首页 > 文章中心 > 减少二氧化碳排放方法

减少二氧化碳排放方法

减少二氧化碳排放方法

减少二氧化碳排放方法范文第1篇

[关键词]燃煤锅炉 碳氧化物 一氧化碳

中图分类号:TK229.6 文献标识码:A 文章编号:1009-914X(2014)15-0048-01

随着燃煤锅炉的使用增加,我国环境越来越差,烟煤锅炉中排放的有毒气体一氧化碳也越来越多,一氧化碳能够和人类血液中的血红蛋白相互结合,生成碳氧血红蛋白,夺走人体氧气,让人感觉胸闷、头痛甚至导致昏厥和死亡,一氧化碳是一种无色无味的可燃性气体,并不易被发觉。

一、燃烧锅炉中一氧化碳的形成机理

减轻一氧化碳排放量,首先要了解燃煤锅炉中一氧化碳产生的原理,燃煤锅炉可以通过三种途径来产生一氧化碳。

第一,当炉膛内温度在1000到1500℃之间时,由媒燃料中个氮及氮化物在燃烧锅炉内与氧气产生反应,来减少燃烧锅炉排出的烟气中主燃料型的碳氧化物。

燃料型碳氧化物的生成受温度影响较小,当氧浓度较高时,它的生成量会变大,除此以外,碳氧化物的生成与空气的接触面积也有关系,排出的烟气在高温度地区滞留时间越长,碳氧化物的生成量就会越大。

第二,反应型氮氧化物是在炉膛内温度高于1500℃时氧化形成的,燃煤锅炉中碳氧化物的主要成分是一氧化碳,煤在燃烧锅炉中燃烧首先会生成一氧化碳,高温下生成的部分一氧化碳被氧化后再生成二氧化碳。高温型的氮氧化物受温度影响很大,当温度越高时,生成的高温型氮氧化物则越多,接触氧气越多,生成量也越多。

第三种一氧化碳的形成是氮氧化物在高温之下,空气中的有机物在燃烧过程中生成氮原子再与氧气发生反应生成的一氧化碳。

二、燃烧过程中减少一氧化碳的技术

(一)经济简单实用的控氮技术

第一,可以采用粉煤燃烧技术或者将煤液化或气化后,再进行燃烧,这种方法是减少煤中氮化物的生成(清除减少?啥搭配),以减少燃烧时煤中氮与氧气发生反应,生成一氧化碳。

第二,从氮氧化物的形成原理上,改进煤的燃烧,上面已做了说明。

第三,要限制供入的空气量,降低锅炉内温度和火焰温度,以减少氮氧化物的生成。随后要进行多次送风,形成一个完全燃烧区域。分段燃烧可以使锅炉中氮氧化物减少25%到50%,第二次加入燃料时,只需要加入总燃料的十分之一到五分之一左右,燃烧锅炉中的氮氧化物就会减少五分之三。

第四,让五分之一的烟气返回燃烧锅炉再次进行燃烧,使燃烧的温度降低,虽然不能使氮氧化物的生成减少,但是可以使氮氧化物的排放量减少五分之一。

第五,可以减少燃料和空气混合,以达到减少燃料型氮氧化物的生成,低氮氧化物燃烧器可以产生较低火焰,能严格控制燃料和空气的接触,减少五分之二到五分之三的氮氧排放量。低氮氧化物燃烧器不适用旋风炉但是适应煤粉炉,是一种简单经济的技术手段。

(二)综低氮氧化物的高效燃煤技术

综合抑制技术在一些工厂已成功运行,下面我们主要介绍它的组成部分。

燃烧锅炉中分离器的作用下,浓喷嘴被送入含煤量高的混合物,淡喷嘴送入含煤量低的混合物。火焰稳定器便会使高浓度煤气混合物着火。这种技术手段使一半氮氧化物不再排出。

综合抑制技术在分段燃烧的技术上又进行了改进,它利用高温下的化学反应,降低了一氧化碳的排放量。燃烧锅炉内反应式如下:

综合抑制技术中的三菱回转分离器代替了传统的固定式旋风分离器,筛网上煤渣的残留量减少了五分之四,碳氧化物的排放量减少了二分之一。

三、燃烧锅炉中氮氧化物的净化技术

燃烧锅炉净化过程中,常采用吸收液回收烟气中存在的氮氧化物,其氨碱吸收法是燃烧锅炉净化中最常用的,二者中氨吸收法吸收率达到80%,具体反应方程式如下:

