在的事实,展现广西在应对气候变化问题上的决心和魄力。

(四)把提高对气候变化的适应性放在突出位置

自气候变化问题提出来以后,在联合国的推动下,国际气候的努力主要集中在减缓,即减少温室气体的排放量,以防止危险的气候变化。广西也在外在压力下把发展低碳经济、完成减排任务作为应对气候变化问题的重中之重。实际上,由于气候变化的外部性特点,减缓性气候政策的效果取决于国际合作程度,哥本哈根、坎昆气候大会进展缓慢,“巴厘路线图”的谈判至今没有完成,“京都议定书”第二承诺期的实质性内容并未落实,国际气候谈判越来越艰难。此外,根据斯特恩报告,即使全球停止排放,由于气候变化的惯性,十年内全球气温仍将上升0.5 -1度,减缓性行动不能根除气候变化问题。而且,减缓性行动的不断推进需要适应性的行动支持。在这样的背景下,广西应结合自己的实际情况,应对气候变化的政策要考虑提高广西对气候变化的适应性,以促进广西经济的可持续发展。

四、政策建议

(一)加快结构调整步伐,切实转变发展方式

广西应加快结构调整,减少温室气体排放。大力发展服务业,推进循环工业,改善农业效益,提高林业的固碳效果。具体来说,广西应综合利用财税、产业、金融政策,积极推进产业结构,不断提高服务业的比例,降低工业比重。工业内部,应着力发展低碳经济减少温室气体排放。具体措施包括淘汰落后设备和产能,建立健全和完善节能、清洁生产、综合利用的各项机制,落实各级政府成立节能执法机构、加强执法队伍建设、节能工作常态化、市场化等。同时,积极承接东部沿海的高技术和高附加值、低能耗的产业必将向广西转移,如技术密集型产业、劳动密集型产业、新兴产业等。大力发展林业,提高固碳效果。

(二)加大财政资金在气候变化研究领域的投入

广西应对气候变化,关键依靠技术进步,通过新的技术降低排放,通过新的技术发展清洁能源,通过技术进步提高对气候变化的适应性。有关气候变化问题的科研工作在广西还没有引起足够的重视,科研资金严重不足,研究成果较少,与气候变化相关的基础数据和资料严重缺乏,与气候变化相关的新技术创新能力不足。广西应设立专门的研究资金,通过政府委托形式进行专题研究,加快共性技术进步。通过激励和约束机制,鼓励企业发展实用技术。同时,在各类科研经费的分配中,向气候变化问题的研究倾斜,提高广西区内关于气候变化的科研能力,为制定适合广西特点的气候变化政策打下良好基础。

(三)提高广西对气候变化的适应性

广西应利用经济政策,优化气候变化的资源配置,提高广西对气候变化的适应性。一是要加快气候变化趋势和影响相关知识的研究。目前,对气候变化最大的共识就是气候变化的不确定性,即气候变化对经济所产生的影响及对未来气候变化的预测都存在很大的不确定性,使得气候变化政策的成本和收益难以确定,政策评价和选择变得非常困难。加强对气候变化趋势的研究,给公众提供更多的气候变化信息,有利于公众做好准备,提高自我适应能力。二是财政资金大力支持适应性技术的研发。如开发耐干旱的品种、推广(下转第28页)(上接第11页)适合较高温度的物种,通过新技术应用,提高应对极端天气条件的能力、提高对自然灾害的监测能力等。三是加大适应气候变化的基础设施建设。特别是对敏感地区和敏感行业,如加强农田灌溉设施、加高沿海的防水墙,激励和补贴农村建设储水设施等。四是推行有关气候变化的保险,以加强经济系统应对气候变化的稳定性。

[参考文献]

[1]国家农业综合开发办公室.农业综合开发适应气候变化的实践与探索[J].中国财政,2010,(4).

[2]刘晨阳,中国实施应对气候变化的政策内外部动因及效果初探[J].现代财经,2010,(10).

[3]刘恩财,等.关于农业应对气候变化的适应能力建设问题[J].农业经济,2010,(1).

[4]张丽宾,等.气候变化与公共财政政策的理论分析[J].环境经济学,2010,(5).

