首页 > 文章中心 > 处理垃圾渗滤液的方法

处理垃圾渗滤液的方法

处理垃圾渗滤液的方法

处理垃圾渗滤液的方法范文第1篇

垃圾渗滤液的处理是目前国内环保界的研究热点,同时也是一个难点。垃圾渗滤液是一种高污染、强烈恶臭的污水,生活垃圾处理设施在没有解决渗滤液处理的情况下投入运行,会产生新的二次污染。

为开拓视野、学习先进经验,更好的服务于水泥回转窑处理生活垃圾的科研计划。通过现场调研及有关资料分析,生活垃圾焚烧发电厂在生活垃圾收集、堆放、储存等工艺上与水泥窑处理生活垃圾有很大的相似之处,调研、研究、分析生活垃圾焚烧发电厂垃圾渗滤液产生量、主要成分、处理工艺等技术参数,对确定水泥窑处理生活垃圾产生的渗滤液处理方案有很好的借鉴意义。

2.调研内容

垃圾渗滤液产生量

主要包括单位质量生活垃圾产生渗滤液质量。

垃圾渗滤液主要成分

主要包括:BOD5、CODcr、SS、其他成份。

垃圾渗滤液处理工艺流程

根据垃圾渗滤液不同的生化、物理、化学性质,采取不同处理工艺流程,保证经处理后的垃圾渗滤液达到国家排放标准。

3.垃圾渗滤液主要特性

垃圾焚烧厂渗滤液具有明显的特点,即成分复杂,水质、水量变化大且呈非周期性,无疑给对其进行有效而稳定的处理带来较大困难。

垃圾渗滤液量的产生受众多因素的影响,不仅水量变化大,而且其变化呈明显的非周期性。由于垃圾投放和收运过程都是一个敞开的作业系统,因而渗滤液的产生量受气候和季节变化的影响极为明显。在设计中,要通过调查分析,掌握水量及其变化规律,并在选择渗滤液处理工艺时考虑此特性。

采用生化法,则必须设置足够容积的调节池,以满足最大水量的储存,及均化水质的要求。

1)成分复杂

渗滤液属高浓度有机废水。一般情况南方沿海城市垃圾渗滤液中化学耗氧量CODcr浓度范围20000~75000mg/L,生物耗氧量BOD5浓度范围10000~35000mg/L,悬浮物SS约为6000mg/L,pH4~6,同时还含有多种有机物和无机物(含有毒有害成分),因而其水质是相当复杂的,污染物种类多,而且浓度存在短期波动性和长期变化的复杂性。垃圾渗滤液一般呈黄褐色或灰褐色,挥发出的气体带有强烈恶臭,对人体有危害,能使人产生恶心、尿血、头晕等症状。通过质谱分析,垃圾沥滤液中有机物种类高达百余种,其中所含有机物大多为腐殖类高分子碳水化合物和中等分子量的灰黄霉酸类物质。

2)水质变化

BOD5/CODcr 比值的变化大。新运进垃圾焚烧厂的垃圾大部分是比较新鲜的生活垃圾,BOD5/CODcr 值较大,也就是说可降解的有机物较多。随着储存时间的增加,BOD5/CODcr 值会有变小的趋势。但是同垃圾填埋场渗滤液相比,由于垃圾焚烧厂垃圾贮存的时间较短,一般在3天左右,所以垃圾渗滤液的可生化性变化的不是很大。

3)金属离子问题

在渗滤液的多种污染物中,金属离子(尤其是重金属离子)因其对环境特殊的危害性和对生物处理工艺的影响而比较引人注意。渗滤液中含有的多种重金属离子,由于其物理和化学环境而使垃圾中的高价不溶性金属离子转化为可溶性金属离子而溶于渗滤液中(所谓物理环境主要是指淋溶作用,化学环境主要是指因微生物对有机物的水解酸化使pH下降以及在厌氧条件下形成的还原环境),所以在处理工艺中要考虑去金属离子的问题。

4)NH4+ -N 浓度问题

渗滤液中高浓度的NH4+ ―N 是导致处理难度增大的一个重要原因。高浓度的NH4+ ―N 及其随时间的变化,不仅加重了受纳水体的污染程度,也给处理工艺的选择带来了困难,增加了复杂性。过高的NH4+ ―N 要求进行脱氮处理,而处理的结果使水中的C/N 值更低,反过来抑制常规生物处理的进行。同时应考虑水中碱度、含磷量等问题。

4.典型垃圾渗滤液处理工程简介

昆明市东郊垃圾焚烧发电厂渗滤液处理工程

该厂垃圾处理规模目前为西南最大,项目总投资4亿元,采用国内先进的“循环流化床焚烧技术”,装配4台日处理垃圾550吨的循环流化床焚烧锅炉,安装2台15MW凝汽式汽轮发电机组,不但能有效解决昆明市的垃圾污染问题,还能变废为宝,建成后每天能发电70万度。城市生活垃圾经过中转、压缩后,含水率较低,据该项目现场负责人介绍,到场后垃圾含水率约为5%。鉴于垃圾渗滤液对环境的危害,该公司投资了2000多万专门建设垃圾渗滤液污水处理站,采用先进的污水处理工艺,每天能处理60m3垃圾渗滤液。污水经处理达到国家一级排放标准后全部回用于厂区垃圾倾卸平台冲洗、垃圾车冲洗、绿化用水和循环冷却水系统补充水等,真正做到零排放。

4.1 垃圾渗滤液产生量

该工程所用城市生活垃圾经中转、压缩后,含水率较低,根据现场负责人介绍,到场后垃圾渗滤液产生量约为5%。

4.2 垃圾渗滤液的主要成分

4.3 处理工艺

4.3.1工艺流程

4.3.2 处理各阶段水质参数

4.3.3 工艺流程简介

UASB(上流式厌氧污泥床)

渗滤液先经自动细格栅再进入均衡池,栅距0.5毫米,去除固体物,以保护下游设备不易受损。经隔渣后的渗滤液流进均衡池。均衡池同时设有两台输送泵(1台备用)作为输送渗滤液及控制流量。经过渗滤液调整后,渗滤液会进入UASB反应器。该反应器有机负荷设计为10kgCOD/(立方米/日)。在反应器中,有机物首先分解为有机酸,然后分解为甲烷和二氧化碳。 反应器顶部有一系列的三相分离器,将甲烷气、污泥和处理后水有效地分开。经过厌氧处理后,渗滤液的碳氮比会降至1.46:1,造成碳氮比失调。为给SBR池提供足够的碳源作反硝化,以减低化学品消耗,部分渗滤液将旁通至SBR,以增加碳氮比值达3.2:1作为反硝化之用。