氨碱吸收法这种处理方式优势是投资少,方便简单。

除开上面那种办法还可以选择催化还原办法(SNR),在催化剂使用下氮氧化物会转化为无害气体水蒸气以及氮气。这种催化还原的办法虽然可以达到很高的净化率,但不同催化剂所需温度不同且投资成本相对较高。

催化还原法对应的是非催化选择还原法,官方名“SNCR”法,无催化剂条件下温度达到900到1200℃才会发生化学反应。

SNCR法温度控制要精准,否则氨易被空气中的氧氧化形成氮氧化物,SNCR法设备投资小、无需催化剂且净化率可达二分之一以上。

SNC法和SNCR法都可减轻一氧化碳的排放办法,此后还有值得一提的电子束射法。

电子束缚射法在我国的一些工程中应用已取得成功。当烟气中的水分子和氧分子得到能量时发生反应,产生强氧化性氢氧根离子和氧原子及水原子,他们与燃烧锅炉中排放的氮氧化物和二氧化硫会产生反应。

烟气中产生的OH等

OH/HO2

电子束缚法不会产生二次污染的废渣,也没废水产生,投资较少,但电子束缚法耗电是较大的。

无论是电子束缚法还是SNC、SNCR法,都在燃烧锅炉膛内产生过化学反应减少氮氧化物的产生,下面我们要介绍的是通过处理燃烧锅炉内排放烟气以减少一氧化氮的排放。

1.6MM的三氧化二铝圆球沾上碳酸钠溶液可以去除燃烧锅炉所排烟气中的SO2和氮氧化物。下面两个反应方程式是第一个步骤,二份氢氧化钠生成物和一份二氧化硫以及二分之一份氧气反应就会生成硫酸钠和水,消除了部分对环境有污染的二氧化硫;烟气中的二份一氧化碳和二份氢氧化钠以及二分之三份氧气反应生成二份硝酸钠和一份水,消除了部分一氧化氮。

天然气主要成分是甲烷(CH4),它可以通过产生的一氧化碳再生出吸附剂,循环使用,减少材料的使用,节约经济。

上述四个方程式最后会生成2NAALO2,它可以通过反应生成碳酸钠和三氧化二铝,吸附剂的吸收技术设备巨大,多投资,通过一系列化学反应消耗的吸附剂多,但对燃烧锅炉排放的烟气,氮氧化物净化率高达五分之四左右,对于SO2的吸收率有九成左右。

四、总结

为减少燃烧锅炉中产生的一氧化碳对我国环境的污染,我们要确切落实以上各种方法,做出有效的控制措,利用科学知识减轻一氧化碳排放量的同时去保护自然生态的平衡,防止大气污染日益严重,对人类生活生存造成严重的影响。

参考文献

减少二氧化碳排放方法范文第2篇

关键词:二氧化碳排放效率;减排潜力;规模方向距离函数

DOI:10.13956/j.ss.1001-8409.2015.03.15

中图分类号:F124.6;F205 文献标识码:A文章编号:1001-8409(2015)03-0070-04

1引言

面对日益严峻的环境问题,减少温室气体排放和发展低碳经济已成为国内外关注的焦点。中国作为全球第二大经济体和二氧化碳排放最多的发展中国家,面临着来自国际和国内的双重压力。我国正处于社会经济发展的关键时期,提高二氧化碳排放效率是提高经济发展水平的同时削减二氧化碳排放量的关键,同时国家总体目标的实现必然要从区域层面的减排行动着手,因此,测度我国各省市的二氧化碳排放绩效并计算各省市提高二氧化碳排放效率的改进目标值对于了解我国各省市二氧化碳排放水平、科学制定减排方案具有重要意义。

目前,国内外学者对二氧化碳排放水平等展开了大量研究,从其评价指标角度来看主要可分为两类。一是以二氧化碳排放总量与某一要素的比值的单要素评价指标对二氧化碳排放绩效进行评价,如谌伟等对上海市工业碳排放总量与碳生产率进行测算[1];Zhao等计算了我国电力行业二氧化碳排放的年增长率,并分析了二氧化碳排放影响因素[2];部分学者对我国各省市二氧化碳排放绩效进行了评价[3~6]。二是从全要素角度出发、运用生产理论对二氧化碳排放效率进行评价。Zhou等将二氧化碳排放绩效视为考虑了二氧化碳排放的生产技术效率,并对其进行测算[7]。此后许多学者从环境生产技术视角对碳排放效率进行了研究。如王群伟、进、Wang等测度分析了我国各省市的二氧化碳排放绩效[8~10];孙作人等对我国工业二氧化碳排放强度进行测算和分解[11];Zhou 等构建了非径向DDF模型,并对电力生产行业的能源和二氧化碳排放效率进行评价[12];王喜平等运用DDF对我国工业行业在二氧化碳排放约束条件下的全要素能源效率水平进行测算[13]。

