首页 > 文章中心 > 高压变频器

高压变频器

高压变频器

高压变频器范文第1篇

【关键字】高压变频器,原理,应用分析

中图分类号:TN773 文献标识码:A 文章编号:

一、前言

本文笔者试着从高压变频器的基本概述进行分析,并进一步分析了高压变频器的工作原理以及其应用,希望笔者的分析,对于高压变频器的发展具有一定的作用。

二、高压变频器概述

高压变频器是采用若干个变频功率单元串联的方式实现直接高压输出。在变频器中,由多个低压单元串联连接,构成驱动系统的高压输出。基于这种拓扑结构,使得高压变频器具备了在维护、功率品质方面的优点,另外变频器通过快速功率单元旁路,是系统的可靠性大大增加。该变频器具有对电网谐波危害小,输入功率因素高,无需采用输入谐波滤波器和功率因素补偿装置。输出波形质量好,不存在谐波引起的电机附加发热和转矩脉动,噪音,输出dv/dt,共模电压等问题,不必设置输出滤波器就可以用于普通的异步电机。

传统的变频器拥有5个独立部件,即输入滤波器、功率因数补偿、隔离变压器、逆变装置和输出滤波器。而无谐波高压变频器完美的输入/输出特性,因此其内部仅需隔离变压器和变频器两个主要部件。与普通采用高压器件直接串联的变频器相比,由于采用整个功率单元串联,器件承受的最高电压为单元内直流母线的电压,可直接使用低压功率器件,器件不必串联,不存在器件串联引起的均压问题。功率单元中采用的低压IGBT功率模块,驱动电路简单,技术成熟可靠。功率单元采用模块化结构,同一变频器内的所有功率单元可以互换,维修业非常方便。由于采用功率单元串联结构,所以可以采取功率单元旁路技术,当功率单元故障时,控制系统可以将故障单元自动旁路,采用中心点漂移技术,变频器仍可降额继续运行,大大提高了系统的可靠性。

三、高压变频器的工作原理

1、移相式变压器

移相变压器的副边绕组分为三组,构成X脉冲整流方式;这种多极移相叠加的整流方式可以大大改善网侧的电流波形,使负载下的网侧功率因数接近1。另外,由于副边绕组的独立性,使每个功率单元的主回路相对独立,这样大大提高了可靠性。

2、智能化功率单元

所有的功率模块均为智能化设计具有强大的自诊断指导能力,一旦有故障发生时,功率模块将故障信息迅速返回到主控单元中,主控单元及时将主要功率元件IGBT关断,保护主电路;同时在中文人机界面上精确定位显示故障位置、类别。在设计时已将一定功率范围内的单元模块进行了标准化考虑,以此保证了单元模块在结构、功能上的一致性。当模块出现故障时,在得到报警器报警通知后,可在几分钟内更换同等功能的备用模块,减少停机时间。

6kV电网电压经过副边多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交直流PWM电压源型逆变器结构,相邻功率单元的输出端串联起来,形成Y接结构,实现变压变频的高压直接输出,供给高压电动机。6kV电压等级的高压变频器,每相由六个额定电压为600V的功率单元串联而成,输出相电压最高可达3464V,线电压达6000V左右。改变每相功率单元的串联个数或功率单元的输出电压等级,就可以实现不同电压等级的高压输出。每个功率单元分别由输入变压器的一组副边供电,功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,实现多重化,以达到降低输入谐波电流的目的。6kV电压等级的变频器,给18个功率单元供电的18个二次绕组每三个一组,分为6个不同的相位组,互差10度电角度,形成36脉冲的整流电路结构,输入电流波形接近正弦波,这种等值裂相供电方式使总的谐波电流失真大为减少,变频器输入的功率因数可达到0.95以上。

3、双DSP控制系统

主控器的核心为双DSP的CPU单元,使指令能在纳秒级完成。这样CPU单元可以很快的根据操作命令、给定信号及其它输入信号,计算出控制信息及状态信息,快速的完成对功率单元的监控。

4、GPRS远程监控

通过FTU配网装置,将采集到的'实际频率'、'定子电压'、'定子电流'、'压力'以及系统运行的状态量和报警信息等等数据,利用GPRS网络发送到后台服务器,后台服务器可根据所收到的数据信息的分析结果作出相应的处理操作,包括监测工作状态、系统运行参数、电流、电压的超标报警,这样就可以对现场进行实时监控,以确定安全情况和运行情况。大幅提高了系统运行的可靠性、操作方式更加灵活、同时也减少了维护费用。

四、高压变频器在电厂的应用分析

1、选择合适的高压变频器类型

目前,结合电厂负荷实际情况做好选型工作是使用高压变频技术最重要的一步。工程实践中,通常选用高―低―高型变频器以及直接高压型变频器中的三电平方案和单元串联多电平方案。