[5] Cline, W.R."The Econonuca of Global Wamung."Waslungton: Institute for Intemational Economics, 1992.

[6] Kaplow,L."Taxs, Pemuts, and Climate Change"[ N].NBER Working Paper 16268, 2010.

[7] Metcalf,G.E.”Cost Containment in Climate Change Poli-cy: Altemativc Approaches to MitiS;ating Price Volatility [ Nl. NBER Working Paper 15125, 2009.

气候变化的对策范文第4篇

关键词 气候变化;水稻产量;经济影响;中国南方;C-D-C模型

中图分类号 F062.2 文献标识码 A 文章编号 1002-2104(2010)10-0152-06 doi:10.3969/j.issn.1002-2104.2010.10.026

在20世纪绿色革命时期,农业生产的快速增长主要依靠现代要素投入及灌溉和化肥投入的增加,绿色革命使发展中国家的食物供给能满足不断增长的人口需求,但是,由于受各种因素的影响,世界各国特别是发展中国家的粮食安全问题面临考验,这种考验由于受气候变化的影响变得更加日益严峻[1]。因此分析气候变化对粮食产量的影响显得非常必要,这对于保障我国粮食安全,调整农业发展战略具有重要的指导作用。关于影响作物生产的因素,许多因内外学者都作了大量研究[2-3],通常情况下,通过增加物质要素投入,提高管理水平都能增加作物产量,但是并不意味可以忽视气候变化对农业的影响,特别是在当前气候变化明显的情况下。

关于气候变化对农作物产量的影响仍然显得不确定,有许多学者[4-5]主要利用间接作物模型评估了气候变暖对作物产量的影响,但只有少部分学者实证分析过去气候变化对作物产量的直接影响,如有研究结果表明,在作物生长期间,温度每上升1℃,美国的玉米和大豆产量就会下降17%[6];通过分析了夜温与水稻产量之间的关系,结果表明,夜温越高,水稻产量越低[7];美国学者构建了一个自变量不仅包括了玉米关键生长期的气候因子,而且还包括一系列社会经济因素的混合模型,并利用多元回归法分析了气候变化对美国玉米产量的影响[8];中国台湾学者构建了包括气候因子和经济因子在内的气候变化影响模型,并运用面板数据模型评估了气候变化对台湾15个地区59种农作物的潜在影响,结果显示,气候变化对台湾蔬菜有积极影响,而对谷类作物有负的影响[9]。我国科学家利用经济模型研究气候变化对农业影响的工作涉及不多,丑洁明,叶笃正等人将气候变化研究和农业经济研究相结合,在传统C-D生产函数模型的基础上,加入了气候因素,构建经

济―气候新模型用来评价气候变化对粮食产量的影响,得出3月和6月的降水量对全年粮食产量有着重要影响,结果明显好于没有添加气候因子的模拟[10]。

综上所述,在我国的气象学研究中,尚未普遍引入经济学的理论和方法,而经济学家则缺乏气候变化的概念,使得这一交叉领域的研究进展缓慢[11]。我国经济学界大部分学者在分析农业生产的影响因素时,通常只将各种物质要素投入、制度因素及区域特征因素纳入模型,较少考虑气候因子对农业生产的影响,忽视了气候变量在农业生产的重要作用,而自然科学研究气候变化对农业的影响时,主要是从自然生态因素的变化探讨农业波动可能受到的影响,所采用的方法是纯自然的实验研究方法,需要有坚实的观测实验基础,一般不涉及社会经济因素。众周所知,农业生产受社会经济因素和气候因素的共同影响,气候变化对农业的影响取决于不同农业区的不同气候条件和经济条件及农业政策的相互作用,需要作为气象学与经济学的交叉学科问题来加以探讨。

因此,本文以C-D生产函数为理论基础,通过在模型中增加气候变量,构建“经济-气候”新模型,简称为

C-D-C模型,实证分析气候变化对南方地区水稻产量的影响,并对未来气候变化情景的潜在影响进行模拟评估。

1 模型构建

1.1 理论模型

通常,水稻生产存在多种多样的相互依存的数量关系,它是自然生产与社会生产相结合的过程,它不仅受温度、降水等气候因素和化肥、劳动力、机械等要素投入的影响,而且还受技术进步、管理水平、制度变迁及区域特征影响。因此,水稻产量的影响因素理论模型如下:

Y=F(Xj,Cn,Dm,TE,Tr)

其中,Y表示水稻产量;Xj表示一系列的土地、劳动力、化肥、机械等物质要素的投入;Cn表示温度、降水量等气候变量;Dm为一组区域虚拟变量,用以说明其他变量没有直接说明的社会、经济、自然禀赋以及气候在时间和区域方面的差异;TE为反映技术进步变量。Tr为一组制度变迁虚拟变量,用于反映制度变迁。

1.2 研究假说

根据相关理论及我国南方地区水稻生产的实际,提出如下研究假说:

假说1:气候变化对南方水稻产量有显著负影响。

假说2:气候变化对南方水稻产量的影响存在区域差异。

1.3 实证模型构建

为验证上述假说1和2,本文分别构建模型(1)、(2)。

首先,把水稻产量作为被解释变量,选取气候变量、水稻种植面积、化肥投入、农业机械总动力、劳动力投入、技术进步、区域虚拟变量及制度政策变量为解释变量。这样可建立模型(1),具体为:

其中,i和t代表第i省的第t年份;Yit表示水稻产量,RF表示水稻生长季节的平均降水量;TP表示水稻生长季节的平均温度;AC表示水稻种植面积;FT表示水稻生产的化肥投入量;AM表示水稻生产的农业机械总动力;LB表示从事水稻生产的劳动力总数; TE反映技术进步影响的变量;T1用于反映对水稻产量的影响,T2用于反映“米袋子”省长负责制对水稻产量的影响。在模型(1)中引入一组表示地区特征的虚拟变量Dm,用以说明其他变量没有直接说明的社会、经济、自然禀赋以及气候在时间和区域方面的差异。

考虑到气候变化对不同地区水稻产量的影响可能会有差异,按不同地区来分析气候变化对地区间水稻产量的影响有助于更细致地观察气候变化的区域影响效应,因此,建立温度、降水与区域虚拟变量交互项回归模型(2)。

2 数据来源及变量处理

2.1 数据来源

本研究数据采集区域范围及时间,主要包括南方水稻主产区12个省份(考虑数据的完整性,作者把海南省合并到广东省,把重庆市合并到四川省)和1978-2007年期间30年的数据,气候数据主要是水稻生长期间月平均温度和平均降水量,来自江西省气象局。水稻投入产出数据(如产量、面积、劳动力、农业机械总动力、化肥投入等)主要来自历年中国统计年鉴、中国农村统计年鉴、中国农业统计年鉴等。

2.2 主要变量处理

参考大多数学者的做法,本文一些主要变量的处理如下:水稻生产劳动力投入数量 (LB) = 农林牧副渔从业人员数×(农业总产值/农林牧副渔总产值)×(水稻播种面积/农作物播种面积);农业机械投入量(AM) = 农业机械化总动力×(水稻播种面积/农作物播种面积);化肥投入量(FT)= 化肥投入量×(水稻播种面积/农作物播种面积);水稻生长季节平均温度(TP)为水稻生长季节的月平均温度;水稻生长季节平均降水量(RF)为水稻生长季节的月平均降水量;关于反映技术进步变量,现有大部分学者都用时间趋势来替代,但在本文中不宜采用这种方法,原因在于技术进步对水稻产量影响的关键是提高水稻单位面积产量,而不是扩大种植面积,基于此,作者不用时间趋势来替代,而是把各省基期1978年的水稻单产作为分母,用各年的实际水稻单产作为分子,相除得出一个系数来替代各省的技术进步。关于制度政策变量,改革开放以来,我国政府实施了一系列的农业政策促进农村经济社会的发展,但在这一系列的政策中,其中对水稻生产影响最大的还是1978年开始实行的及1995年执行的“米袋子”省长负责制。所以,本文主要分析这两项政策对水稻产量的影响。由于任何一项政策的执行都有它的时效性,所以对于1978年开始实行的,作者主要测定1978-1985期间的制度绩效,当年份为1978-1985时,T1=1,其它年份时,T1=0。而对于1995年执行的“米袋子”省长负责制, 由于“米袋子”省长负责制事实上主要依赖传统的行政手段,将负责制层层分解,变成各级首长负责制,从而可能造成效率目标与产量目标的冲突,基于此,作者主要考察1995-2000年间“米袋子”省长负责制的制度绩效,当年份为1995-2000时,T2=1,其它年份时,T2=0。对于区域虚拟变量,根据大多数学者的做法,将广东、福建和广西列为华南区,江西、湖南和湖北列为华中区,安徽、江苏和浙江列为华东区,云南、贵州及四川列为西南区,本文以华南区为参照对象,当省份为华中区时,D1=1,其它则为0;当省份为华东区时,D2=1,其它则为0;当省份为西南区时,D3=1,其它则为0。