SBR(序批式活性污泥池)

经厌氧处理后,污水进入两个SBR池。SBR工艺是活性污泥法的一种,采用操作较为弹性的分批进、出水设计。各SBR的池操作周期基本可分为五个步骤:进水、反应(生物降解,硝化及反硝化)、沉淀(沉淀及澄清)、排水(排去上清液)、静止(排泥)。 以预设的计算机逻辑编程(PLC)控制上述五个步骤的分段时间。每个SBR单元安装了4台表曝机以供应微生物生长所需的氧气。此外,每个单元内安装了3台潜水式搅拌器,l台澄清泵及2台(1台备用)潜水式剩余污泥泵。 为提供反硝化的缺氧状态,表曝机会根据设定的计算机程序,间断地开关。当表曝机停止时,潜水式搅拌器会自动启动,防止水中活性污泥沉淀。池内设计MLSS6000 mg/L。沉淀后,澄清液将被2台澄清泵送至出水暂存池,再利用输送泵将池水泵进微滤系统(CMF)作深度处理。剩余污泥将被污泥泵抽至污泥贮储存池暂存,不定期由槽车运送到填埋场作最终处理。为提供足够的碳磷比值,必须定期将磷酸投入池内,以维持活性污泥的生长。

CMF(连续微滤系统)

CMF是滤膜工艺的一种,在膜的一侧施加一定的压力,使水透过滤膜,阻隔大于膜孔径的悬浮物、细菌、有机污染物等物质。 CMF系统是由微滤膜柱、压缩空气系统反冲洗系统以及PLC自控系统等组成。微滤膜柱的直径为120mm,高度为1160mm,内装的中空纤维外径为550 mm,内径为250mm,孔径0.2mm,膜表面积为33.5m2。在20℃时单根微滤膜柱水通量为0.9~1.35m3/h。CMF系统的操作由PLC自动控制,水由中空纤维膜外向膜内渗透,正常工作压力很低,工作范围为30~100kPa,最高达到200kPa。一般30~40分钟用压缩空气反冲一次,反冲时,压缩空气由中空纤维膜内吹向膜外,反冲压力为600kPa,时间1~2分钟,反冲洗水量为进水量的10~12%。CMF系统一般工作14~30天,需进行化学清洗一次。

RO(反渗透系统)

反渗透膜是目前工业用最微细的过滤设备。反渗透膜可阻挡所有可溶性盐、无机分子和任何分子量大于100的有机物通过,脱盐率达95%以上。CMF滤液流至反渗透系统的中间储水箱,2台高压泵分别将滤液抽至2列RO系统。RO进流及滤液设有导电计及流量计以监控其操作。在进入RO前,会投加防垢剂以防止反渗透膜结垢及投加硫酸。 经过一段操作时间,当下降幅度达致10~15%,反渗透膜就要进行清洗。由于渗透液的污染性较高,必须进行化学清洗,若要提高清洗效率,适当再配合用热水清洗。反渗透出水流入储存池作为回用用途。浓缩液则被泵至调节池。

5.确定垃圾渗滤液处理工艺方案

5.1垃圾渗滤液处理工艺方案

根据假设工程规模,本方案初步假定处理量为240m3/d,设计进水水质参数如下:

初步建议方案如下:参考垃圾焚烧发电厂渗沥液处理工程工艺流程,克服运行中缺点,接触氧化池改为更高效的SBR反应池,并增加机械过滤器一套,大大减轻后续处理工序的负荷,经超滤、反渗透深度处理后,达到《污水综合排放标准》(GB8978-1996)一级排放标准,直接排放。

工艺流程图

5.1.1主要建构筑物设计

⑴UASB厌氧反应器

根据工艺流程,UASB厌氧反应器前设置调节池,调节池通过水解酸化作用,CODcr去除率30%。

UASB反应器以CODcr容积负荷设计,进水温度为25℃,主要技术指标如下:

经过计算,UASB反应器设计尺寸为L×B×H=15000×15000×13700,CODcr容积负荷为10CODcr/(m3.d)。

⑵SBR好氧反应器

SBR好氧反应器以CODcr容积负荷设计,主要技术指标如下:

经过计算,反应器设计容积为400m3,分成两格,每格尺寸为L×B×H=9000×4500×5500。反应周期为12h。

6.结论

处理垃圾渗滤液的方法范文第2篇

关键词:垃圾渗滤液;环境技术管理

引 言:城市生活垃圾的处理方法主要有堆肥法、填埋法和焚烧法等。但垃圾卫生填埋仍是普遍应用的一种处置方法,即使在发达国家,填埋处理率仍然很高。

垃圾渗滤液,是垃圾填埋处理后,由于大气降水的淋溶及地表水、地下水的浸泡,固体废弃物在物理、化学及微生物作用下,产生的高浓度有机废水。这种废水中含有大量有毒有害污染物,如果直接排入环境将严重污染地表水、地下水。我国第一次污染源普查共调查垃圾处理厂2353座,排放的渗滤液中污染物含量:化学需氧量32.46万吨,氨氮3.22万吨,其中氨氮排放量约占全国氨氮排放总量的1.8%。因此垃圾渗滤的无害化处理是垃圾卫生填埋过程中必须特别重视的一个问题。

1.垃圾渗滤液特点

(1)垃圾渗滤液属于高浓度有机废水, 具有NH3-N 、BOD和COD浓度高,水质水量变化大、有毒有害污染物种类多、微生物营养比例失调的特点。

(2)垃圾渗滤液水质随着填埋方式、地理位置、季节、填埋年龄有重大变化,特别是垃圾填埋场“场龄”的影响更大。 “年轻”垃圾填埋场产生的垃圾渗滤液具有BOD、COD浓度高、可生化性较好、pH低的特点。“老龄”垃圾填埋场产生的垃圾渗滤液具有BOD浓度低、COD浓度高、氨氮浓度高,pH值高的特点。