①负载容量小于500 kW这个容量范围的变频器占全厂总负荷比例较小,无论是老设备改造还是新建的项目,当谐波并非主要问题时,完全可以采用6脉冲(或者12脉冲),价格低廉,投资回报快,相比之下如果采用变频器,由于系统结构的原因,单位价格(元/kW)非常高,有些大材小用。当然更为理想的是能够采用扃―中方案,变频器直接驱动690VAC电机,系统效率和应用效果都能处于最佳。

②负载容量在500 kW-800 kW之间此段容量的高压变频器既可以采用高―低―高方案,也可以采用直接输出高压方案,这就需要用户对装置性能、谐波影响、装置尺寸、安装场地、投资运算、使用维护等多方面综合进行评估。通常情况下,对于新建项目,采用高―中方案,变频器直接驱动690VAC电机,整个系统的综合性能价格比较高,而对于老设备改造项目,如果原有电机不做改动,那么采用三电平电压源型高压变频器和单元串联多电平型高压变频器比较合适。

③负载容量在800 kW以上800 kW以上的高压变频器负荷容量相对较大,对于高―低―高或高―中方案来说,690VAC部分的输出电流比较大,截面积较大的输出电缆不便于铺设和连接,因此适宜选用直接输出高压型方案,建议采用三电平电压源型高压变频器或者单元串联多电平型高压变频器。

2、实际应用中的问题与对策

高压变频器是集电力电子技术和控制技术为一体的大型电气设备,实际应用中可能碰到各种具体问题需要采取不同对策,以保证设备长期可靠运行。

1)变频器散热无论是哪种形式的高压变频器,其正常发热量大约为容量的4%-6%。对于安装场所来说,必须做好通风散热,过高的环境温度会使变频器输出功率降低,并加速电子元件的老化,影响变频器使用寿命,因此建议给变频器加装通风散热风道或加装空调。

2)变频电机普通电机通过自有的风扇冷却,但在变频调速过程中其冷却效果随着电机转速降低而下降,对于长期运行在较低频率且需要输出较大转矩的场合,应当考虑采用独立电源供电的变频电机。

3)变压器几乎所有形式的高压变频器都有进线变压器,如果采用干式变压器放置在配电室内,最好能配置柜体,并考虑散热。

4)控制电源某些品牌高压变频器需要低压控制电源,建议对控制电源增设UPS保证可靠供电,防止因控制电源故障导致变频器跳闸。

5)旁路刀闸切换对于重要场合的负载,建议增加工频旁路,可以采用简单可靠的旁路刀闸(3只刀闸)配置成切换柜,3只刀闸间建立相互联锁的关系,当变频器故障跳闸后通过刀闸切换,使工频电网直接驱动电机运行。

五、结束语

综上所述,高压变频器是随着现代科技的不断发展而逐渐发展起来的,其对于我国相关领域的发展具有十分重要的作用,因此,我们需要不断的加强对其的研究和分析,促进其更大的发展。

参考文献:

[1]刘凤袖 高压变频器在广州发电厂给水系统改造中的应用华南理工大学2012-04-01硕士

高压变频器范文第2篇

[关键词]高压 变频器 过电压故障 危害 原因 解决

中图分类号:TD53 文献标识码:A 文章编号:1009-914X(2014)01-0063-01

正常情况下,直流母线电压为三相交流输入线电压的峰值。以AC700V输入电压等级的功率单元为例计算,直流母线电压1.414x700=989V。在过电压发生时,直流母线的储能电容电压将上升,当电压上升至一定的值时〔通常为正常值的10%-20%),高压变频器过电压保护动作。因此,对于变频器来说,有一个正常的工作电压范围,当电压超过这个范围时很可能损坏功率单元。

1.过电压故障的危害

高压变频器过电压主要是指其中间直流回路过电压,中间直流回路过电压的主要危害表现在以下几方面。

1.1 对功率单元直流回路电解电容器的寿命有直接影响,严重时会引起电容器爆裂。因而高压变频器厂家一般将中间直流回路过电压值限定在一定范围内,一旦其电压超过限定值,变频器将按限定要求跳闸保护。

1.2 对功率器件如整流桥、IGBT、SCR的寿命有直接影响,直流母线电压过高,功率器件的安全裕量减少。例如对AC700V输入电压等级的功率单元来说,其功率器件的额定耐压一般选定在DV1700V左右,考虑器件处在开关状态时dv/dt比较大,因此在直流母线电压过高时再叠加功率器件开关过程中产生的过电压,很有可能超过器件的额定耐压而造成器件击穿损坏。