3 实证模型结果分析

本文采用截面数据与时间序列的混和数据进行回归分析,为进一步减少截面异方差和时间序列自相关对回归结果造成的不利影响,采用广义最小二乘法GLS进行估计。具体回归结果见表1。

从表1可知,模型结果总体上比较良好,R2 和Adj R2都比较高,说明南方地区水稻产量影响因素方程的解释能力为98.3%,即气候因素加上控制变量水稻种植面积、劳动投入、化肥投入、农业机械投入、技术进步、制度政策及区域特征能够对南方地区水稻产量的98.3%做出解释。模型总体显著性在1%水平上通过检验,F值较大,说明模型中各因素对南方水稻产量的共同影响是显著的。气候变量在模型(1)中都通过了1%水平的显著性检验,并且系数为负,表示气候变化对南方水稻产量有负的影响,假说1得到验证。大部分控制变量也都通过了不同水平的显著性检验。

(1)平均温度上升对水稻产量的影响。从模型(1)结果可以看出,水稻生长季节期间的平均温度在1%水平上通过了显著性检验且其系数为负,表明温度升高会引起南方水稻总产量下降,其主要原因在于温度升高,南方地区水稻生长发育加快,生育期大大缩短,有效分蘖减少,导致总干重和穗重减少,从而影响水稻产量。

(2)平均降水增加对水稻产量的影响。从模型(1)结果可知,水稻生长季节期间平均降水在1%水平上通过了显著性检验且其系数为负,表明降雨过多会对水稻生产带来负面影响,这是因为强降水会抑制水稻等作物生长发育,稻田灌水过深,造成含氧量少,使分蘖受抑制,直接影响产量;南方地区处于开花授粉阶段的早稻如受暴雨冲刷,会使授粉结实率受到较大影响,不利于后期产量形成。

由于南方地区水稻生长期间的平均降水为150.939毫米,因此,作者测算了南方地区水稻生长期间平均降水量增加10毫米对南方水稻产量的影响,结果显示降水增加10毫米将导致南方水稻产量平均下降幅度为0.40%。

(3)控制变量对水稻产量的影响。从模型(1)可知,水稻种植面积、劳动力投入、化肥投入量等要素对南方水稻产量有积极影响,并且都通过了1%水平的检验,表明中国南方地区要保障粮食生产,减缓气候变化带来的不利影响就应当扩大水稻种植面积,增加劳动力、化肥等要素投入。具体来看,水稻种植面积每增加1%,南方地区水稻总产量将增加0.85个百分点,并且其弹性系数在所有变量中最大,由此说明南方地区水稻产量的增加在很大程度上依赖于耕地资源,暗含要保障南方地区水稻主产区的地位不动摇,保护耕地显得尤为重要。另外,化肥投入和劳动力对水稻产量有显著正影响,两者分别增加1个百分点,则南方地区水稻总产量将分别增加0.193和0.048个百分点。

而农业机械投入没有通过显著性检验,其主要原因在于:第一、南方地区的农业机械投入主要集中于交通运输方面。第二、南方地区农业机械化的发展只是在一定程度上减轻了劳动强度,是乡镇企业发展之后,农村劳动力大部分转移至乡镇企业就业所致。这种机械对劳动力替代的主要目标不是增加粮食产量,而是替代农村劳动力。