垃圾渗滤液中含有的大量有毒有害污染物目前已经引起人们的关注,国内有关研究者采用GC-MS-DS联用技术检出垃圾渗滤液中93种有机化合物,其中22种列入我国及美国EPA环境优先控制污染物黑名单。随着分析手段及人们对环保意识的提高,垃圾渗滤液中诸如环境内分泌干扰素等有毒有害物质对人体的危害已经越来越受到健康组织的重视。

2.垃圾渗滤液处理存在问题分析

对于垃圾渗滤液处理技术路线一般是“预处理技术+生化处理技术+深度处理技术”,预处理技术的主要目的是去除氨氮、无机物及提高垃圾渗滤液的可生化性。生化处理的主要目的是去除垃圾渗滤液中溶解性有机物、氨氮,深度处理的主要目的是进一步处理渗滤液中的难降解有机污染物、悬浮物、氨氮等物质。目前我国已经建成的垃圾渗滤液处理工程大部分采用了这条技术路线。通常采用的预处理技术包括物理化学法,如吹脱、化学沉淀等,实际工程中应用多的是氨的吹脱处理。生化处理技术相对比较成熟,包括厌氧处理技术和好氧处理技术,技术相对成熟可靠。深度处理技术目前主要以膜技术为主导。表1是我国部分城市垃圾渗滤液处理情况。从表1可以看出,按照目前的排放标准,只有反渗透技术可以使垃圾渗滤液达标排放。反渗透技术处理效果毋庸置疑,但是其设备稳定性、投资及运行成本以及反渗透过程中产生的浓缩液的处理问题也是限制其广泛应用一个因素。我国大部分已经建成的垃圾渗滤液处理工程处理工艺为“预处理+生化处理”,为了达标排放,均需要技术升级改造。对于很多新建项目为了达到环保要求,也不遗余力选择反渗透处理技术。采用反渗透技术在经济发达地区可行,但在经济欠发达地区还是有一定困难得,比如广州市生活垃圾卫生填埋场,垃圾渗滤液处理采用反渗透技术,日处理800m3垃圾渗滤液,投资8000万元,运行成本在50元/t,宁波垃圾填埋场日处理170m3渗滤液,处理采用反渗透技术,投资在1200万元,运行成本在30元/t。因此,在有些地区出现了“想建的,犹豫了,不想建的,有理由了,正在建的,面临建好以后不能达标排放,已经建成的,面临技术升级改造”的状况。所以,我国垃圾渗滤液处理存在极大的技术需求。

表1 我国部分垃圾渗滤液处理情况 垃圾填埋场名称

渗滤液产生量m3/d

原始浓度(mg/L)

处理工艺流程

出水水质(mg/L)

COD

氨氮

COD

氨氮

青岛垃圾填埋场

170

3000

3000

A/O+MBR外置+NF

150

25

广州垃圾填埋场

800

8000

2000

水解酸化+SBR+微滤+RO

50

宁波垃圾填埋场

170

3000

1500

混凝沉淀+水解酸化+A/O+MBR内置+RO

50

上海垃圾填埋场

1260

18000

2600

水解酸化+SBR

1000

150

大连垃圾填埋场

100

8000

3000

混凝气浮+水解酸化+CAST+RO

50

我国垃圾渗滤液处理存在的主要技术问题包括:

(1)垃圾渗滤液高氨氮问题难以解决

由于垃圾填埋场水文地质条件、填埋方式及垃圾成分的不同,垃圾渗滤液中的氨氮浓度从数十至几万 mg/L 不等,而且随着填埋时间的延长,垃圾渗滤液中的氨氮还有升高的趋势。高浓度氨氮对垃圾渗滤液的生化处理有严重的影响,导致垃圾渗滤液处理很难达到排放标准。目前,氨氮处理工程应用较多技术的主要有氨吹脱法和生物脱氨技术。垃圾渗滤液氨吹脱技术过程中首先需要加入大量的碱进行pH的调整,工程上常采用的是通过投加大量的Ca(OH)2,很容易造成设备的结垢。在吹脱后进行生化处理前还必须通过投加酸进行回调到中性。对于吹脱出来的气态氨氮,如果不进行回收,势必造成严重的二次污染问题,通过氨回收装置进行回收,又导致整个工艺过程投资加大,并且运行成较高。以上这些缺点严重限制了该技术在垃圾渗滤液脱氮过程中的应用。虽然目前实现了工程化应用,但存在二次污染以及高能耗问题。生物脱氮适合于低浓度氨氮的垃圾渗滤液处理,随着氨氮浓度升高,氨氮对生物处理中微生物容易产生抑制,导致微生物活性降低,因此生物法不适合处理高浓度氨氮。 因此开发处理垃圾渗滤液高氨氮的技术是垃圾渗滤液处理的一个关键突破。

(2)垃圾渗滤液深度处理技术缺乏

对于“老化”垃圾渗滤液,由于生物处理很难去除其中难降解有机物,还必须进一步采取深度处理的方法。深度处理技术以物化为主。包括混凝沉淀、吸附、深度氧化及膜处理技术等。混凝沉淀可去除垃圾渗滤液中的悬浮固体、重金属和有机物等,但化学试剂的使用及污泥的处理会带来较高的运行费用。活性炭吸附可去除垃圾渗滤液中的溶解性有机物及微生物等,还可脱色和除臭,但活性炭仅能去除分子量在 100~1000 的有机物,而且吸附过程中存在堵塞和运行费用高的问题。化学氧化法可有效降低垃圾渗滤液中难生物降解有机物的浓度和色度,增加垃圾渗滤液的可生物降解性,但在化学 氧化法中,常见的氧化剂,如臭氧和双氧水的处理成本高,工程上难以实现;电化学氧化法和膜处理技术仅适用于小规模且出水水质要求高的垃圾渗滤液的处理,而且运行费用昂贵。近年来发展起来的超声波、微波和辐照法借助羟基自由基的强氧化性去除有机污染物,提高了垃圾渗透液的可生化性,而且不会带来二次污染,可作为垃圾渗透液生物处理的预处理或后处理。目前垃圾渗滤液工业化处理技术主要是纳滤及反渗透技术。技术的缺点又限制了其广泛的应用。因此开发高效、经济的垃圾渗滤液深度处理技术是保证垃圾渗滤液达标排放的一个关键。