1.3 对功率单元的控制板造成损坏。一般功率单元中控制板上的。DC/DC变换器需从直流母线取电,DC/DC变换器的输入电压也有一定的范围,直流母线电压过高,则变换器中开关管如MOSFET也会击穿。

2.引起过电压故障的原因

一般能引起中间直流回路真正过电压的原因主要来自以下两个方面。

2.1 来自电源输入侧的过电压

正常情况下电网电压的波动在额定电压的-10%―+10%以内,但是,在特殊情况下,电源电压正向波动可能过大。由于直流母线电压随着电源电压上升,所以当电压上升到保护值时,变频器会因过电压保护而跳闸。

2.2 来自负载侧的过电压

由于某种原因使电动机处于再生发电状态时,即电动机处于实际在速比变频频率决定的同步转速高的状态时,负载的传动系统中所储存的机械能经电动机转换成电能,通过各个功率单元逆变桥中的四个IGBT中的续流二极管回馈到功率单元的直流母线回路中。此时的逆变桥处于整流状态,如果功率单元中没有采取消耗这些能量的措施,这些能量将会导致中间直流回路的电解电容器的电压上升,达到保护值即会报出过电压故障而跳闸。

3.避免过电压故障的方法

根据以上针对高压变频器过电压带来的危害及几种可能的产生原因的分析,可以从以下四个方面来尽最大可能避免过电压故障的产生:一是避免电网过电压进入到变频器输入侧;二是避免或减少多余能量向中间直流回路馈送,使其过电压的程度限定在允许的限值之内;三是提高过电压检测回路的抗干扰性;四是中间直流回路多余能量应及时处理。下面介绍主要的处理方式。

3.1 在电源榆入侧增加吸收装置,减少变频器榆入过电压因素

对于电源输入侧有冲击过电压、雷电引起的过电压、补偿电容在合闸或断开时形成的过电压可能发生的情况下,可以采用在输入侧并联浪涌吸收装置或串联电抗器等方法加以解决。

3.2 从变频器已设定的参数中寻找解决办法

在变频器中可设定的参数主要有两个:减速时间参数和变频器减速过电压自处理功能。在工艺流程中如不限定负载减速时间时,变频器减速时间参数的设定不要太短,而使得负载动能逐渐释放;该参数的设定要以不引起中间回路过电压为限,特别要注意负载惯性较大时该参数的设定。如果工艺流程对负载减速时间有限制,而在限定时间内变频器出现过电压跳闸现象,就要设定变频器失速自整定功能或先设定变频器不过电压情况下可减至的频率值,暂缓后再设定下一阶段变压器不过电压情况下可减至的频率值,即采用分段减速方式。

3.3 采用在中间直流回路上增加适当电容的方法

中间直流回路电容对其电压稳定、提高回路承受过电压的能力起着非常重要的作用。适当增大回路的电容量或及时更换运行时间过长且容量下降的电容器#解决变频器过电压的有效方法。这里还包括在设计阶段选用较大容量的变频器的方法,是以增大变频器容量的方法来换取过电压保护能力的提高。

3.4 在条件允许的情况下适当降低功率单元输入电压

目前变频器功率单元整流侧采用的是不可控整流桥,电源电压高,中间直流回〖路电压也高,有些用户处电网电压长期处于最大正向波动值附近。电网电压越高则变频器中间直流回路电压也越高,对变频器承受过电压能力影响很大。可以在高压变频器内配置的移相整流变压器高压侧预留5%、 0分接头,一般出厂时移相变压器输入侧都默认接在0分接头处。在电压偏高时,可以将输入侧改接在+5%分接头上,这样可适当降低功率单元输入侧的电压,达到相对提高变频器过电压保护能力的目的。

3.5 增强过电压检测电路的可靠性和抗干扰性

前面提到过电压检测电路分为高压采样部分和低压隔离比较部分,因此提高整个电路的可靠性和抗干扰性要从以下两方面入手。

3.5.1 中间直流母线到电路板上的两根连接导线要采用双绞线,并且线长应尽量短,电路板检测回路的入口处要增加滤波电容;降压电阻应选用功率裕性好、温漂小的电阻。

3.5.2 低压部分要采用工业等级的基准源,采用高共模抑制比的光耦参数以提高光耦一、二次侧的抗干扰能力。

3.6 在输入增加逆变电路的方法

处理变频器中间直流回路能量最好的方法就是在输入侧增加可控整流电路,可以将多余的能量回馈给电网。但可控整流桥价格昂贵,技术复杂,不是较经济的方法。这样在实际中就限制了它的应用,只有在较高级的场合才使用。