技术进步对南方水稻产量的影响在1%水平上通过显著性检验且其系数符号为正,表明改革开放以来,南方地区水稻生产新技术的推广和应用,特别是优良品种的推广、旱育稀植技术和抛秧等增产节本栽培技术的推广应用,为水稻产量的不断提高奠定了技术基础,如杂交稻比常规蹈的增产效果达到15%左右,水稻旱育稀植栽培技术能提高秧苗素质和抗性,减少了灾害的影响,增产效果明显。技术进步的正面影响意味着加快技术进步是减缓气候变化不利影响的主要措施。

政策制度变量T1通过了1%水平的显著性检验,表明的实施在1978-1985期间极大激发了农户的生产积极性,促进了南方地区水稻产量的快速增长。政策制度变量T2没有通过显著性检验,表明米袋子省长负责制的实施在1995-2000年期间对于水稻产量增加的贡献不显著。区域虚拟变量D1、D2 、D3在1%水平上都通过了显著性检验且系数为正。

(4)气候变化对南方水稻产量影响的区域差异。第一,温度对水稻产量影响存在区域差异。从模型(2)可知,温度与D1和D2的交互项通过了1%水平的显著性检验,而与D3的交互项没有通过显著性检验。从各个交互项的系数来看,温度对南方水稻产量总的影响系数为-0.789+0.169D1+0.148D2-0.019D3,即对华南地区水稻产量的影响系数为-0.789,而对华中地区水稻产量的影响系数为-0.620,表明温度升高对华中地区水稻生产有负的影响,但与华南地区相比,温度对华中地区的负面影响要小些,原因在于华中地区的江西、湖南和湖北是丘陵地区,温度上升可以满足海拔高地区种植水稻的要求;温度对华东地区水稻产量的影响系数为-0.641,表明与华南地区

(-0.789)相比,温度升高对华东地区水稻生产的负影响要小些,其原因在于华东地区纬度稍高,温度升高后可使以前不适合水稻生长的区域用于种植水稻,从而可扩展水稻种植面积,提高复种指数,从而在一定程度上可减缓温度升高带来的负面影响;温度对西南地区水稻产量的影响系数虽然没有通过显著性检验,但其系数为负,在一定程度上说明与华南地区相比,温度升高对西南地区水稻生长的负影响更大一些。第二,降水对水稻产量影响存在区域差异。从模型(2)可知,降水与D1和D2的交互项通过了1%水平的显著性检验,而与D3的交互项则没有通过显著性检验。从各个交互项的系数可知,降水对南方水稻产量的总体影响系数为-0.019-0.092D1-0.069D2+0.037D3,即对华南地区水稻产量的影响系数为-0.019,对华中地区水稻产量的影响系数为-0.111,意味着降水对华南地区和华中地区的水稻产量都有负作用,但与华南地区相比,降水对华中地区的负面影响要大;降水对华东地区水稻产量的影响系数为-0.088,大于华南地区的影响系数

(-0.019),表明与华南区相比,降水对华东地区的负面影响要大;降水对西南地区水稻产量的影响系数虽然没有通过显著性检验但其系数为正,在一定程度上表明降水对西南地区可能有正的影响。由于缺少必要的数据,本文对南方水稻生产可能遇到的季节性干旱问题没有进行分析。

总的来说,降水增加对华南、华中和华东地区水稻产量有负的影响,而对西南地区水稻产量可能有一定正的影响;温度升高对华南、华中、华东及西南地区都有负的影响。

4 气候变化对南方水稻产量影响的情景模拟

分析气候变化影响的另一个重要任务就是模拟评估未来气候变化情景的影响,本文用三个(GCMs)未来气候变化情景进行模拟分析,分别是HadCM2, CGCM1和 ECHAM4,其有关信息及模拟结果见表3。

由表3可知,在2020s、2050s,未来各种气候变化情景对南方水稻产量的影响以减产为主,含交互项与不含交互项模型相比,各种气候变化情景在不含交互项模型中的影响稍大;对比各种气候变化情景之间的影响程度,总体上,CGCM1-gg情景下对南方水稻产量的负面影响最大,在2020s、2050s,其影响幅度分别都在5.0%和10.0%以上;其次是CGCM1-gs、ECHAM4-gg和HadCM2-gx,最小的为HadCM2-gs情景。