(3)垃圾渗滤液有毒有害物质尚未考虑

垃圾渗滤液是一种有毒有害废水已经为人们所认可,但是我国对于垃圾渗滤液的主要监测指标还是停留在废水的常规指标如:BOD、COD、氨氮、总氮等物质。但随着分析手段及人们对环保意识的提高,垃圾渗滤液中的这些有毒有害物质如环境内分泌干扰物对人体的危害已越来越受到人们的关注。这类污染物质即使含量极其微小,一旦它们进入机体,将对生物体产生严重的后果,如生殖器官、内分泌系统、神经系统、免疫系统异常,产生致癌、致畸、致突变等生物效应,因此环境内分泌干扰物的研究受到了国内外学者的高度重视。因此在开发垃圾渗滤液处理技术的同时必须考虑对这些有毒有害污染的去除效果。只有如此才能真正体现垃圾渗滤的无害化处理,减少环境生态风险,保证水环境安全。

3.垃圾渗滤液处理对策

3.1 强化环境技术管理文件的指导性、可操作性,实现垃圾渗滤液有效管理。系统修订相关技术文件,结合我国国情、地区差别以及现有技术可达性,按照分区、分类、分期、分级的原则,专门制定相应的污染控制标准,进一步完善相关政策、指南、标准及工程技术规范文件,使之具有极强的指导性、可操作性、目标可达性。

3.2 从源头控制、过程控制、末端治理三方面加强对垃圾渗滤液的控制与治理。在现有基础上积极开发高效、经济的垃圾渗滤处理技术。强化对垃圾渗滤液预处理及深度处理技术的研究与开发,加强高效生物处理技术的研发,在高效生物脱氮、高效厌氧技术等方面展开技术攻关。同时要对垃圾渗滤液处理技术进行优化集成开发,不能通过简单的技术串联进行达标处理,这样势必在垃圾渗滤液领域造成极大地浪费。要积极开发运行稳定、经济合理、易于管理的垃圾渗滤液组合工艺。

3.3 加快科技成果的转化及技术的产业化发展,采取积极措施鼓励新技术的产业化,比如以羟基自由基为主的各种高级氧化技术,电化学氧化技术等通过试验研究,优化技术的运行参数, 提高技术效率、降低运行成本,同时把这些技术与其他技术进行集成优化,全过程分析技术对垃圾渗滤的处理效果。

3.4加强新技术以及设备的研发。通过多学科相互结合,开发新的垃圾渗滤液处理技术,着重在不同高级氧化处理技术与超声、紫外、电化学技术之间进行集成与开发,充分发挥这些技术的强氧化性,以达到对垃圾渗滤中难降解有机污染物以及对环境干扰素等人体有害的污染物进行彻底氧化与解毒。积极开发垃圾渗滤液一体化设备,促进垃圾渗滤液处理技术的产业化发展。

4 结束语

垃圾渗滤液作为现代生活的一种必须产物,已经成为众多环境问题中一个亟待解决的难题。以“减量化、资源化、无害化、稳定化”的原则进行管理是减少垃圾渗滤液的一种有效手段,而通过技术开发以及技术的生产实践是有效控制垃圾渗滤液的主要措施,目前。我国垃圾渗滤液的管理还存在着严格的排放标准与相应技术缺乏不适应的矛盾,还存在着无技术可循的窘境。因此积极开发高效、实用的垃圾渗滤液处理技术目前非常迫切,特别是在以高级氧化技术为基础的垃圾渗滤液处理技术的研究开发。同时,对于垃圾渗滤液对人体的危害研究也应该是一个重大的研究问题

参考文献:

处理垃圾渗滤液的方法范文第3篇

关键词:垃圾渗滤液;处理;技术

中图分类号:R124.3

随着我国城市的迅速发展, 城市垃圾产量不断增加。目前城市垃圾处理方法主要有焚烧、堆肥和填埋等。其中卫生填埋由于处理量大、成本低廉、技术成熟等优点而被国内外广泛应用。但填埋场产生的渗滤液危害极大, 它主要来源于降水和垃圾内部的内含水。若处理不当,会严重危害周边环境和污染地下水。因而渗滤液的收集和处理已成为急待解决的问题,成为国内外研究的热点之一。

1 滤液的产生

渗滤液是指城市垃圾在填埋和堆放过程中由于垃圾中有机物的分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。渗滤液主要来源[1]:(1)垃圾自身的水分;(2)垃圾中有机组分在填埋场内经厌氧、好氧分解产生的水分,产生量与垃圾的组成、pH、温度和菌种等因素有关;(3)填埋场内的自然降雨与径流。其中降水是渗滤液的主要来源,这些水分渗过成分复杂的垃圾时,使垃圾发生分解、溶出、发酵等反应,从而使渗滤液中含有大量的有机污染物、氮、磷和种类繁多的重金属类物质。

2 渗滤液的特点

渗滤液的水质随垃圾的组分、当地气候、水文地质、填埋时间和填埋方式等因素的影响而有显著的不同。其显著特征[2]:

2.1 有机物浓度高

渗滤液中的BOD5 和COD 浓度最高可达几万mg/L,主要是在酸性发酵阶段产生,pH 值一般在6.0 左右( 显弱酸性),BOD5 与COD 比值在0.5- 0.6。

2.2 水质变化大

渗滤液的水质取决于填埋场的构造方式和垃圾种类、质量、数量以及填埋年数的长短,其中构造方式是最主要的。

2.3 氨氮含量高

城市垃圾渗滤液中氨氮浓度很高,且氨氮浓度在一定时期随时间的延长会有所升高,主要是因为有机氮转化为氨氮造成的。在中晚期填埋场中,氨氮浓度高是垃圾渗滤液的重要特征之一,也是导致处理难度增大的一个重要原因。由于目前多采用厌氧填埋技术,导致渗滤液中的氨氮浓度在填埋场进入产甲烷阶段后不断上升,达到高峰值后延续很长的时间直至最后封场,甚至当填埋场稳定后仍可达到相当高的浓度。

2.4 微生物营养儿素比例失调

对于生物处理,垃圾渗滤液中的磷元素总是缺乏的, 一般垃圾渗滤液中的BOD/TP 都大于300。此值与微生物生长所需要的碳磷比(100:1)相差甚远。在不同场龄的垃圾渗滤液中,碳氮比有很大的差异,也会出现比例失调现象。

