首页 > 文章中心 > 量子计算概念

量子计算概念

量子计算概念

量子计算概念范文第1篇

化学计算能力是化学教学中培养学生的一种能力。化学计算是借助于用数学计算工具,从量的方面来对化学的概念或原理加深理解或通过计算进一步掌握物质的性质及其变化规律,也是依据化学物质的性质与化学规律为载体进行的一种运算能力的训练。另外,通过计算还能培养分析、推理、归纳等逻辑思维能力和解决实际问题的能力。计算的关键是对概念的正确理解,在教学中要加强概念间的联系,认识概念间量的关系,把概念定律联系起来,在讲解化学概念的化学涵义的同时要讲解清楚它的数学涵义,以及建立知识点、线与面之间的关系(建构知识的体系结构)。从认知心理学角度培养学生的逻辑思维能力来看:可以分为两种计算形式具体计算与形式计算。

一:具体计算

具体计算就是对概念的公式运用,所要求的从化学环境来说是一种物质、一种状态、一种情况下的各种单个概念在公式中的综合运用;从数学角度来说是纯公式的运用。在中学化学中有关这类的计算是简单的,大部分学生基本都会。初中化学的质量分数、化学式、物质的纯度,高中化学的物质的量、化学反应速率、化学平衡常数都属于这类的计算。

例如:1、有关化学式的计算。

用元素符号来表示物质组成的式子叫做化学式。本知识块的计算关键是抓住这一概念,理解概念的含义,并要深刻理解化学式中各符号及数字的意义,处理好部分与整体之间量的关系

(1)计算相对分子质量

(2)有关物质的量计算

要明确知道物质的量是衡量什么的物理量?物质的微观数量与宏观是如何持钩的?物质的量是一个物理量,单位摩尔,符号n,规定任何1摩尔物质含有12g12C的原子个数,近似值为6。02×1023 (n=N/NA =m/MA ,n=V/Vm c=n/V)在这几个公式中的概念要理解

例:下列说法正确的是

D、标准状况下,1molO2和N2混合气(任意比)的体积约为22.4L

n=V/22.4L/mol公式的应用要注意两个条件1:在标准状况2:状态必须是气态.A酒精在标况是液态B没有在标况下,C、D正确。

具体计算要点:1要理解公式中各个概念的化学含义2各个概念间的关系3公式中的数学含义4公式的应用条件限制5公式中的各个量是针对同一物质,不能用不同的物质的量套在同一个公式中。

二:形式计算

形式计算是指不同物质之间、不同状态之间、不同状况之间的公式综合应用,要求比具体计算高,不仅对各个公式中的概念含义与概念间的理解,而且还要在不同化学环境下对化学规律理解应用,这就要求在不同化学环境下,应用守恒、成比、等价、替代、化学方程式各物质间的关系等等寻找不同物质之间相似或等同的量,来求未知变量。这对学生而言既是知识的综合应用,也是各种能力的训练,在每年的高考化学试卷中的计算几乎都是这类计算,对学生就要求必须理解各个概念、各个概念间的关系,建立化学知识体系,理解化学各种规律;同时也要求学生要具备一定的分析能力、识图能力、归纳总结能力、假设、演译、逻辑推理能力。

1:成比法

应用在同一的化学环境中相似的状态下,相同物质各个量相应成比例-溶解度的计算

例:在200c 时氯化钠的溶解度为36克,现在有400克 200c 时氯化钠的饱和溶液,问该溶液中有多少克氯化钠?

分析:溶解度是指在一定的温度下,100克水溶解某溶质达饱和状态时所需要的溶质克数,200c 时氯化钠的溶解度为36克可以理解为200c时100克水中溶解36克氯化钠达到饱和,而现在的已知条件是有400克 200c 时氯化钠的饱和溶液,这与溶解度的化学环境是一样,都是氯化钠物质,因此相应的量必须成比,列式如下:36/136=X/400。答案:105.9克

2:关系法

例 计算用多少克的锌跟足量稀硫酸反应生成的氢气,能跟12.25克的氯酸钾完全分解后生成的氧气恰好完全反应生成水。

分析:本题涉及了三个化学方程式

上的有关化学方程式的计算可以看出,在计算的过程中,主要应用的关系式是质量比,在一个题目中,最好用统一的单位,若试题中给出了两个量的单位不一样,可以换算成比较方便有利于计算的相同单位,这样可避免发生错误。