单要素评价指标具有容易测算的优点,但无法反映二氧化碳的生产过程,忽略了能源结构、经济发展及要素替代作用对二氧化碳排放绩效的影响[14]。因此,近年来许多学者侧重从全要素角度评价二氧化碳排放效率并提出了多种不同的测度方法,其中由Chung等提出的方向距离函数(DDF) [15]在二氧化碳排放效率评价中得到了广泛的应用[16~19]。DDF方法能够根据不同的决策需要来自定义方向矢量而得到不同的效率值,因而能够实现在二氧化碳排放量与经济产出反向同比例变化目标下的效率测度,但DDF存在以下缺点:一是在确定方向矢量时有任意性、主观性的缺点;二是没有考虑投入松弛和产出松弛的影响,使得测度的效率值存在偏差。Ramli等对DDF进行了扩展,建立了基于松弛变量的测度模型(SBM)的规模方向距离函数(SDDF)模型[20],弥补了DDF的上述缺陷。

因此,本文将在全要素和生产技术的框架下,探索性地将SDDF模型应用到二氧化碳排放效率的评价中,以期对二氧化碳排放效率做出更精确的测算,同时测度欲达到效率最优期望产出和非期望产出的改进目标值,为提高二氧化碳排放效率相关决策提供参考。

2研究方法

21二氧化碳排放效率测度

在全要素和生产技术的框架下测度二氧化碳排放效率,首先应构建生产可能性集合。假设生产系统有N个决策单元(DMU),y∈RI+和b∈RJ+分别代表第K个DMU的期望产出向量和非期望产出向量,x∈RK+为第n个DMU的投入向量。定义生产可能集合如下:

P(x)={(y,c):投入x可以产出(y,c)}(1)

根据Fre等的研究[21],P(x)满足以下条件:①P(x)为有界闭集,在P(x)中有限投入只能生产出有限的产出;②投入与期望产出具有强可处置性;③非期望产出伴随着期望产出;④非期望产出具有弱可处置性。

为达到期望产出增加的同时非期望产出减少的目标,Chung等通过引入方向矢量g=(gy′-gc),构建了方向距离函数[15]如下:

D(x,y,c;gy′-gc)=max{β:(y+gy′c-βgc)}∈P(x)(2)

现有研究中多以式(3)所示的线性规划求解D(x,y,c;gy′-gc)[10,22]。

D(x,y,c;gy′-gc)=max βm

∑Nn=1λnxkn≤xim;

∑Nn=1λnyin≥yim+βmgy;

∑Nn=1λnCjn=cjm-βmgc;

λn≥0;

k=1,2,…,K;i=1,2,…,I;

j=1,2,…J;n=1,2,…N(3)

这一求解过程未考虑松弛变量,会带来高估偏差。本文参考Fre和Ramli等的研究[20,23],建立如下模型:

max βm=∑Ii=1syi+∑jj=1scj

∑Nn=1λnxkn≤xim;k=1,2,…,K

∑Nn=1λnyin≥yim+syi;i=1,2,…,I

∑Nn=1λncjn=cjm-scj;j=1,2,…,J

λn,syi,scj≥0;n=1,2,…,N(4)

其中,syi、scj分别为期望产出的扩展因子和非期望产出的伸缩因子。当βm=0时,说明第m个DMU效率达到最优;βm∈[0,1]越小,效率越低。βm实际为第m个DMU的非效率值,其效率值为:

am=1-βm(5)

22改进方向矢量和目标值测度

选择有效的方向矢量是应用DDF时的首要任务。本文应用SDDF方法的计算结果来确定各DMU趋近生产前沿面的方向矢量。

当∑Ii=1syi+∑Jj=1scj>0时,即DMU不在生产前沿面上,DMU的第j个期望产出和第k个非期望产出的规模方向矢量如下:

gy=syi∑Ii=1syi+∑Jj=1scj;gc=scj∑Ii=1syi+∑Jj=1scj(6)

方向矢量是由期望产出和非期望产出的松弛变量决定的。

当∑Ii=1Syi+∑Jj=1scj=0时,即DMU在生产前沿面上,gy和gc为任意值。

根据SDDF的计算结果可以得到非有效的DMU欲达到效率最优,期望产出和非期望产出的目标变化量分别为:

∑Nn=1λnyjn;∑Nn=1λnckn(7)

3指标与数据

本文研究对象包括除和港澳台以外的中国30个省市,以劳动力、资本、能源为投入变量,GDP为期望产出,二氧化碳排放量为非期望产出。劳动力投入、GDP数据源自《2011年中国统计年鉴》。能源的消耗量数据源自《2011年中国能源统计年鉴》。资本存量参考单豪杰的研究[24]进行估算,并将其折算为2010年不变价,四川和重庆的资本存量按两地1998年的GDP比例分配。二氧化碳排放量按IPCC指导目录所提供的参考方法和《中国统计年鉴》、《中国能源统计年鉴》中的能源消耗数据估算。2010年我国各省份的二氧化碳排放强度如图1所示。图12010年中国各省份二氧化碳排放强度

4计算结果分析

41二氧化碳排放效率分析

作为径向DEA模型的推广,DDF能够将非期望产出引入到模型之中,但效率测度时不具备单位不变性[25]。为解决此障碍,本文在求解之前应用成刚等提出的DEA数据标准化方法对数据进行处理[26]。在DDF中,g=(y,c)表示欲达到最优,期望与非期望产出同时变化的比例。得到2010年中国各省份二氧化碳排放效率,如图2所示。图22010年中国各省份二氧化碳排放效率

由图2可知,我国二氧化碳排放效率的区域差异化明显,沿海和东部省份的效率值明显优于西部地区。这说明二氧化碳排放效率与经济发展水平相关。

在传统DDF下的结果中,二氧化碳排放效率等于1的省份包括北京、天津、河北、山西、内蒙古、上海、广东;青海、云南、吉林、新疆、宁夏的二氧化碳排放效率值在05以下,二氧化碳减排潜力很大。宁夏的效率值最低,为0262,说明欲达到效率最优,在投入不变的情况下,宁夏的GDP应增加262%,同时二氧化碳排放量应减少262%。

在考虑了松弛变量的SDDF计算结果中,处于生产前沿的省市为北京、上海、广东3个省市,少于DDF方法下处于生产前沿的省市。天津、海南、重庆的二氧化碳排放效率值较高,均在09以上。二氧化碳排放效率最低的省份为河北省,效率值为0201,宁夏的二氧化碳排放效率略优于河北省,效率值为0280。

整体来看,DDF下的全国各省份二氧化碳排放效率均值为0726,SDDF下的结果为0687,低于DDF的结果。主要原因是引入松弛变量的SDDF弥补了DDF高估效率值的偏差,这与预期结果相同。

42改进方向矢量与改进目标值

在利用SDDF计算各省份二氧化碳排放效率的基础上,本文计算了各省份欲达到效率最优,GDP和CO2的方向矢量、改进目标值和变化率。结果如表1所示。

表12010年中国各省市二氧化碳排放绩效

改进方向矢量、目标值及其变化率

总体来讲,我国各省市CO2排放量的削减量明显大于GDP的增加量,减少CO2排放量是我国大多数省市的当务之急。各省市间的期望与非期望产出的改进变化率呈现较大的差异,其中GDP变化率最大的省份为宁夏,其GDP增加6181%,才能实现效率最优;CO2排放量变化率最大的省份为内蒙古,变化率为8078%。

5结论

本文在全要素和生产技术框架下,使用SDDF方法对我国30个省份2010年的二氧化碳排放效率进行了测算,并在此基础上计算了各个省市趋近生产前沿面的方向矢量,以及二氧化碳排放效率欲达到最优各省市期望产出与非期望产出的目标值和变化率,以此测度减排潜力,得到以下结论:

(1)SDDF能弥补传统DDF测算二氧化碳排放效率的高估缺陷。SDDF与DDF两种方法的计算结果存在偏差,整体来看SDDF对各省市二氧化碳排放效率的测算结果低于DDF的计算结果,位于生产前沿面上的省份也不同。传统DDF方法评价二氧化碳排放效率时未考虑松弛问题,存在计算结果高估效率水平的问题。SDDF是基于DDF的SBM方法,弥补了这一缺点,同时解决了传统DDF确定方向矢量具有任意性的问题,从而能够更真实、准确地测度二氧化碳排放效率。