3 圾渗滤液的处理方式

3.1 合并处理

合并处理就是将城市垃圾渗滤液就近引入城市污水处理厂与城市污水合并进行处理的方式。城市污水量较大,可对渗滤液起到稀释作用,但需控制好比例,以避免对城市污水处理厂造成冲击负荷。

3.2 土地处理

土地处理是利用土壤的自净作用进行处理的方法。目前应用于垃圾渗滤液土地处理的方法主要有人工湿地和回灌处理两种。用人工湿地处理垃圾渗滤液具有费用低、管理方便等优点,但处理效果随季节变化较大,处理有机物的浓度也较低。它适应植物生长期长、生长旺盛的南方地区,不适应北方寒冷地区。回灌处理渗滤液易造成土壤堵塞,氨氮累积,回灌处理后的渗滤液仍有较高的浓度,还需要做进一步处理,因此回灌处理很少单独作为渗滤液的处理工艺。

3.3 就地处理合并处理与土地处理比较经济、简单,但受各种客观因素的限制,大部分城市只能在填埋场建立独立的渗滤液处理系统进行就地处理。

4 垃圾渗滤液的处理技术

4.1 生物处理法

生物处理包括好氧处理、厌氧处理及两者的结合。当垃圾渗滤液的BOD5/COD>0.3 时,渗滤液的可生化性较好,可以采用生物处理法,包括好氧处理、厌氧处理及好氧一厌氧结合的方法。

4.2 物化处理法

对于老龄渗滤液,必须采用以物化为主的深度处理技术。常见的物理化学方法包括光催化氧化、Fenton 法、吸附法、化学沉淀法、膜过滤等。由于物化法处理费用较高,一般用于渗滤液预处理或深度处理。

4.3 化学法

和生化法相比,化学法不受水质水量变化的影响,出水水质稳定,尤其是对BOD5/COD 值比较低(0.02~0.20),难以生物处理的渗滤液的处理效果较好。但成木较高,所以通常只作为预处理或后续处理。

4.4 回灌法

回灌处理法是20 世纪70 年代由美国的Pohland 最先提出的,我国同济大学在20 世纪90 年代也开始对垃圾渗滤液进行了研究。渗滤液回灌实质是把填埋场作为一个以垃圾为填料的巨大生物滤床,将渗滤液收集后,再返回到填埋场中,通过自然蒸发减少滤液量,并经过垃圾层和埋土层生物、物理、化学等作用达到处理渗滤液的目的。回灌处理方式主要有填埋期问渗滤液直接回灌至垃圾层、表面喷灌或浇灌至填埋场表面、地表下回灌和内层回灌。

5 结语

(1)在选择垃圾渗滤液的处理工艺时,由于渗滤液水质复杂性,就需要测定渗滤液的成分,因地制宜,选择最为适合的处理方式。在有条件的情况下,通过一些模拟试验来取得可靠优化的工艺参数,并进行处理工艺的技术经济评价,对实践起指导作用。

(2)城市垃圾渗滤液中氨氮浓度较高,不利于生物处理,因此要开发高效的脱氮技术,其中生物脱氮技术可作深入研究。

(3)根据我国国情,宜发展投资省、效果好的渗滤液处理技术,处理工艺的研究和应用以多种方法的结合为方向,在开发组合工艺时要研究易于管理运行又同时达到处理要求的新型组合工艺。

(4)目前,城市垃圾渗滤液处理研究仍处于起步阶段,对处理工艺,建设标准化的城市垃圾填埋场,渗滤液处理的设计及运行参数等都还有待于进一步探索。

参考文献

[1] 赵由才。生活垃圾卫生填理技术[M]北京:化学工业出版社,2004.

[2] 杨秀环,牛冬杰,陶红。垃圾渗滤液处理技术进展[J]。环境卫生工程,2006,14(1):46- 49.

[3] 赵宗升,刘鸿亮,李炳伟,等。垃圾填埋场渗滤液污染的控制技术

[J]。中国给水排水,2000, 16(6): 20- 23.

处理垃圾渗滤液的方法范文第4篇

关键词:城市、垃圾场、垃圾渗滤液、现状、问题、垃圾渗滤液处理技术

中图分类号: TU824 文献标识码: A

一、垃圾渗滤液概念分析

所谓垃圾渗滤液主要是指垃圾填埋场中垃圾自身含有的一些水分,在进行填埋处理以后和雨水以及雪水或其他水分,除去垃圾及覆土层的饱和水份,经过垃圾层与覆土层后形成的一种废水,这种废水成分复杂,具有较高的污染物浓度。

一般情况下,垃圾渗滤液中主要有三种有机物:一种是低分子量的脂肪酸,二是中等分子量的酸类物质,三是高分子量的碳水化合物类物质。随着时间的推移,有机物的成分会逐渐发生变化。刚开始填埋的时候,有机物中的可溶性有机碳大概在90%,其中浓度较大的是乙酸、丁酸与丙酸,还有部分灰黄霉酸。垃圾填埋的时间越长,渗滤液中的脂肪酸的含量会降低,但是,灰黄霉酸的成分反而会大幅度增加。

垃圾渗滤液中的水分主要来自以下几个方面:一是来源于填埋中的垃圾中的有机物,二是有降雨降雪的渗入,三是外部地表水的渗入,四是地下水的渗入,五是垃圾填埋以后微生物的厌氧分解而产生的,其中最多的是外部水的渗入,所以控制渗滤液的产量最为有效的方法是控制外部水的渗入,做好雨污分流和堆体防渗。

二、现阶段我国城市垃圾场渗滤液处理现状分析

近些年来我们国家的城市化发展速度迅猛,根据目前的增长速度可以预测,2012年我们国家城市生活垃圾达到2.64亿吨,到2030年会达到4.09亿吨,到2050年达到5.28亿吨。全国城市人均固体废物产量为440公斤,每年总量达到1.6亿多吨,占世界总量的四分之一以上,并且,每年还在以8%至10%的速度快速增长,我国的环境监测总站对国内三百多个城市的垃圾处理厂进行了调查显示,卫生填埋厂占垃圾处理厂的87.5%。填埋场内每年都有大量的垃圾渗滤液产生,渗滤液的处理成为卫生填埋场所面临的最大问题,如果处理不当将造成水、土壤、大气、生物等多方面的二次污染,并且极难恢复。