3:守恒法

物质从启始状态经历多个状态到终态或经历不同的历程到同一个终态,我们可以从化学变化中找启始物质与终态物质之间的相同元素质量、得失电子、正负电荷、正负化合价等守恒进行列出计算式,这关键在于对化学变化规律的掌握程度和分析能力程度。守恒法是定量分析化学问题的一种重要思想方法,它是利用物质变化过程中某一特定的量固定不变而进行化学计算的一种方法。守恒法既可使繁乱的问题化难为易,又可使复杂的计算化繁为简,故在高考化学计算题的解题中得到广泛应用。

例:实验室可以用高锰酸钾和浓盐酸反应制取氯气,反应的化学方程式如下:

2KMnO4+16HCl===2KCl+2MnCl2+5Cl2+8 H2O

(1) 用双线桥法标出电子转移的方向和数目。

(2) 该反应中氧化剂是 ,还原剂是 ,氧化产物是 ,还原产物是 。氧化剂与还原剂的物质的量之比为 ,被氧化的HCl与未被氧化的HCl物质的量之比为 。

当有0.1mol电子发生转移时,生成Cl2的体积为 (标况下)。

分析:Cl失去电子数目(降低的化合价数)与Mn得到电子数(升高的化合价数)要相等;生成1molCl2 电子发生2mol电子的转移。如果这两点明白了,本题就好做了。具体如下:

反应中氧化剂是 KMnO4,还原剂是 HCl ,氧化产物是 Cl2 ,还原产物是MnCl2。氧化剂与还原剂的物质的量之比为 2:10 ,被氧化的HCl与未被氧化的HCl物质的量之比为 10:6 。

当有0.1mol电子发生转移时,生成Cl2的体积为 1.12L (标况下)。

具体计算是对概念的公式运用,注重公式中的各个量的含义与联系,难度不大。也是形式计算的基础。形式计算对学生就要求必须理解各个概念、各个概念间的关系,建立化学知识体系,理解化学各种规律;同时也要求学生要具备一定的分析能力、识图能力、归纳总结能力、假设、演译、逻辑推理能力。有研究指出:"在美国的学校中,只有13.2%的初中生、15%的高中生和22%的大学生达到了形式运算阶段。"英海尔德强调的也正是:"教学一定要考虑到当时学生所处的发展阶段,当教材的性质和难度适合儿童的认知结构水平时,学习才有最佳效果。在不同发展阶段,知识是以不同性质的方式获得的,教学方法必须与发展水平相匹配。"教师在备课时,常常要备知识(包括基本理沦知识、实际知识和技能),掌握教材的重点、难点和关键,这是必要和正确的,但是不够的。教师还应当知道,学生需要掌握的知识和概念哪些应属于具体运算,哪些应属于形式运算。这就是说,要研究和掌握本学科各阶段教学内容的哪些 属于形式运算阶段教学内容,在这个阶段学生能够运用数学形式叙述和解释函数关系。明白了这一点,教师就可结合学生的化学认知水平,采取相应的教学对策,从而提高课堂教学质量。

量子计算概念范文第2篇

[关键词]学案导学;概念教学

化学概念原理是高中化学新课程的重要组成部分。要从教材、教学大纲、新课标等多个角度深入思考,教师才能对高中化学概念原理教学有着更深的认识。本文以人民教育出版社出版的实验教科书化学必修1第一章第二节《化学计量在实验中的应用》为例谈谈我的认识。

首先,新教材更注重概念的形成过程。

新课程中是让老师给学生一些素材、实验或是经验,让学生根据这些来归纳、综合、抽象,然后总结出概念,注重概念的形成过程,让学生慢慢体会着学习。要在概念原理的形成过程中培养学生的认知发展,教给学生学习方法。例如在摩尔质量的教学中我设计的导学案如下:

导学案 第2课时 物质的量的单位――摩尔(二)

[学习目标]