3.7 采用增加泄放电阻的方法

高压变频器范文第3篇

【关键词】高压绿色变频器;变频调速;节能高效

前言

近年来,节能环保问题已经成为各行各业关注的重大问题,绿色经济、节能经济悄然升起,20世纪末,国内一些公司纷纷展开了高压变频器技术的研究与应用工作,并取得了喜人的业绩,如:具有优良性价比的交-直-交电压源型高压变频器在发电厂和热电厂里被大量使用。在大型机械机电行业,出现了高压绿色变频器,并且应用的越来越多,在实际应用过程中也给企业带来了很大的经济效益,给环境带来了更小的压力。变频调速是目前世界公认的最理想的节电调速技术,更重要的是,高压绿色变频器能够减少对弱电系统的干扰,保证电网长时间的正常运行。

1、高压绿色变频器的工作原理

高压绿色变频器是一种高效节能变频器,即人们通常所认为的多重化变频器、单元串联多电平PWM电压源型变频器。高压绿色变频器是由本身具有低压PWM变频功率特点的多个单元串联而成,以达到多重化输入电压的目的。下面以美国某公司生产的绿色变频器为例简要阐述其原理,绿色变频器采取6kv的拓扑结构,三相高压电分为15个独立的功率单元,分别由输入隔离变压器的15个二次绕组供电。15个二次绕组分成5组,每组之间存在12°相位差。功率单元为一三相输入、单相输出的PWM型变频器,由二极管组成三相桥式整流电路,整流后由4只低压IGBT逆变成单相交流输出。

2、高压绿色变频器的优点

高压绿色变频器在应用过程中,比普通高压变频器显示出了很多优势,如:具有节能作用、性能稳定、实现无级调速等。此外,还有以下优点。

2.1高压绿色变频器具有功率因数高、谐波污染小的优点

高压绿色变频器由于是在叠加相互串联多个低压变频功率的过程中,实现了电压输入的多重化,因此,对电网产生的谐波污染非常小。当输入脉冲为30时,其实29次以下的谐波在理论上是都可以被抵消掉的,电压总畸变率仅为1.2%,而电流的总畸变率更小,不需要功率因数补偿。如表1为多重化变频器与电流型变频器谐波比较。

2.2高压绿色变频器的效率高、损耗小

高压绿色变频器谐波分量相对非常小,功率因数补偿可以看作为零,谐波引起的损耗很小,根据统计,高压绿色变频器与CSI-PWM变频器效率相比较,如表2。IGBT驱动功率很小,峰值功率为5W左右,平均功率不到1W,变频部分效率高达98%以上,整个变频系统的效率高达96%以上。

2.3高压绿色变频器易于维修维护

高压绿色变频器技术在使用过程中日益成熟,它具有简单的驱动电路,模块化之间可以互换,使用常规低压IGBT的每个功率单元经过I/O端可以与子系统相互联系,维修维护十分简便,滤波电容可以承受电源电压下降-30%和电源丧失5个周期,性能十分稳定,当整机发生故障时,可在毫秒级的时间内,由变频状态转入工频状态,不会因变频器故障造成电机停机,设备自身有自检功能,便于维修操作。如我国先行HAF高压变频器,设计有热备份、热插拔和主回路直合功能。当某个模块出现故障时,能自动将故障单元切换旁路,使热备份投入。

3、高压绿色变频器的具体应用

目前,高压绿色变频器已广泛应用于钢铁、冶金生产、石油化工等行业,为锅炉鼓风机、压缩机、油泵等设备提供了稳定的高可靠性的变频调速解决方案,而且现场运行节能效果非常显著,下面介绍一个简单的应用实例。

河北钢铁邯钢某厂于20110年配备了两台心式吸风机,额定风量38万m3/h,全压为3973Pa,配用JSQ-156-6型电动机,额定功率700kw,额定电压6kv。2012年引进了美国罗宾康公司生产的两台750kw高压绿色变频器后,效果非常明显,与以往的入口导流器调节比较,性能更加稳固,仪器使用稳定性更好,节能效果显著,每月节约用电28kw・h,为公司可节约上百万成本投入。目前,河北钢铁邯钢某厂应用最多的是10kv、400kw HVF高压绿色变频器。应用以后,启动电流以由100A下降到12A,运行频率35-40Hz,平均节电40%。

结束语

高压绿色变频器在我国的应用虽然处于起步阶段,但是由于它比普通变频器具有众多的优点,发展相当迅速。相信在不久的将来,随着经济的增长和技术的发展,用户对产品的要求也越来越高,其技术也将在应用中不断创新进步,高压绿色变频器将在各行各业应用的越来越多。

参考文献

[1]徐甫荣.关于变频器的输出切换问题探讨―兼论水泵群软起停控制方案[J].电气传动自动化,2002年04期.