为防止填埋过程中造成二次污染,渗滤液处理方法和技术的研究也日益得到重视。由于渗滤液水质、水量的复杂多变性,目前国内外尚无十分完善的渗滤液处理工艺,大多根据不同填埋场的具体情况及其他经济技术要求提出有针对性的处理方案和工艺。

垃圾渗滤液处理难度主要有以下两方面:

1. 渗滤液高浓度氨氮的问题

高浓度的氨氮是渗滤液的水质特征之一,根据填埋场的填埋方式和垃圾成分的不同,渗滤液氨氮浓度一般从数十至几千mg/L不等。随着填埋时间的延长,垃圾中的有机氮转化为无机氮,渗滤液的氨氮浓度有升高的趋势。 与城市污水相比,垃圾渗滤液的氨氮浓度高出数十至数百倍。一方面,由于高浓度的氨氮对生物处理系统有一定的抑制作用;另一方面,由于高浓度的氨氮造成渗滤液中的C/N比失调,生物脱氮难以进行,导致最终出水难以达标排放。

2. 渗滤液可生化性差的问题

渗滤液可生化性差主要体现在两个方面:一是指随着填埋场填埋时间的延长,渗滤液的生化性降低,在填埋后期,可生化性很差,BOD5/COD值小于0.1,此时的渗滤液俗称“老化”渗滤液。另一方面,在填埋初期,虽然渗滤液的可生化性较好,但是光靠生物处理也很难将之处理至二级甚至一级标准以下,一般来讲,渗滤液的COD中将近有500~600mg/L 无法用生物处理的方式处理。

渗滤液处理技术既有与常规废水处理技术的共性,也有其极为显著的特殊性。渗滤液的处理有场内和场外两类处理方案。具体方案有以下几种:①预处理后直接排入城市污水处理系统合并处理;②渗滤液向填埋场的循环喷洒处理;③建设独立的场内完全处理系统。

(1)与城市污水处理厂的合并处理(场外处理)

渗滤液经预处理后与大、中型规模城市污水处理厂合并处理是最为简单有效的处理方案,它不仅可以节省单独建设渗滤液处理系统的巨额费用,还可以降低处理成本,利用污水处理厂对渗滤液的缓冲、稀释作用和城市污水中的营养物质实现渗滤液和城市污水的同时处理。但这并非是普遍适用的方法,一方面,由于垃圾填埋场往往远离城市污水处理厂,渗滤液的输送将造成较大的经济负担;另一方面,由于渗滤液所特有的水质及其变化特点,在采用此种方案时,如不加以控制,则可能对城市污水处理厂造成冲击负荷(一般渗滤液水量不能超过城市污水厂设计规模的0.5~1%),影响甚至破坏城市污水处理厂的正常运行。

(2)循环喷洒处理(场内处理)

该方法是将垃圾渗滤液收集经调节池厌氧均化预处理后,回喷到垃圾填埋场。通过回喷可提高垃圾层的含水率(由25~30%提高到60~70%),增加垃圾的湿度和微生物的活性。将填埋场当作一个大的生物滤池,上层垃圾作为好氧生物滤池,下层作为厌氧生物滤池,并通过填埋层中土壤颗粒的过滤、离子交换吸附和沉淀等作用去除渗滤液中悬浮固体和溶解成份,通过微生物作用使渗滤液中的有机物和氮发生转化,降低渗滤液污染物浓度,缩短填埋垃圾的稳定化过程。其次,渗滤液通过回喷,在太阳照射下,可蒸发掉部分水量以减少渗滤液的产生量。

回喷方法除具有加速垃圾的稳定化、减少渗滤液的场外处理量、降低渗滤液污染物浓度等优点外,还具有节省投资的经济优势。但其存在着以下两个问题:

1.不能消除渗滤液,由于喷洒或回灌的渗滤液量受填埋场特性和气象条件的限制,因而仍有大部分渗滤液须外排处理;

2.通过喷洒循环后的渗滤液仍需要进行处理方能排放,尤其是由于渗滤液在垃圾层中的循环,导致NH3-N不断积累,甚至最终使其浓度远高于其在非循环渗滤液中的浓度。

除上述原因外,还由于我国仍处于垃圾填埋技术应用的初级阶段,尚存在回喷过程中渗滤液的致病病菌容易感染人群和污染空气等环境卫生问题、安全及设计技术问题。故该方法可作为临时性处理方法,能达到减少渗滤液的目的,但不宜长期单独使用。

(3)建设独立的场内完全处理系统

在填埋场内建造独立的渗滤液处理设施,根据国内外大量文献调研的情况,在渗滤液的处理方法中,常用的处理方法大致可分为物化法、生物法、膜法和高级氧化法等,通过几种方法组合处理垃圾渗滤液,以下着重对渗滤液处理的几种技术进行介绍。

三、城市垃圾场渗滤液处理技术分析

我们国家对于垃圾渗滤液场内完全处理技术主要有以下几个方面:

1、物化法

物理化学方法主要有活性炭吸附、化学沉淀、吹脱、化学氧化与还原、离子交换、膜分离及湿式氧化法等多种方法。

2、生化法

常规的生化处理工艺主要有厌氧处理工艺和好氧处理工艺。

四、结束语

总而言之,垃圾渗滤液具有污染物浓度高,成分十分复杂,水质和水量随季节变化非常大的特点,是一种难于处理的污水。如果只采用一种方法进行处理根本没有办法满足排放要求,所以,要结合所治理的渗滤液的具体特点,合理的选用多种方法组合的处理工艺。

在对我国已有的垃圾卫生填埋场的垃圾渗滤液处理方法进行了大调的调查显示,我国大多数地区仍使用比较单独的渗滤液处理方法,在出水水质提高和技术改进上还有很大的空间。目前使用最为广泛有效的就是厌氧-好氧-物理化学-膜方法相结合的处理工艺,有着稳定的渗滤液处理效果。

我国的渗滤液处理才刚刚起步,还有很多值得研究的方面,随着膜处理和高级氧化等新技术的引进和投入应用,给渗滤液处理带来了更多的处理思路。目前,我国在渗滤液的处理上还存在建设运行费用高,系统操作复杂等问题,如何在节省投资和运行费用的同时,使系统的管理运行简单方便,是渗滤液处理中需要不断探讨的课题。

参考文献:

[1]宋晓岚.城市垃圾处理与可持续发展.长沙大学学报,2012,15(4):36-4

[2]国家统计局.中国统计年鉴[M1.北京:中国统计出版社,2012

[3]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M]北京:中国环境科学出版社,2011

[4]颜丽辉,吴银彪.城市生活垃圾处理带来的二次污染问题.中国环保产业,2012,(4):16~17

处理垃圾渗滤液的方法范文第5篇

[关键词]垃圾渗滤液FEO技术应用

垃圾渗滤液是在垃圾填埋过程中产生的一种成份十分复杂的高浓度的有机废水,目前还没有特别有效的治理方法。传统的生化处理法虽然常常用来处理渗滤液,但由于渗滤液中含有多种有毒有害的难降解有机物且水质水量变化很大,生化法的处理效果远不及其对城市污水的处理。“FEO技术”是我公司专门针对垃圾渗滤液开发的处理技术,在BOD5 CODcr比值低和很低时,使渗滤液达标的关键性技术。

1垃圾渗滤液的特性

垃圾渗滤液的来源主要有直接降水、地表径流、地表灌溉、地下水、垃圾自身的水分、覆盖材料中的水分和垃圾生化反应的生成水等。其具有负荷高、水质成份复杂、浓度随季节变化大、色度高、氨氮高、有毒性物质较多、可生化性逐渐降低等特征。渗滤液水质特征见表1。

表1 垃圾渗滤液水质特性表

项目 特 性

色味 呈淡茶色或暗褐色,色度一般在2000~4000倍之间,有较浓的腐臭味。

pH值 填埋初期pH为6-7,呈弱酸性;随着时间的推移,pH可提高到7-8.5,呈弱碱性。若垃圾中煤灰多,呈弱碱性;煤灰成分少,有机物多,呈弱酸性。

BOD5 随着时间和微生物活动的增加,浸出液中的BOD5也逐渐增加,一般填埋6个月至2.5年,达到最高峰值,随后BOD5开始下降。

CODcr 填埋初期CODcr略高于BOD5,随着时间的推移,BOD5急速下降,而CODcr下降缓慢,从而CODcr高于BOD5。浸出液中的BOD5/CODcr的比值比较高,说明浸出液较易生物降解,当填埋场填满封场后的2~5年中BOD5/CODcr逐步降至0.1,则认为后期浸出液中难于生化降解的成分占主要。

TOC BOD5/CODcr值可反映浸出液中有机碳可生化状态。填埋初期,BOD5/TOC值高,随时间推移,填埋场趋于稳定,浸出液中的有机碳以氧化状态存在,则BOD5/TOC值降低。

溶解总固体 浸出液中溶解固体总量随填埋时间推移而变化。填埋初期,溶解性盐的浓度可达10000mg/l,同时具有相当高的钠、钙、氯化物、硫酸盐和铁等,填埋6~24个月达到峰值,此后随时间的增长无机物浓度降低。

SS 一般在1000mg/l以下,垃圾填埋高度增加,SS值下降。

氨氮 氨氮浓度较高,以氨态为主。

磷 浸出液中含磷量少,生化处理中应适当增加与BOD5相当比例的磷。

重金属 生活垃圾单独填埋时,重金属含量很低,一般不会超过环保标准,但若渗混入工业废物或污泥混埋时,重金属含量增加,超标可能性大。

细菌 浸出液含有毒有害物质及细菌病毒、寄生虫等,其中大肠杆菌含量最大。

2垃圾渗滤液的处理技术

2.1生物处理技术

生物处理可大致分为厌氧生物和好氧生物处理两种技术。在厌氧生物处理装置中,渗滤液中的复杂有机分子被产甲烷细菌转化成甲烷和二氧化碳,产生极少数量的需要处理的污泥,同时还具有低能耗、低运行费和所需营养物少等优点。成熟的工艺有厌氧滤池(AF)、升流式厌氧污泥床(UASB)、高效厌氧反应器(UBF)等。

对于BOD与COD比值远大于0.5的早期渗滤液,含有大量易于生物降解的脂肪酸,好氧系统是非常有效的。微生物在氧气存在的条件下作用于有机物质,为保持好氧阶段生物活性,特别是处理含有高浓度有机物的早期渗滤液时,提供大量的氧气是非常必要的,当渗滤液有机负荷随时间变化时,系统可通过改变氧气供应来调整。好氧生物处理方法包括活性污泥法、生物转盘、滴滤池和氧化塘等。

2.2 物化处理技术

物化处理技术是指通过物理化学的方法去除渗滤液中的C0D、SS、色度、重金属等。相对于生物法,物理化学法不受渗滤液水质水量的影响,抗冲击负荷能力较强,出水水质比较稳定,尤其在废水可生化性较差的时候有比较好的处理效果。近年来,用于渗滤液处理的物化法主要有活性炭吸附、化学沉淀法、吸附法、化学氧化法、反渗透法、电渗析、FEO技术等多种方法。其可作为预处理或深度处理而为渗滤液的达标排放和生物处理系统有效运行创造良好的条件。

2.3 组合式工艺处理垃圾渗滤液

渗滤液成分复杂,仅采用普通的生物处理工艺难以达到理想的效果,因此需采用合适的预处理措施来提高它的可生化性,以改善后续工艺的运行环境。对于处理垃圾渗滤液采用物化和生化组合式的处理工艺,可以避免这两种方法的缺点。我公司积累近十年的工程实践经验,成功地开发了“厌氧+FEO+氨吹脱+好氧”的处理工艺,该处理工艺已经成功应用于十几个垃圾渗滤液处理工程。实践证明该工艺处理高浓度的垃圾渗滤液是目前确保出水稳定达标的最可行技术路线之一,CODcr、BOD5、氨氮和色度的去除率均很高,是目前较先进和比较可靠的方法之一。

3FEO处理技术介绍

“FEO处理技术”是我公司专门针对垃圾渗滤液开发的渗滤液处理技术,在BOD5/CODcr比值低和很低时,使渗滤液达标的关键性技术。我公司将该技术应用于漳州市九龙岭生活垃圾填埋场渗滤液处理工程,湛江生活垃圾填埋场渗滤液处理工程、阳江生活垃圾填埋场渗滤液处理工程、福安垃圾填埋场渗滤液处理工程、合肥市龙泉山垃圾填埋场渗滤液处理工程等工程均获得成功,净化效果十分显著。