为进一步模拟未来气候变化情景对南方各区域的影响,作者根据模型(2)回归结果模拟了评估HadCM2, CGCM1和 ECHAM4情景下的影响,其结果见表4。

从表4可知,未来气候变化情景对南方水稻产量的影响存在差异性,总体上,气候变化对西南区水稻产量的负面影响最大,其次是华南区和华东区,影响最小的为华中区。

5 南方地区水稻适应气候变化的策略

通过以上实证分析表明,气候变化对南方地区水稻产量有显著负影响,并且存在区域差异性,其中降水增加对华南、华中和华东地区水稻产量都有负的影响,对西南地区水稻产量有一定正影响但不显著,而温度升高对华南、华中、华东及西南地区水稻产量都有负影响。根据气候变化情景模拟结果表明,未来各种气候变化情景对南方水稻产量的影响以减产为主,其中对西南区水稻产量的负面影响最大,其次是华南区和华东区,影响最小的为华中区。根据以上研究结论,提出南方地区水稻适应气候变化的策略如下:

(1)完善气象预报预警体系。加强气象信息预报预警网络体系的建设,进一步完善气象信息传输服务,把相关气象信息及时传输到农户层面,提高农户对气候变化的感知和认识意识,促进农户积极采取相关适应性措施以减缓气候变化的不利影响。

(2)加强农田水利设施建设。要进一步加强农田水利设施的基本建设,治理、维护水利工程,使库、坝、堤、渠等设施充分发挥节水、保水、用水、集水协调一致的功效,以切实提高水稻生产过程中应对气候变化的能力和减灾能力。从各区域来看,华南、华中和华东地区在水稻生产过程中要注意洪涝灾害的发生,增加排涝设施和蓄水设施的投入,同时大力发展抗洪抗涝水稻品种;西南地区由于水资源相对缺乏,水利设施相对落后,所以要注意增加水利灌溉设施的投资力度,保障农业水资源的供应,并大力推广和采用节水灌溉技术及种植耐旱的热带水稻品种。

(3)合理调整水稻布局。气候变化使水稻生长期的光能资源和热量资源增加,复种面积扩大,复种指数增加,种植北界北移。因此,在华中和华东稻区北部选用生育期较长、产量潜力较高的中、晚熟品种替代生育期较短、产量潜力较低的早、中熟品种,充分利用日益丰富的热量资源发展双季稻是减缓气候变化的有效途径。华中稻区南部和华南稻区的双季稻可以根据不同的品种搭配,分为早双季、中双季和晚双季;华南稻区的三熟制亦有早、中、晚之分,从而通过调整品种布局来适应气候变化、提高产量。在西南高原稻区,虽然在季节上可以满足种植双季稻的要求,但农资、劳力等投入将成倍增加,因此不宜改变现有的耕作制度。

(4)积极引进和培育水稻新品种。通过品种选育以减少高温和旱涝逆境对水稻产量的影响,是未来农业发展适应气候变化的必然趋势。其中华南、华中和华东地区要注重引进和培育耐高温、耐涝的水稻新品种,而西南地区要引进和培育耐高温、耐旱的水稻新品种。华东稻区北部和华中稻区北部可充分利用积温增加、生长季延长的条件,在品种选育上一方面要注意培育生育期长的中晚熟品种;另一方面要注意选育光合能力强、综合抗性突出、适应性广的新品种,这样不仅可提高水稻的抗逆性,还能充分利用CO2浓度增加带来的施肥效应,从而确保水稻生产的高产、优质、高效。

(5)加强稻田水肥管理。种植制度及品种优化后,水稻生活力强,而气温升高使田间蒸发量加大,对水肥的需求也就更大,通过合理灌溉以水调温,可以减轻低温冷害和高温热害的威胁,增施肥料,改良土壤结构,可增加土壤的蓄水能力,并满足水稻不同生育期对营养元素的需求。另外要加强病虫防治,气温逐渐升高,可形成有利于病虫繁殖的生态环境,应进一步采用综合防治措施和高效低毒的农药,并结合抗性品种及适宜栽培技术、生物防治等进行有效治理。

(6)适当调整播期。调整作物播期可以改变水稻生育期内的温光水配置,从而使得水稻生长过程趋利避害。适时提前春播作物的播种日期,可以避开盛夏的高温影响;推迟秋播作物的播种日期,可以避免冬季变暖的不利影响。因此,在前后期作物茬口和气象条件等因素允许的情况下,适当调整播期将有利于提高水稻产量。

参考文献(References)

[1]Rosenzweig C, Parry M. Potential impact of climate change on world food supply.Nature[J]. 1994,367:133-138.