高压变频器范文第4篇

关键词:高压变频器;连铸水处理;转炉水处理;系统改造;电网电压

中图分类号:TM744 文献标识码:A 文章编号:1009-2374(2013)10-0031-03

1 概述

为了节能降耗,韶钢第三炼钢厂连铸水处理和转炉水处理分别对原部分高压水泵电机进行了变频技术改造,以下分别对连铸水处理变频系统改造(变频器为国产ZINVERT型智能高压变频器)和转炉水处理变频系统改造(变频器为东芝TMdrive-MV无谐波系列6kV/450kW)做技术总结。

连铸水处理对以下4组水泵电机新增4组高压变频器,连铸水处理有1#板坯二冷水、2#板坯二冷水、2#板坯结晶器水、3#板坯结晶器水等四组水泵,分别为1#板坯、2#板坯、3#板坯供水,每组水泵有2台6kV高压电机(一用一备),电机功率和额定电流分别为560kW/63.44A、315kW/36.11A、315kW/36.11A、630kW/73.5A;改造前均为全压工频直接启动,工作时为额定电流,新增4组变频器后电流降低,故障率减少,可根据生产板坯种类不同,通过闭环控制,对水流量进行调节,且能始终保持恒压状态,改善稳定了板坯质量。

转炉水处理氧枪原高压供水系统主要由三台6kV/250kW电机、泵以及电动阀组成,其用途是供给两座转炉氧枪冷却作用。系统正常运行情况下,给水泵采用两用一备方式运行,电机控制方式为直接工频起动。采用这种方式主要存在以下问题:采用定速运行,出口压力高、管损严重、系统效率低,造成能源的浪费;交流电机在直接接电网工频起动过程中会产生极大的冲击电流,导致对电机本身及电网的严重损害;由于要增加一座转炉,且保持原来供水管道不变,以原电机容量是不能满足生产要求的,所以本次增大电机容量以及泵的容量,选用3台400kW电机,改用高压变频调速系统,增加3台变频器450kWTMdrive-MV。氧枪高压供水泵通过本次技改后,完全能满足3座炉子氧枪供水需求,电机起动过程平缓,对电网的干扰小,电机损耗小,功率因数高,节能效果显著,使用方便,实现了恒压供水。

2 设备现状及工艺要求

2.1 连铸水处理原系统的缺点

(1)电能损耗大,启动时对电网冲击大,对电机冲击损坏严重。

(2)投产以来,由于生产工作的电机出现故障,曾导致被迫停浇。

(3)不能满足生产工艺需求,要手动调节阀门调节水量,不能实现恒压控制。

2.2 转炉水处理原系统的缺点

(1)出口压力高、管损严重,导致阀门泄漏、不能关严等。

(2)交流电机在直接接电网工频起动过程中会产生极大的冲击电流,导致对电机本身及电网的严重损害。

(3)不能满足3座炉子氧枪供水需求。

2.3 连铸水处理系统改造方案

(1)2008年7月利用4#板坯水处理新建高压电气室剩余空间新增4套ZINVERT型智能高压变频器,原高压开关柜保持不动,作为至现用高压变频柜一通断开关,拆除原高压开关柜至现场电机的动力电缆,改为开关柜——变频器——电机。新增现场操作4个,在变频器旁增加两套远程I/O站,作为原1#板坯水处理PLC、2#、3#机(共用)水处理PLC子站,与其通讯。

其中F1~F4为6kV高压真空断路器,F3、F4为供货方提供;J1~J4为6kV高压接触器,根据电力规程要求分别配置K1~K4为刀闸。正常运行中各刀闸闭合状态,在检修时根据需要切开相应刀闸。

若M1泵变频运行M2泵工频备用,则F1、J1、F3闭合,F2、F4、J2、J3、J4断开;若M2泵变频运行M1泵工频备用,则F2、J2、F4闭合,F1、F3、J1、J3、J4断开;该方案中的J1、J2相互闭锁,J3、F3相互闭锁,J4、F4相互闭锁,F3与F4高压相互闭锁。确保同一电机不出现变频、工频同时驱动。同一泵组之间不能出现两台电机同时工作。另外,ZINVERT智能高压变频调速系统旁路刀闸柜符合“五防”闭锁的要求,旁路柜高压有电或高压侧开关在合闸位置时,闭锁所有刀闸操作,前后柜门不能开启;旁路刀闸之间具有闭锁,防止误操作。

2.4 转炉水处理系统改造方案

(1)每个柜子放一根3×185的高压变频器到电机之间的电缆。一根3×185从高压开关柜到高压变频器的电缆。3根高压开关柜到高压变频器的控制电缆。做两根3×185电缆的绝缘和耐压实验,确保电缆的安全性能。高压变频器调试。调试人员对高压变频器各个驱动板和通信电缆进行检测,检测无误后,设置变频参数,在变频器旁对电机进行空载试车,并对电机各个参数进行在线监控。PLC程序员编写程序和修改控制画面,以通过上级PLC来控制高压开关柜的合闸和改变变频器的频率来改变供水泵的转速。最后由本厂操作人员在画面进行控制,达到满意效果。把电机带负载运行,对供水流量、管道压力、电机参数等进行监控一个工作日后,各参数正常,改造圆满结束,设备投入正式运行。