其作用如下:FEO反应器中填料主要由Fe、Al、C、Mn、Zn、石墨等二十几种物质按一定的配比均匀混合而成。FEO反应器由FE罐及高级氧化罐两部分组成,“FE”指反应器中的主要填料铁(Fe),而“O”表示氧化反应。它主要利用电解质溶液中铁屑及其它金属晶体结构与碳之间形成的许多局部微电池,来处理工业废水的一种电化学处理技术。FEO反应器在没有外加电能条件下,充分利用金属-金属、金属-非金属之间的电位差而产生的无数微小电池的作用,使废水中的污染物通过电化氧化-还原反应、凝聚、气浮和沉降等作用,达到净化的目的。其电极反应式如下:

阳极反应:FeFe2++2e,E0(Fe/ Fe2+)=-0.44V

阴极反应:2H++2e2[H]H2,E0(H+/ H2)=0.00V(酸性介质)

O2+2H2O+4e4OH-,E0(O2/ OH-)=0.41V(碱性介质)

O2+4H++4e2H2O,E0(O2/ H+)=1.23V

FEO反应器特点是作用机制多、协同效应强、适用范围广、去除效果好、运行费用低、脱色效率高。它采用多组合工业混合原料及多元催化剂,进行多种生物化学反应、电化学反应和凝絮吸附共沉淀效应,从而分解难生化和不可生化的有机物,降低色度,为后续生化处理提供良好保障。

4FEO技术处理垃圾渗滤液工程案例

合肥龙泉山垃圾填埋场渗滤液处理站为我公司于2004年设计施工,并于2005年投入运营。合肥龙泉山垃圾填埋场位于合肥市肥东县桥头集镇,该渗滤液处理站是垃圾填埋场的主要配套工程,设在填埋库区的西北面,该项目由我公司设计施工,合肥市建设投资公司负责工程建设,华夏监理公司负责工程监理。垃圾渗滤液污水调节池容积为5万m3,渗滤液处理站设计处理规模为600m3/d,处理达标后的污水,由一条约10km的管线排入店埠河,最终进入巢湖。

垃圾渗滤液处理站设计进水水质如下:

CODcr≤6000mg/L BOD5≤3000mg/L,

SS≤500mg/LNH3-N≤800mg/L

垃圾渗滤液处理站出水排放标准如下:

渗滤液处理出水水质执行《生活垃圾填埋污染控制标准》GB16889-1997标准中的二级标准,即:CODcr≤300mg/L,BOD5≤150mg/L,SS≤200mg/L,NH3-N≤25mg/L,pH=6~9。

本处理站工艺主体路线:UASB+FEO+氨吹脱+CASS是不同于其它传统处理工艺,其是以先进的专利技术及工艺处理理论为依托,以大量的工程实例为基础逐步发展改进确立起来的,具有高度的针对性及先进性,是目前垃圾渗滤液处理的成熟的处理工艺。而FEO技术作为我公司的专利工艺更是在该工艺主体线路中起到关键的作用。

经过这几年的运营实践,FEO对经过厌氧处理以后的垃圾渗滤液处理平均效果见表2。

表2FEO进出水水质对比表

水质指标 CODcr

(mg/L) BOD5

(mg/L) 氨氮

(mg/L) 色度

(倍)

进水水质 3000 1200 800 3000

出水水质 2250 1020 640 150

由此可见FEO对 CODcr有25%的去除率,对BOD5有15%的去除率,氨氮也有20%的去除率,而对色度的去除率达95%。通过测量进出水的B/C也得到了提高。实践证明,FEO有如下优势:

4.1 垃圾渗滤液的色度很高,可达2000倍以上,工艺流程的主体系统采用生化为主的处理工艺,生化处理对色度的去除能力较弱,而“FEO处理技术”对有机色度的去除率可达95%以上。

4.2 垃圾渗滤液含有10%~35%难生化降解的有机物质,特别是填埋场到中后期或封场后,难生化和不可生化物质将占主导成份,只通过生化处理无法有效去除。“FEO处理技术”中因加入特殊的催化氧化剂,可使垃圾渗滤液中的大分子难生化物质断链为小分子,同时可改变一些难生化物质的分子结构,通过投加药剂反应可生成沉淀去除。

4.3 FEO处理技术可以去除相当一部分CODcr、NH3-N,减少后续生化处理的负荷。缩短生化时间,降低运行成本。

4.4 生活垃圾中可能混入一些工业垃圾,增加垃圾渗滤液中重金属的含量,采用FEO处理技术,能有效地去除垃圾渗滤液中的重金属离子,确保处理后的重金属达标排放。

5结论

垃圾填埋场因所处地区气候(降水)、水文特点,也与填埋场运行时间密切相关,渗滤液水质是连续变化的,所以对渗滤液的处理,不仅要考虑工艺方法对渗滤液的处理效果,而且更要考虑该工艺方法对水质、水量变化的适应性。物化法控制条件灵活、调整参数方便可靠,而生物法则对连续变化的渗滤液水质具有较好的适应性,结合两者各自特点,采用组合式工艺“厌氧+FEO+氨吹脱+好氧”处理垃圾渗滤液。FEO技术对于水质水量的变化有很好的适应性,在其水质水量变化时均能够稳定的运行。FEO技术处理垃圾渗滤液将是一个发展方向,有着广阔的应用前景。

参考文献:

[1] 闫志明,普红平,王小凤.垃圾渗滤液的特征及其处理工艺评述[J].昆明理工大学学报(理工版),2003,28(3):128-134.

[2] 蒋彬,吴浩汀,徐亚明 浅谈城市垃圾填埋场渗滤液的处理技术[J].江苏环境科技,2002,15(1):32-34.

[3] 丁忠浩,刘子元,王文斌,赵素芬.垃圾渗滤液处理中SBR法脱氮研究[J].武汉科技大学学报(自然科学版),2003,26(1):24-26.

[4] 程洁红,马鲁铭.厌氧/SBR/混凝沉淀耦合工艺处理垃圾渗滤液的研究[J].水处理技术,2004,30(3):176-178.

[5] 孟玢,李静,王蕾,季民.Fenton氧化处理垃圾渗滤液生化工艺处理的影响因素研究[J].天津城市建设学院学报,2004,10(1):41-45.

[6] Sheng H.Lin and Chin C.Chang,Treatment of landfill leachate by combined eletro-Fenton oxidation and sequencing batch reactor method,Wat.Res.,2000,34(17).