[2]Evenson RE, D Gollin. Crop variety improvement and its effect on productivity: the impact of international agricultural research[R]. CAB International, Wallingford, UK. 2003.

[3]Evenson RE, D Gollin. Assessing the impact of the Green Revolution, 1960 to 2000. Science[J].2003(b),300: 758-762.

[4]Brown R A, N J Rosenberg. Sensitivity of crop yield and water use to change in a range of climatic factors and CO2 concentrations: a simulation study applying EPIC to the central USA[J]. Agricultural and Forest Meteorology,1997,83: 171-203.

[5]Reilly J, F U S. agriculture and climate change: new results[J]. Climatic Change,2003,57: 43-69.

[6]Lobell D, G Asner. Climate and management contributions to recent trends in U.S. agricultural yields[J]. Science,2003,299: 1032.

[7]Peng S, J Huang, JE. Rice yields decline with higher night temperature from global warming[J]. Proc. National Academies of Science USA(R),2004,101:9971-9975.

[8]Kaufmann RK, KC Seto. Change detection, accuracy, and bias in a sequential analysis of landsat imagery: a time series technique[J]. Agriculture, Ecosystems, & Environment,2001,85: 95-105.

[9]The potentiall impact of climate change on Taiwan’s agriculture.agricultural economics[J].2002,27:51-64.

[10]丑洁明,叶笃正.构建一个经济-气候新模型评价气候变化对粮食产量的影响[J].气候与环境研究,2006, (3):347-253.[Chou Jieming, Ye Duzheng. Evaluating impact of climate change on grain yield by building an new economy- climate model [J]. Climate and Environmental Research,2006, (3):347-253.]

[11]丑洁明,封国林,董文杰等.气候变化影响下我国农业经济评价问题探讨[J].气候与环境研究, 2004,(2): 597-603.[ Chou Jieming, Feng Guolin, Dong Wenjie. The issue of China's agricultural economic evaluation under the climate change influence[J]. Climate and Environmental Research, 2004,(2): 597-603.]

气候变化的对策范文第5篇

【关键词】气候变化;原因;对策

0引言

全球气候变化问题是人类面临的共同问题,关系到人类的前途和命运,影响着每一个国家的政治、经济和社会的发展。因此,在气候变化问题上加强合作、寻求共识和探索对策是人类的自然选择[1-4]。但是,由于人们对全球气候变化原因的认识不足、意见不一,导致了国际社会对全球气候变化的对策立场存在严重的分歧与斗争[5-6]。于是,作者近来研究了各种可能引起气候变化的因素,找到了全球气候变化的根本原因,即随着地球质量的增加,地球可以吸引越来越多的来自宇宙空间和人类生产的温室气体,使地球大气层逐渐增厚,被包围的二氧化碳等温室气体难以逃逸,导致温室效应逐渐增强,引起全球变暖[7-8]。这一研究成果为国际社会和各国政府在气候变化共同对策方面提供了科学基础,为人类有效应对全球气候变化指明了方向。

1全球气候变化的根本原因

为了有效地应对全球气候的变化,首先必须弄清楚全球气候变化的原因,然后再找出相应对策。

根据现有的研究成果可知,能影响气候变化的因素主要有:

1)地球轨道的变化:地球轨道的微小变化就能改变阳光在地球表面上的季节性分布和地理性分布。地球轨道的变化对气候的变化影响较大,而且与冰期和间冰期显著相关。

2)太阳辐射:自1978年以来,人们已用卫星精确地测量了太阳辐射。这些测量表明自1978年以来太阳辐射并未增加,所以在过去30年中,气候变暖不能归因于太阳辐射的增加。