(2)我国二氧化碳排放效率区域差异明显,经济发达的沿海和东部地区的效率值大于经济欠发达的西部地区。在SDDF方法下,除北京、上海、广东三地均处于生产前沿面上外,其他省份均未达到效率最优。趋近于生产前沿面的省份位于东南沿海地区,而东北三省、欠发达的西部地区以及河北省、山西省和山东省的二氧化碳排放效率值低于我国二氧化碳排放效率的均值。

(3)不同地区的期望产出与非期望产出改进变化率差异较大,削减二氧化碳排放量是各省市提高二氧化碳排放效率的首要任务。由于经济发展水平、产业结构、资源禀赋等不同,为提高二氧化碳排放效率,各省份期望产出与非期望产出的改进方向、改进目标值亦不同,在满足我国全局利益的情况下,应根据各省市实际情况和改进目标制定相应的二氧化碳排放效率提升政策。但整体而言,二氧化碳排放量的削减变化率明显大于GDP的增加变化率,各省份应首先努力减少二氧化碳排放量。此外,未达到二氧化碳排放效率最优的省份的二氧化碳排放量改进变化率很大,从短期看提高二氧化碳排放效率的工作艰巨,应将改进变化率作为制定相关政策的指导方向,逐步实现二氧化碳排放效率的最优化。

参考文献:

[1]谌伟,诸大建,白竹岚.上海市工业碳排放总量与碳生产率关系[J].中国人口.资源与环境,2010,09:24-29.

[2]Zhao X,Ma Q,Yang R.Factors Influencing CO2 Emissions in Chinas Power Industry:Cointegration Analysis [J].Energy Policy,2012,57:89-98.

[3]潘家华,张丽峰.我国碳生产率区域差异性研究[J].中国工业经济,2011,05:47-57.

[4]谌伟,诸大建.中国二氧化碳排放效率低么?――基于福利视角的国际比较[J].经济与管理研究,2011,01:56-63.

[5]籍艳丽,郜元兴.二氧化碳排放强度的实证研究[J].统计研究,2011,07:37-44.

[6]李涛,傅强.中国省际碳排放效率研究[J].统计研究,2011,07:62-71.

[7]Zhou P,Ang B W,Han J Y.Total Factor Carbon Emission Performance:A Malmquist Index Analysis [J].Energy Economics,2010,32(1):194-201.

[8]王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010,01:45-54.

[9]进,杜克锐.对外贸易、经济增长与中国二氧化碳排放效率[J].山西财经大学学报,2013,05:1-11.

[10]Wang Q W,Zhou P,Shen N,et al.Measuring Carbon Dioxide Emission Performance in Chinese Provinces:A Parametric Approach [J].Renewable and Sustainable Energy Reviews,2013,21:324-330.

[11]孙作人,周德群,周鹏.工业碳排放驱动因素研究:一种生产分解分析新方法[J].数量经济技术经济研究,2012,05:63-74+133.

[12]Zhou P,Ang B W,Wang H.Energy and CO2 Emission Performance in Electricity Generation:A Nonradial Directional Distance Function Approach [J].European Journal of Operational Research,2012,221(3):625-635.

[13]王喜平,姜晔.碳排放约束下我国工业行业全要素能源效率及其影响因素研究[J].软科学,2012(2):73-78.

[14]Ramanathan R.An Analysis of Energy Consumption and Carbon Dioxide Emissions in Countries of the Middle East and North Africa [J].Energy,2005,30(15):2831-2842.

[15]Chung Y H,Fre R,Grosskopf S.Productivity and Undesirable Outputs:A Directional Distance Function Approach [J].Journal of Environmental Management,1997,51(3):229-240.

[16]Riccardi R,Oggioni G,Toninelli R.Efficiency Analysis of World Cement Industry In Presence of Undesirable Output:Application of Data Envelopment Analysis and Directional Distance Function [J].Energy Policy,2012,44:140-152.

[17]李静,陈武.基于方向性距离函数的中国省区碳排放驱动因素研究[J].合肥工业大学学报:自然科学版,2012,35(3):381-386.

[18]Wang Q,Zhang H,Zhang W.A Malmquist CO2 Emission Performance Index Based on a Metafrontier Approach [J].Mathematical and Computer Modelling,2013,58(5):1068-1073.

[19]程云鹤,齐晓安,汪克亮,等.基于技术差距的中国省际全要素CO2排放效率研究[J].软科学,2012(12):64-68.

[20]Ramli N A,Munisamy S,Arabi B.Scale Directional Distance Function and Its Application to the Measurement of Ecoefficiency in the Manufacturing Sector [J].Annals of Operations Research,2013,211(1):381-398.