1.掌握摩尔质量的概念,了解摩尔质量与相对原子质量的区别和联系

2.能熟练运用摩尔质量的概念,并能进行有关摩尔质量的计算

3.掌握物质的量、物质的微粒数、物质的质量、摩尔质量的关系

[学习重点]物质的量、物质的微粒数、物质的质量、摩尔质量的关系

[学习・探究区]

填写下面的表格,看是否可以从这些数据中得出有用的结论。

高中化学必修课程概念原理教学具有主题覆盖面较广、教学要求较浅、与选修模块构成螺旋上升的特点。化学1与化学2强调全面性和基础性,所以它在这里面安排较多的内容目的是为学生学习后面的内容奠定一个比较坚实、全面的基础。对于高一学生而言,通过复习加深初中化学的基本概念和基本理论,使学生的初高中知识实现平稳的过渡,也让学生的知识发展有了一个连续性。

物质的量、摩尔质量、阿伏伽德罗常数均是中学化学中十分重要的基本概念,在生产和科学研究中有重要的应用。物质的量是中学化学计算的中心,本节对于培养学生的化学计算技能和构成中学化学计算体系,有着不可忽视的启蒙作用。所以,关于物质的量的教学,不仅是本章的重点,也是整个高中化学教学的重点之一。摩尔质量与相对原子(或分子)质量的联系可以借助初中学习的相对原子质量的概念推理出来,只有做好初高中知识的衔接,才能适应学生认知发展规律。这部分内容概念多且较抽象,理论性强,教学难度较大,计算多,实用性强,能力要求高。限于高一学生的接受能力,很难对这部分内容理解透彻。因此在教学中,我采取以下教学策略:

1、学案导学、 引入概念

2、小组研讨、分析概念

3、讲练结合、完善概念

4、迁移应用、 提升概念

量子计算概念范文第3篇

关键词: 《线性代数》 课程教学 教学实践 教学改革

《线性代数》课程的特点是概念多、结论多、内容抽象、理论性强;计算复杂、技巧性强、逻辑性强;有明显的几何背景,研究方法新颖多样。它是学生从比较具体的数学到抽象的公理化的数学的一个重要过渡,很多学生掌握不好。我院的学生多数是文科生,数学基础比较差,学起来困难更大。有的学生虽然上课听懂了,但是做起题来却感到特别困难,很多学生对所学知识理解不透,从而影响对后续数学课程甚至专业课程的学习。如何使这门课程易于学生理解和掌握?笔者通过多年的教学实践,对这门课程教学进行了改革,收到了很好的效果,主要做了以下方面的努力和尝试。

一、把概念弄清楚,理解确切并且记住。

如果概念不清楚,模模糊糊,就没有办法运用概念进行逻辑推理,做题时就不知如何下手。因此在学习中应当首先复习概念、定理、例题,然后再做作业,从而使作业做得比较顺利,更节约时间。更何况,如果没有弄清楚概念,那么稍微变一下,学生可能就不会了。由于《线性代数》逻辑性强,后面的内容需要用到前面的概念、定理、性质,如果每次课上学的内容都没有及时复习、消化,那么时间越长,学的概念、定理、性质越多,脑子里就会乱成一团麻,理不清头绪,这样学习后面的内容就会很吃力。而如果课后都能及时复习、及时消化,就会越学越顺利。那么怎样才能把概念弄清楚呢?一般来说应当从以下方面着手:①首先弄清楚概念是怎么提出的?它的背景是什么?②这个概念的确切内容是什么?③多举一些具体的例子帮助理解抽象的概念,特别是举一些几何上的例子比较直观、形象。

二、培养逻辑推理能力,即运用概念和已知的定理、性质进行推理、判断的能力。

形式逻辑的一些基本常识是应当熟悉的。譬如,命题有四种形式:原命题,否命题,逆命题,逆否命题。若原命题正确,则逆否命题一定正确,但否命题和逆命题不一定正确。要能进行逻辑推理,就必须熟记概念和定理、性质,否则如同没有武器就没有战斗力,即不知道怎样做题。