3)火山活动:火山喷发可释放气体和微粒到大气层中,从而能在一定时空范围内影响气候的变化。

4)磁场的强度和海洋的变化:一些近来的分析显示全球气候的变化还与磁场的强度和海洋的变化有一定的关系。

5)人类的影响:有人认为气候变化在很大程度上是由于人类活动造成的。在这些人类因素中最值得关注的是燃烧化石燃料所排放的CO2浓度的提高,其次是制造水泥所产生的飘尘的增多,此外还有土地利用、臭氧层破坏、畜牧业和农业活动、森林砍伐等都会对气候有不同程度的影响,并成为气候变化的因素。

可见目前有些人偏向于认为温室气体是全球变暖的主因,但许多科学家仍然持怀疑态度。IPCC的第4次评估报告AR4也承认全球增温研究存在许多不确定因素,许多预测没有给出定量判断的科学依据[5]。2007年成立的非政府间国际气候变化专门委员会(NIPCC)就针对AR4进行了逐条反驳,认为自然驱动是全球气候变化的主要因素[6]。针对当前关于全球气候变化的原因众说纷纭、莫衷一是,作者根据现有的研究成果,分析了各种可能引起气候变化的因素,获得了一个折中的研究结果,即发现随着地球质量的增加,地球可以吸引越来越多的来自宇宙空间和人类生产的温室气体,使地球大气层逐渐增厚,被包围的二氧化碳等温室气体难以逃逸,导致温室效应逐渐增强,全球气候变暖[7-8]。

2缓解全球气候变暖的自然对策

既然我们找到了全球气候变化的根本原因,我们就可以找到相应的对策。由于全球气候变化的原因既包含自然的因素又包含人为的因素,因此在解决全球气候变暖的问题时,我们应该酌情处理、对症下药。

针对全球气候变化的人为因素,我们应该充分利用人类掌握的科学技术手段来控制气候变化及其影响,制定适当的能源发展战略,逐步稳定和削减温室气体排放量,增加温室气体吸收量,并采取必要的适应气候变化的生产和生活措施。一种简单但不够实用的方法是把废气排放到大气层的平流层之外。

针对全球气候变化的自然因素,我们并不是束手无策。事实上,老天爷早就给我们安排了巧妙的对策。那就是在地球绕太阳旋转的过程中,地球朝阳面所受的大气压力大于背阳面所受的大气压力,这就会使地球沿螺旋线渐渐地远离太阳,从而使地球变冷,在一定程度上可以减缓全球气候变暖的趋势。关于这一点可以证明如下[9]。

在地球绕太阳旋转的过程中,地球朝阳面受到来自阳光的照射,使该面的温度高于背面的温度,从而使该面蒸发起更多的水气及其他气体分子,这些气体分子被高速流动且层层叠加的平流层包裹在对流层中,逃不出去,所以两个半球的大气体积相当。由于地球上朝阳和背阳两个半球的大气参数近似地满足理想气态方程,即pV≈nRT,其中p是指气体的压强,V为气体的体积,n表示气体物质的量,T表示气体的热力学温度,而R表示理想气体常数。因此,根据计算可知,朝阳半球的大气压强通常大于背阳半球的大气压强。又因为两个半球的面积相当,所以朝阳面所受的大气压力通常大于背阳面所受的大气压力,夏至时北半球地轴北端完全倾向太阳就是两面压力差造成的,如图1所示。另外,由于地球正常运转时太阳对地球的万有引力等于地球做匀速圆周运动所需的向心力,因此当地球朝阳面所受的大气压力大于背阳面所受的大气压力时,就会使地球沿螺旋线渐渐地远离太阳。

据英国《新科学家》杂志报道,早在公元前三世纪,一些观星家就曾发现地球正在逐渐远离太阳[10]。随着科学技术的进步,科学家们进一步测得地球与太阳之间的距离每年都会增加15厘米。但关于地球逐渐远离太阳的原因,科学家们长期以来一直争议不断,许多解释无法令人满意。于是这里给出了一个比较科学和令人信服的解释。

3结论