(2)转炉水处理氧枪高压供水系统改造以后的系统主回路图,如图2所示:

2.5 每套系统配置

(1)450kW,6kV输入6kV输出TMEIC高压变频器。

(2)高压工频切换柜KA(K12与K13之间有机械连锁,不能同时合上)。

手动刀闸旁路切换方案如主回路图所示,采用手动刀闸切换也可以实现电机的工频/变频切换。当工频旁路柜KA中K12断开时,K11、K13闭合,此时,电机由6kV输出TMEIC无谐波高压变频器驱动,电机处于变频调速运行状态。当工频旁路柜KA中K12闭合,K11、K13断开时,电机可以由6kV工频电网直接驱动,电机处于工频运行状态。由于此方案采用了手动刀闸,在切换过程中,需要切断用户高压开关,操作人员在现场完成切换操作。

(3)该系统如主回路图所示:在正常工作时K11、K13闭合,K12开路。此时水泵由变频器驱动,变频器根据生产实际的工况变化,调节电机转速从而实现水泵速度的平滑调节。当变频器需要检修时,可以使K11、K13开路,同时闭合K12。此时,水泵亦可直接由电网直接驱动。TMEIC高压变频器本身具有极高的可靠性,如果再配上工频旁路刀闸柜,则整套系统将更加可靠。在变频方式下,原来电机的保护通过变频器来实现。由于切回工频方式时还采用原差动保护,差动保护的切换可以通过工频旁路柜上的相应辅助接点来自动切换。在变频方式下,不需要采用无功补偿装置,如在工频方式运行,则根据系统情况考虑采用无功补偿装置。

3 系统组成及控制功能

3.1 连铸变频系统技术特点

(1)完整的工频/变频自动互切技术,高压变频调速系统配置工频旁路切换柜,变频器发生故障时能迅速自动使高压电机转至工频运行。

(2)PLC给变频器一个模拟量(转速),通过闭环控制和变频调速达到水流恒压。

(3)ZINVERT系列智能高压变频调速系统采用功率单元串联技术,直接输出3kV、6kV、10kV电压,属高-高电压源型变频器。由于采用功率单元串联而非功率器件的直接串联,因此解决了器件耐压的问题。同时由于同相各级功率单元输出SPWM信号通过移相后进行叠加,提高了输出电压谐波性能,降低了输出电压的dv/dt;通过电流多重化技术降低输入侧谐波,减小了对电网的谐波污染。

(4)据估算,该套系统投运后,按适配高压电机年运行7000小时计算,节电率一般在20%~40%之间,年节电可达500万kWh,以国内工业用电0.5~0.7元计算,年节约电费可达200~300万元,用户在一年内可回收设备投资。

(5)变频器带有自诊断显示,运行中可选择观察输出电流、电压、频率、同步转速等参数。变频装置提供中文操作界面,具有参数设定、系统监控等功能。

(6)系统能在电子噪声、射频干扰及振动的环境中连续运行,且不降低系统的性能。距电子柜1.2m处以外发出的工作频率470Hz、功率输出达5W的电磁干扰和射频干扰,不影响系统正常工作。

3.2 转炉水处理变频系统技术特点

(1)变频器采用高压直接输入、高压直接输出的电压源方式。变频装置采用多绕组、多单元串联的无谐波方式。6kV输出采用36脉冲,不加任何滤波器就可以满足“GB/T14549”电能质量公用电网谐波中规定的每次谐波电流值的要求及“IEEE519”国际标准的规定(0%~100%频率范围内)。

(2)逆变器侧采用高开关频率的IGBT器件,IGBT采用经过三菱严格筛选的军品级最新一代1700V的高压IGBT,具有极高的可靠性,保证良好的输出波形。变频器输出电压近似正弦波,输出电流为正弦波。

(3)变频单元内部有非常先进的自动预充电电路,可以使10kV高压上电时的电流冲击减到最小,防止高压断路器速断保护动作跳闸。

(4)变频器系统总效率(满载)达到97%,输入功率因数0.95以上,无需功率因素补偿器。

4 节能及效益分析

系统改造后可以快速地调节流量,运行人员对系统的调整控制更为稳定自如。系统的功率因素可以提高到0.95以上,减少无功损失。提高了系统自动装置的稳定性,为系统的经济优化运行提供了可靠保证,系统的运行参数得到改善,提高了效率。电机直合时:电流39~42A,功率因素0.75~0.85,日用电量9180kWh。电机带变频器运行时:电流30~35A,功率因素0.95~0.97,日用电量6720kWh。通过数据分析,采用变频器后,电机的功率因数明显提高,节电效果显著。电机采用高压变频器后:功率因数(平均值)提高到0.96以上;节电达到27%。

5 结语

经过这次改造,两系统运行均非常可靠,降耗节能效果显著,为稳定生产、节能降耗、提高产品质量打下了良好的基础。

参考文献

[1] 程胜先.高压变频调速在电弧炉除尘风机上的应用[J].电力需求侧管理,2007,(9).