三、学习每一章、每一节时,都要明确这章、这节要研究什么问题,是如何解决的。

这样做,就有的放矢,既知其然又知其所以然,思路就清晰明了。如果坚持这么做,就能不断学到方法,就能提高分析问题、解决问题的能力。

四、深入浅出,使抽象内容具体化。

线性代数课程的许多计算、结论及证明都是比较抽象的。例如n阶行列式的计算,高阶矩阵的运算,n个未知量的线性方程组求解等,因为其元素不可能全写出来,因此其运算过程只能靠想象;另外一些重要概念,线性相关、线性无关,向量组的最大线性无关组,齐次与非齐次线性方程组的基础解系及矩阵的秩等,学生都难以接受。在讲这些内容时,我尽量把抽象概念具体化,把相关概念联系起来。例如,向量组的最大线性无关组,向量空间的基,齐次线性方程组的基础解系,虽然它们所讨论的对象不同,但定义都是一样的。我在给出定义后,讲一些具体的例子加以说明,使学生加深对概念的理解,尽量把抽象的内容讲得通俗易懂。

五、有详有略,突出重点,加强应用。

线性代数课程内容多且难,课时紧。我在讲授该课程时,重点要求学生掌握计算问题。如行列式的计算、矩阵的有关运算、矩阵的秩、向量组的秩、线性方程组求解、求特征根、特征向量。详细讲解其意义和用法。对一些复杂的定理证明则主要讲解其思路。只要求学生掌握一些简单的理论证明。

六、教学互补,调动学生学习积极性。

在认真备课,搞好课堂教学的同时,我还调动学生学习的主动性,对于计算问题比较多的内容,安排一些课堂练习,先让学生自己动手做,再有针对性地讲解,选一些具有典型性及综合性的题,提高学生的学习兴趣,从而将前后知识连贯起来。

七、学习线性代数跟任何一门数学课一样,必须适当多做一些习题。

光听课、光看书,自己不动手做,是学不好数学的。只有通过做题,才能加深对概念、定理、性质的理解,才能学到一些方法;做题时,一定要自己动脑想,不要轻易翻书,只有实在想不出来时才能翻看一下习题解答。只有通过自己动脑想出来的东西才是自己的东西,否则很快就会忘记。做题时尽量用多种方法做,从不同的角度分析问题,从而发散思维,拓宽思路;做题时尽量算到底,不要因为算起来比较麻烦就不愿意往下算了,认为反正我方法会了。这样是不行的,因为我们要培养计算能力,有些同学方法都会,就是一动笔就错,一计算就出问题,算了很多次就是算不出答案,说明计算能力不强,而计算能力的增强要靠平时的计算训练。

参考文献:

量子计算概念范文第4篇

一、通过实验让学生形成概念

初三化学绪言部分的演示实验,既是激发学生学习化学兴趣,又是使学生形成“物理变化”、“化学变化”概念的好例子。如水的沸腾,引导学生观察水由静态转化为水蒸汽再冷凝成液态水,师生总结出变化特点,仅仅是物质状态上变化,无其他物质生成。演示“镁带燃烧”实验,引导学生观察发出耀眼白光及生成白色固体。这个变化特点是镁带转变为不同于镁的白色物质——氧化镁。最后师生共同总结:“没有生成其它物质的变化叫物理变化”,如水的沸腾,硫酸铜晶体的研磨等。“生成了其它物质的变化叫化学变化”,如镁带燃烧,碱式碳酸铜受热分解,二氧化碳使澄清石灰水变浑浊等。再如“催化剂”、“饱和溶液”、“不饱和溶液”等概念的形成,都可以由实验现象分析、引导、归纳得出其概念。

二、通过计算推理,帮助学生理解概念

如在“原子量”概念的教学中,教师首先讲述原子是化学变化中的最小微粒,其质量极小,运用起来很不方便,指出“原子量”使用的重要性。指导学生阅读原子量概念,然后提出问题,依据课本中定义进行推算。

(1)原子量的标准是什么?(学生计算):一种碳原子质量的1/121.993X10-26千克X1/12≈ 1.66X10-27千克(2)氧的原子量是如何求得的?