[21]Fre R,Grosskopf S,Pasurka Jr C A.Environmental Production Functions and Environmental Directional Distance Functions [J].Energy,2007,32(7):1055-1066.

[22]刘明磊,朱磊,范英.我国省级碳排放绩效评价及边际减排成本估计:基于非参数距离函数方法[J].中国软科学,2011,3:106-114.

[23]Fre R,Grosskopf S.Directional Distance Functions and Slacksbased Measures of Efficiency [J].European Journal of Operational Research,2010,200(1):320-322.

[24]单豪杰.中国资本存量的再估算:1952~ 2006 年[J].数量经济技术经济研究,2008,25(10):17-31.

减少二氧化碳排放方法范文第3篇

2、生活中,一方面要鼓励采取低碳的生活方式,减少碳排放;另一方面是通过一定碳抵消措施,来达到平衡。种树就是“碳中和”的一种方式,需种植的树木数(棵)等于二氧化碳排放量(千克)除以18.3。

3、衣,随季节更替,穿着适宜的应季服装可以减少空调的使用。选择环保面料并减少洗涤、选择手洗、减少服装的购买。

4、食,购买本地、季节性食品,减少食物加工过程,可以减少二氧化碳的排放。使用少油少盐少加工的烹饪方法,健康的不仅是自己,还有地球。

5、住,居住面积不必求大,理智选择适合户型。因为住房面积减少可以降低水电的用量,这在无形之中减少了二氧化碳的排放量。

6、行,选择合适的汽车车型,多乘坐公共交通工具。汽车是二氧化碳的排放大户,应尽量选择低油耗、更环保的汽车。

7、用,洗菜水洗澡水循环利用、每间房只装节能灯、不吃口香糖、使用时尚的环保袋、双面打印、不使用一次性餐具,尽量购买包装简单的产品,既减少生产中消耗的能量,也减少了垃圾。

8、使用洗衣机时,同样长的洗涤周期,“柔化”模式比“标准”模式叶轮换向次数多,电机启动电流是额定电流的5至7倍,“标准洗”更省电;

9、如果每个汽车司机都注意给轮胎及时适当充气,车辆能效就能提高6%,每辆车每年就可以减少90千克二氧化碳排放量;

10、用微波炉加工食品时,最好在食品上加层无毒塑料膜或盖上盖子,这样被加工食品水分不易蒸发,食品味道好又省电。

减少二氧化碳排放方法范文第4篇

关键词:低碳;土地利用;城市规划;低碳城市

Abstract:

he advantage of Low carbon cities, compared with the traditional urbanis toreduce carbon emissions.So the evaluation standard of carbon emissions shoud be part of thecity planning.This articleis from the necessity of carbon emissions assessment to calculate the city carbon emissions and discusses the targets land use patternto the city's lower carbon emissionsbased on calculation of carbon emissions ,at the beginning of theurban planning accurately.

Key words:low carbon;Land Use;City planning;Low Carbon City

中图分类号:TU984文献标识码:A 文章编号:

1. 排放量评估应是城市规划的基础

低碳城市的终极目标就是减少碳排放。评估城市土地利用模式对温室气体排放的具体影响,对城市的碳排放量进行有效合理的计算,研究城市在产业、建筑、交通、土地利用、等方面的碳排放水平,制定相应的减排策略,是发展低碳经济、是制定低碳城市发展目标的基础。

1.1 碳排放量评估应作为低碳城市规划设计的第一步

精确计算城市碳排放的水平应作为城市规划的起点加入到城市规划设计过程当中。只有正确的把握城市碳排放的情况,才能明确城市的低碳化发展方向,才能制定相应有效的减排措施。这种碳排放量的评估实质上是对城市规划方案的碳排放情境的预测分析。正式这种预测分析的提前完成是今后制定一系列减排政策的依据。

1.2 碳排放量评估有利于城市低碳减排目标的制定

近年来随着低碳城市理论的发展,碳排放量情境评估分析已经逐渐被世界各国所接受和应用。IEA的《全球能源展望》、能源与环境政策研究中心的《中国能源报告(2008):碳排放研究》、国家发改委能源研究所的《中国2050年低碳发展情境研究》,分别基于投入产出、IPAC模型等方法,对我国中长期的碳排放水平进行情境分析。《全球能源展望》基准情境下二氧化碳排放量从2005年的50亿吨增