高压变频器范文第5篇

山东风光电子有限公司是在多年研制中低压变频器的基础上,综合了国内外高压大功率变频器的多种方案的优缺点,采用最优方案研制成功的,并于2002年12月通过了省级科技成果及产品鉴定,成为国内生产高压大功率变频器的为数较少的几个企业之一。

2 国内现生产的高压大功率变频器的方案及优缺点

目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。

而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在:

(1) 器件

采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。

(2) 均压问题(包括静态均压和动态均压)

均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

(3) 对电网的谐波污染和功率因数

由于CSML方式输入整流电路的脉波数超过NPC方式,前者在输入谐波方面的优势很明显,因此在综合功率因数方面也有一定的优势

(4) 输出波形

NPC方式输出相电压是三电平,线电压是五电平。而CSML方式输出相电压为11电平,线电压为21电平(对五单元串联而言),而且后者的等效开关频率大大高于前者,所以后者在输出波形的质量方面也高于前者。

(5) dv/dt

NPC方式的输出电压跳变台阶为高压直流母线电压的一半,对于6kV输出变频器而言,为4kV左右。CSML方式输出电压跳变台阶为单元的直流母线电压,不会超过1kV,所以前者比后者的差距也是很明显的。

(6) 系统效率

就变压器与逆变电路而言,NPC方式与CSML方式效率非常接近。但由于输出波形质量差异,若采用普通电机,前者必须设置输出滤波器,后者不必。而滤波器的存在大约会影响效率的0.5%左右。

(7) 四象限运行

NPC方式当输入采用对称的PWM整流电路时,可以实现四象限运行,可用于轧机、卷扬机等设备;而CSML方式则无法实现四象限运行。只能用于风机、水泵类负载。

(8) 冗余设计

NPC方式的冗余设计很难实现,而CSML方式可以方便的采用功率单元旁路技术和冗余功率单元设计方案,大大的有利于提高系统的可靠性。

(9) 可维护性

除了可靠性之外,可维护性也是衡量高压大功率变频器的优劣的一个重要因素,CSML方式采用模块化设计,更换功率单元时只要拆除3个交流输入端子和2个交流输出端子,以及1个光纤插头,就可以抽出整个单元,十分方便。而NPC方式就不那么方便了。

总之,三电平电压形变频器结构简单,且可作成四象限运行的变频器,应用范围宽。如电压等级较高时,采用器件直接串联,带来均压问题,且存在输出谐波和dv/dt等问题,一般要设置输出滤波器,在电网对谐波失真要求较高时,还要设置输入滤波器。而多重化PWM电压型变频器不存在均压问题,且在输入谐波及dv/dt等方面有明显优势。对于普通的风机、水泵类一般不要求四象限运行的场合,CSML变频器有较广阔的应用前景。这类变频器又被国内外设计者称之为完美无谐波变频器。

我公司的设计人员经过多方探讨,综合各种方案的优缺点,最后选定了完美无谐波变频器的CSML方案作为我们的最佳选择,这就是我们向市场推出的JD-BP37和JD-BP38系列的高压大功率变频器。

3 变频器的性能特点

(1) 变频器采用多功率单元串联方案,输出波形失真小,可配接普通交流电机,无须输出滤波器。

(2) 输入侧采用多重化移相整流技术,电流谐波小,功率因数高。

(3) 控制器与功率单元之间的通信用多路并行光纤实现,提高了抗干扰性及可靠性。

(4) 控制器中采用一套独立于高压源的电源供电系统,有利于整机调试和操作人员的培训。

(5) 采用全中文的Windows彩色液晶显示触摸界面。

(6) 主电路模块化设计,安装、调试、维护方便。

(7) 完整的故障监测和报警保护功能。

(8) 可选择现场控制、远程控制。

(9) 内置PID调节器,可开环或闭环运行。

(10) 可根据需要打印输出运行报表。

4 工作原理

4.1 基本原理

本变频器为交-直-交型单元串联多电平电压源变频调速器,原理框图如图1所示。单元数的多少视电压高低而定,本处以每相为8单元,共24单元为例。每个功率单元承受全部的电机电流、1/8的相电压、1/24的输出功率。24个单元在变压器上都有自立独立的三相输入绕组。功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差为20°,以B相为基准,A相8个单元对应的8个二次绕组超前B相20°,C相8个单元对应的8个二次绕组落后B相20°,形成18脉冲整流电路结构。整机原理图如图2所示。