(学生计算):

氧原子绝对量(千克)

氧的原子量:

原子量标准

如果学生只注意背原子量概念,尽管多次记忆仍一知半解。通过这样计算,学生便能直观地准确地理解“原子量”的概念,而且还较容易地把握原子量只是一个比值,一个没有单位的相对量。

三、通过反例,加深学生对概念的理解

为了使学生更好地理解和掌握概念,教学中指导学生在正面认识概念的基础上,引导学生从反面或侧面去剖析,使学生从不同层次去加深对概念的理解。

例如酸的定义:“电离时生成的阳离子全部是氢离子的化合物叫酸”。然后提问,硫酸氢钠电离生成H十,它也是一种酸吗?学生容易看出其阳离子除H十外,还有Na十,所以它不是酸。这样,从侧面理解定义中“全部”的含义,更能准确地掌握酸的概念。

四、找概念之间的联系和区别

对概念进行对比在新课教学或阶段性复习的过程中,对有关概念进行有目的地比较,让学生辨别其区别与联系很有必要。例如分子和原子,元素与原子,还有物理变化与化学变化,化合反应和分解反应,溶解度与百分比浓度等。通过对比,既有益于学生准确、深刻地理解基本概念,又能启发学生积极地抽象思维活动。

五、多角度地对概念进行练习巩固

例如:质量百分比浓度的概念“用溶质的质量占全部溶液质量的百分比表示的溶液的浓度叫做质量百分比浓度。”数量表达式为:质量百分比浓度溶质浓度 = ------------------------------ X100%溶液质量(或溶剂质量+溶质质量)这个概念的引入和建立并不难,难的是质量百分比浓度的具体运用。所以在建立这个概念之后,通过下列练习,讨论:

(1)10克食盐溶解于90克水中,它的百分比浓度是多少?

(2)20克食盐溶解于80克水中,它的百分比浓度是多少?

(3)100克水溶解20克食盐,它的百分比浓度为20%,对不对,为什么?

(4)20%的食盐溶液100克,倒去50克食盐水后,剩下溶液的浓度变成10%,对不对,为什么?

(5)KNO3在20℃时溶解度为31.6克,则20℃KNO3的饱和溶液的百分比浓度为31.6%,对不对,为什么?

量子计算概念范文第5篇

物质的量是中学化学中的核心概念。以物质的量为核心的基本概念构成了定量计算的基础,贯穿高中化学学习始终。通过

对《物质的量的单位――摩尔》

的学习,可使学生体验到定量研究的方法对研究和学习化学的重要作用,使学生对化学反应的认识从初中的物质变化、质量守恒上升到对数量的认识。但微观粒子用肉眼是观察不到的,十分抽象。对高一新生而言,他们的抽象思维能力还不是特别发达,再加上本节内容概念多、关系式多,这些都构成了学生的学习障碍。为了促进学生对“

物质的量”概念的理解,进行了如下的教学设计。

一、加强教学与生活的联系,激发学生有意义学习的心向

奥苏贝尔认为,动机的作用与相对重要性,取决于学习的类型和学生的发展水平。学生的认知学习是受内部和外部动机影响的,而动机本身既受认知学习结果的影响,又受身心发展和社会文化诸因素的影响。教师的教学艺术在于如何认识、控制和调节这些因素,使学生始终充满学习的动机。在教学过程中,既要充分挖掘知识本身的认知功能,满足学生的求知需求,更应注重教学与生活的联系,以学生熟悉的生活情节和感性认识为基础,不断创设认知冲突,提高学生学习的内部动机。如为了说明摩尔这个概念的使用规范,我用生活中的长度单位做类比,指明我们不能说“氢气的摩尔数是5”就像我们不能说“这张桌子的米数是5”一样。为了帮助学生理解摩尔的规定性,我通过播放一段视频来吸引学生的注意力,同时引起学生在方法论上的思考。为了说明阿伏伽德罗常数是一个非常大的数,只能适用于微观粒子,不能用来描述宏观的物质,我举了以下例子:如果把

6.02×1023个直径为2.5cm的硬币排成一行,可以来回于地球与太阳之间240.8亿次;如果把6.02×1023粒米给全球60亿人吃,每人每天吃一斤,要吃14万年。