长到2030年的110亿吨;《中国能源报告》的结论则认为2005年和2030年的碳排放量为25.19亿吨和31.47亿吨(折算成二氧化碳排放量分别为92亿吨和115亿吨),与IEA参考情境下的碳排放量相近;《中国2050年低碳发展情境研究》得出中国碳排放总量于2040年达到最高值。

2 土地利用的碳排放量计算及相互关系

2.1 城市土地利用二氧化碳排放量计算

在建设低碳化城市的过程中最基本的碳排放量指的是在城市和生产消费过程中向大气排放的二氧化碳的量,该量的基本公式为:

城市二氧化碳排放量=二氧化碳排放总量-二氧化碳吸收总量

其中,二氧化碳排放总量=能源消费带来的二氧化碳排放量+工业产品生产的二氧化碳排放量+垃圾排放二氧化碳总量+农业二氧化碳排放总量+其他。

二氧化碳吸收总量主要是指“林地吸收二氧化碳总量”

2.2 城市土地利用与碳排放量的相互关系

土地利用是指农田、森林、草地、湿地、建设用地之间的相互变化。通常来说,城市土地利用的碳排放量,一般计算林地、草地的碳吸收量及农业的碳排放量与碳吸收量,其他如建设用地的碳排放量在能源排放总计算。对于城市来说农业用地有限,因此不是计算的重点。

森林每生长一立方米木材大约可以吸收1.83吨二氧化碳、释放1.62吨氧气,而破坏和认为减少森林面积就会大大降低森林碳汇功能,从而导致碳排放量的增加,而森林被转变为农业用地后的十年,土壤的有机碳平均下降30.3%。

3 减少碳排放的土地利用规划策略

3.1 土地混合利用

土地混合利用实质上是指该地块在功能上的多样化布局和使用,不同功能的混合可以有效是缩短交通距离,降低城市的运行压力。土地混合使用应在控规编制阶段所确定的土地使用性质。应具有控规的法定效力。作为规划结果的土地混合使用,应在同一个地块有超过两类以上使用性质的建筑。因此在引导混合用地配置上提出一下几点。

3.2 通过土地利用变化直接减少碳排放

可通过一下几种土地的直接利用来降低碳排放

(1)减少地面硬质铺地。地面土壤中的生态系统和通气透水可有效的吸收城市中的二氧化碳。大面积的硬质铺地隔绝了土壤与空气的接触从而降低了这种土壤的自然功能。

(2)推广绿色建筑。绿色建筑可在使用周期内最大程度上节约能源的消耗是未来建筑的发展趋势。

(3)基础建设低碳化。城乡基础建设过程中,应改变小汽车为主导的交通模式,以运输量大,能源消耗低,方便快捷的交通系统为主导,如轨道交通和公共交通,以非机动车为辅助的交通模式来有效的降低碳排放。

3.3 增加碳汇直接减少碳排放

国内外研究早已证实成长中的树能从大气中吸收并固定二氧化碳,而砍伐树木后退化的土壤会向大气排放二氧化碳及其他温室气体。利用不同数据、卫星遥感数据、观测资料对1981-2000年间中国大陆植被分析结论包括:在此期间中国年均砍伐树木的总碳汇为0.096~0.106PgC/a(1P=10 15 ),其中森林年均碳汇最高为(0.075 PgC/a),其次为灌木丛(0.014~0.024 PgC/a),最低为草地(0.007 PgC/a)。而全球森林植被的碳储存量为每公顷71.5吨;因此增加森林面积,增加碳汇是最直接有效的减少碳排放的策略。

4 结语

低碳城市是未来城市的发展趋势而碳排放评估对城市的发展将起到长期结构性作用,我国正处于大规模城市建设和新一轮的空间结构调整期,应尽快确立碳评价标准体系和评估系统,并由此形成可持续发展的城市规划体系。

参考文献

[1]张坤明, 等. 低碳经济论[M]. 中国环境科学出版社, 2008: 27.

[2]丁宇. 西方现代城市规划中理性规划的发展脉络[J]. 规划师, 2005, 21( 1) : 104- 107.

[3]曹康, 王晖. 从工具理性到交往理性 现代城市规划思想内核与理论的变迁[J]. 城市规划, 2009, 33( 9) : 44 - 51.

[4]张文辉, 张 琳. 现代性转向 西方现代城市规划思想转变的哲学背景[J]. 城市规划, 2008, 22( 2) : 66 - 70.