4.2 功率单元电路

所有单元都有6支二极管实现三相全波整流,有4个IGBT管构成单相逆变电路。功率单元的主电路如图3所示,4个IGBT管分别用T1、T2、T3、T4表示,它们的门极电压分别是UG1、UG2、UG3、UG4、

每个功率单元的输出都是一样的PWM波。功率单元输出波形如图4所示。逆变器采用多电平移相PWM技术。同一相的功率单元输出完全相同的基准电压(同幅度、同频率、同相位)。多个单元迭加后的 输出波形如图5所示。

4.3 系统结构与控制

(1) 系统结构

整个系统有隔离变压器、3个变频柜和1个控制柜组成,参见图6。

a) 隔离变压器

原边为星形接法,副边共有24个独立的三相绕组,为了适应现场的电网情况,变压器原边留有抽头

b) 变频柜

A、B、C三相分装在3个柜内,可分别称为A柜、B柜、C柜

c) 控制柜

柜内装有控制系统,柜前板上装有控制面板、控制接线排等。由于电压等级和容量的不同,不同机型的单元的数量不同,面板的布置也会有些不同。

4.4 系统控制

整机控制系统有16位单片机担任主控,24个功率单元都有一个自己的辅助CPU,由8位单片机担任,此外还有一个CPU,也是8位单片机,负责管理键盘和显示屏。

(1) 利用三次谐波补偿技术提高了电源电压利用率。

(2) 控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况相同,这给整机可靠性、调试带来了很大方便。

(3) 系统采用了先进的载波移相技术,它的特点是单元输出的基波相迭加、谐波彼此相抵消。所以串联后的总输出波形失真特别小。

5 现场应用

本公司分别于2002年8月、10月和2003年3月、4月 分别在山东莱芜钢铁股份有限公司炼铁厂、辽河油田锦州采油厂、浙江永盛化纤有限公司应用了本公司生产的高压大功率变频器JD-BP37-630F 2台、JD-BP38-355、JD-BP37-550F各1台。从运行情况看:

(1) 变频器结构紧凑,安装简单

由于变频器所有部分都装在柜里,不需要另外的电抗器、滤波器、补偿电容、启动设备等一系列其他装置,所以体积小,结构紧凑,安装简单,现场配线少,调试方便。

(2) 电机及机组运行平稳,各项指标满足工艺要求。

由变频器拖动的电机均为三相普通的异步电动机,在整个运行范围内,电机始终运行平稳,温升正常。风机启动时的噪音及启动电流很小,无任何异常震动和噪音。在调速范围内,轴瓦的最高温升均在允许的范围内。

(3) 变频器三相输出波形完美,非常接近正弦波。

经现场测试,变频器的三相输出电压波形、电流波形非常标准,说明变频器完全可以控制一般的普通电动机运行,对电机无特殊要求。

(4) 变频器运行情况稳定,性能良好。

该设备投运以来,变频器运行一直十分稳定。设备运行过程中,我公司技术人员对变频器输入变压器的温升,功率单元温升定期巡检,完全正常。输出电压及电流波形正弦度很好,谐波含量极少,效率均高于97%,优于同类进口设备。

(5) 运行工况改善,工人劳动强度降低。

变频器可随着生产的需要自动调节电动机的转速,达到最佳效果,工人工作强度大大降低。

(6) 变频器操作简单,易于掌握及维护。

变频器的起停,改变运行频率等操作简便,操作人员经过半个小时培训就可以全面掌握。另外,变频器各种功能齐全,十分完善,提高了设备可靠性,而且节电效果明显。以山东莱钢股份有限公司应用的JD-BP37-630F变频器为例,该系统生产周期大约为1h,出铁时间为20min,间隔约40min,系统配置电机的额定电流为80A,根据运行情况,及其它生产线的实际运行情况,预计该电机运行电流应在60A,以变频器上限运行频率45HZ时,电流为45A,间隔时间运行频率20HZ时,电流为20A。根据公式测算节能效果达到42.7%。

6 结束语

从这几台这几个月的运行情况看,我公司自行研制生产的高压大功率变频器,运行稳定可靠,节能效果显著,改善了工作人员的工作环境,降低了值班人员的劳动强度。变频器对电机保护功能齐全,减少了维修费用,延长了电机及风机的使用寿命,给用户带来了显著的经济效益,深得用户好评。据专家估计我们国家6kV以上的高压大功率电机约有3万多台,约合650万kW,因此,高压大功率变频器的市场是极其广阔的。