二、设计先行组织者,唤醒学生原有的认知结构

奥苏贝尔认为,学生能否习得新信息,主要取决于他们认知结构中已有的观念,要促进新知识的学习,首先要增强学生认知结构中与新知识有关的观念。在环节一的新课导入阶段,我设置了四个问题情境,以唤醒学生原有的认知结构。用学生知道的“千克作单位,对应的物理量是质量”“米作单位,对应的物理量是长度”作为先行组织者,为学生同化“摩尔作单位,物质的量是物理量”提供认知固定点。用测化学课本一张纸的厚度来说明微小物质的计量方法,用1滴水所含的分子数之多来说明引入一个新的计量单位的必要性,用箱、打、双来类比摩尔就是一个单位。

在《物质的量的单位――摩尔》的教学中,可直接告诉学生用摩尔做单位计量微观粒子时应注意的事项。接下来引导学生思考,一盒铅笔有12支,一盒别针有100枚,1摩尔粒子集体所含的粒子数为多少呢?为避免学生机械学习,我在这里设置了一个比较性组织者,介绍保存在法国计量局的千克原器,是质量的一个单位1kg,它是人们为了使用、计算的方便而人为主观规定的,这样学生可以顺利完成“摩尔的规定”的同化过程。

三、创设问题情境,自主建构知识

本节内容学习的另一个难点就是关系式多,学生普遍感到公式难记。为了减少学生的机械记忆,变接受学习为发现学习,使学生直接参与到知识的形成过程,了解公式的来龙去脉,增强记忆的牢固性,便于学生提取信息,我通过创设问题情境,设计了一组简单的计算题:1molH含有NA个H,则2molH含有2×NA个H,amolH含有a×NA个H,引导学生运用归纳法自己找出物质的量、微粒数目、阿伏加德罗常数之间的换算关系。这样,通过学生自己发现的知识,记忆会非常牢固。由于本节教学内容的重点在计算,因此,我设计了两组例题,提醒学生注意解题规范和微观粒子组成的层次性。

在摩尔质量的教学环节,为了促进学生认识的发展,使学生体验科学研究的方法之一,即收集数据――发现规律――提出假设――理论证明,我设计了一个小组活动,通过提供数据让学生分别计算1mol不同物质的质量,再分别与相对原子质量、相对分子质量对比,发现规律,然后让学生证明1mol原子的质量以克为单位时,在数值上等于相对原子质量。

物质的质量、物质的量、摩尔质量之间的换算关系则采用演绎的方法,由学生根据摩尔质量的定义自行推导得出。然后通过一组练习来加深对概念的理解,巩固知识。

人类认知发展的规律,是从感性认识上升到理性认识。如果没有感性认识做基础,理性认识就会有偏差或模糊不清。为了让学生理解物质的量是联系物质宏观质量和微观粒子数的桥梁,我提供了一道计算题,通过质量与粒子数的换算,帮助学生建立感性认识,从而更深刻地理解物质的量的桥梁意义。

四、精选练习,加强对概念的辨析

认知同化理论认为,原有概念与新学习的概念的区别程度,是影响意义学习和记忆保持的重要变量。教学要防止新旧概念的混淆,使新概念能够作为独立的实体保持下来。在物质的量和摩尔的概念教学环节,为了加强对概念的辨析,提高概念掌握的牢固程度,我设置了如下一组判断题:(1)摩尔是七个物理量之一。(2)摩尔是物质的质量单位。(3)氢气的量为1摩尔。(4)氢气的摩尔数是5。

为了让学生更好地掌握摩尔质量的概念,我设计了如下表格,引导学生分别从单位和数值两个角度对相对原子(分子)质量、1mol物质的质量、摩尔质量三个概念进行了辨析。

总之,本节课我以认知同化理论为指导,试图通过提供一些内容作为组织者,为学生建构新知识提供固定点,通过知识迁移的方式进行教学,同时注意归纳法和演绎法在教学过程中的应用,以期在认识论与方法论两个层面上达成学生认知结构的变化,实现有意义的学习。

参考文献

[1]张军.“摩尔“教学中的演绎与类比[J].中学化学,1996,(8):10.

[2]齐红涛,赵河林.“物质的量”认知结构形成的实验研究[J].化学教育,2003,(5):7-11.

[3]闫蒙钢,陈英.高中化学新教材(必修1)中“物质的量”内容的难度分析[J].化学教育,2008,(5):15-17.