减少二氧化碳排放方法范文第5篇

关键词:气候变化 碳税 立法理念

一、碳税的定义

英国经济学家阿瑟・庇古首先在《福利经济学》中提出碳税这一名词。在现代社会,征收碳税的首要目的是通过提高化石燃料以及其他高耗能产品的价格,来降低大众对化石燃料的需求与消耗,以减少二氧化碳的排放,最终实现改善全球气候以及减缓气候变化。由于化石燃料中所含碳的比例与数量直接关系着二氧化碳的排放量,因此,人们将此类税种称之为“碳税”。

碳税这一专有名词该如何定义,现今国内国外学者意见颇多,争论不休。比较统一的意见是将碳税定义为针对二氧化碳的排放而征收的税种。具体来说,可将其定义为以减少二氧化碳的排放为目的,以煤炭等化石燃料为征收对象并且按照其含有二氧化碳比重或者排放二氧化碳数量来征税。其他意见中,有的学者认为二氧化碳是一种环境税,是对化石燃料这种商品征收的产品消费税,有的学者则认为碳税是以化石燃料的含碳量为标准的一种消费税。

笔者所持观点为,碳税是以减少二氧化碳的排放为目的,以化石燃料燃烧时排放的二氧化碳为标准,根据其燃烧时所产生的二氧化碳排放量,对化石燃料的生产者或者使用者征收的一种税种。从现实角度看,面临全球气候变暖这一严峻问题,碳税顺应时代趋势,以减轻气候恶化,改善全球气候为目的,向排放二氧化碳的企业或个人征收税收,降低二氧化碳的排放,减轻企业或个人对化石燃料的以来,从而保护全球气候。从社会角度来看,人作为社会人,与气候变化紧密相关。气候变化导致海平面上升、气候变暖等一系列问题,严重威胁着人类的生存与发展。为了减少气候变化对人类的影响,有必要采取一系列措施降低人类对化石燃料的依赖,而碳税正是以环境保护为目的,对影响气候变化的二氧化碳征收的一种税。

二、碳税政策的实施背景

随着全球气候变化日益加重,与气候变化相关问题层出不穷,国际社会愈来愈认识到保护与改善全球气候的重要性。1992年5月22日,以气候变化为重要议题,联合国政府间谈判委员会达成一致意见并订立公约;1992年6月4日,各成员国齐聚巴西重要城市里约热内卢,并在那里召开的联合国大会上通过该公约,即《联合国气候变化框架公约》。1994年3月21日,该公约生效。

《联合国气候变化框架公约》生效后,自1995年开始,该公约的缔约方每年都会召开缔约方会议(Conferences of the Parties,COP),致力于评估各缔约方应对气候变化的进展。1997年,各缔约方在回忆中达成一致意见,对《联合国气候变化框架公约》的有关内容作出调整与修改,并着重强调二氧化碳减排这一议题,最终达成《京都议定书》,使温室气体减排成为各发达国家的法律义务。

2009年12月7日至12月18日,公约各缔约方于丹麦的哥本哈根召开第十五次会议,西方发达国家提出发展中国家的二氧化碳排放量巨大,亦是导致气候变化的重要因素,要求发展中国家也为减排承担相应的义务。发达国家与发展中国家围绕该问题争论不休,休会时只达成了不具备法律效力的《哥本哈根协议》。

2012年11月26日,《联合国气候变化框架公约》第18次缔约方会议在卡塔尔多哈拉开帷幕。由于2012年是《京都议定书》第一承诺期的结束时间,也是11年启动的德班平台的运行的关键年份,各方均希望多哈气候变化会议能发挥承前启后的关键性作用。2012年12月8日,《联合国气候变化框架公约》第18次缔约方会议于多哈当地时间12月8日19点通过一份“多哈系列协议”(Doha Package)。作为承上启下的关键性会议,多哈会议并未取得令人欣慰的成果。加拿大、俄罗斯等发达国家纷纷加入美国的行列,先后从脱离京都议定书第二承诺期,而日本、澳大利亚等发达国家也降低了其温室气体减排目标。

三、结语

气候变化的严峻现状与趋势已经不容我们有多余的时间去思考。我们应当立即采取强有力的行动减缓与改善气候变化。然而,在我国,构建碳税法律制度几乎是一片空白,长期以来,我国学者等对碳税的研究往往局限于概念层面的简单认知,忽视了从理念层面的深入研究。众所周知,构建一项新的法律制度往往涉及社会的各方面,涉及社会的整体。因此,我国应当基于本国国情,借鉴西方先进经验,制定适合本国的法律制度。

参考文献:

[1]吕忠梅.环境资源法.中国政法大学出版社,1999

[2]李慧玲.环境税费法律制度研究.中国法制出版社,2007